BZAP45基因与黏液表皮样癌关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人涎腺黏液表皮样癌(Mucoepidermoid Carcinoma,MEC)是涎腺最常见的恶性肿瘤,约占涎腺恶性肿瘤的30%,尽管有时表现像良性病变,生长比较慢,但是该肿瘤有时是高度恶性而且预后很差。低分化的涎腺黏液表皮样癌侵袭和转移能力强,5年的存活率不超过43%。
     对于BZAP45(或BZW1)基因的相关研究的文献不多。至今仅知BZAP45是一种调节因子。而对于BZAP45基因是否有其他功能并没有文献报道,也未见有BZAP45基因与肿瘤相关的报道。
     RNA干扰(RNA interference, RNAi)作用机制为应用小的双链RNA引发序列特异性的基因表达的“沉默”或“敲除”。在哺乳动物细胞中这种双链RNA可以是短发夹结构RNA (Small hairpin RNA,shRNA);也可以是3'-端带有游离碱基的简单的二聚体(Small interference RNA, siRNA)。转染合成的siRNA所得到的靶基因抑制效果往往时间比较短,而且局限于容易转染的细胞系。应用于RNA干扰的载体有很多种,而利用慢病毒构建载体应用于基因沉默,是研究基因功能很好的方法。
     在本课题的前期研究中,我们初步发现在黏液表皮样癌组织和细胞中,BZAP45均高表达。在此基础上,本课题构建了BZAP45慢病毒干涉载体,将Mc3细胞中的BZAP45基因沉默,观察其体外和体内生物学特性的改变,并对其影响Mc3细胞生物学行为的机制进行初步探索。本课题主要的研究内容包括以下几个方面:
     1.进一步确认BZAP45基因在黏黏液表皮样癌中高表达
     为验证基因芯片结果正确与否并且明确BZAP45基因是否为黏液表皮样癌特异性的差异表达基因,我们设计了BZAP45基因实时定量PCR的引物,进行实时定量PCR检测;并预制了BZAP45基因的多克隆抗体,对4例肿瘤组织(制备成15个样本)和4例正常组织进行了免疫组化染色。结果显示,BZAP45基因在黏液表皮样癌细胞和组织中表达均比正常细胞和组织高。
     2. BZAP 45基因RNA干扰慢病毒载载体的制备及黏黏液液表皮样癌细细胞胞感染
     针对靶基因序列,利用公用网站按照RNA干扰序列设计原则,设计4个针对BZAP45基因的RNA干扰靶点序列;合成含干扰序列的双链DNA oligo,其两端含酶切位点粘端,直接连入酶切后的载体上,将连接好的产物转入制备好的感受态细胞,对长出的阳性克隆先进行PCR鉴定,再进行测序比对后,鉴定阳性的克隆即为构建成功的BZAP45基因RNA干扰慢病毒载体。选择干涉效果最好的序列,经过病毒的小量包装、大量包装、滴度检测及浓缩后获得足够滴度的慢病毒溶液,利用慢病毒载体感染Mc3细胞,利用有限稀释法挑选阳性单克隆,并利用时定量PCR对获得的细胞进行鉴定,从而获得了稳定感染的细胞株。
     3. BZAP 45基因干涉后Mc3细胞体体体外外及及体体内内生生物物学学行为的改变
     为了研究BZAP45基因在Mc3细胞中可能的作用,我们将BZAP45基因干涉,使其沉默后,利用MTT法、细胞计数法、平板克隆形成实验观、细胞划痕实验、transwell实验、HE染色、透射电镜等方法察Mc3细胞体外的生物学行为的变化情况,利用裸鼠移植瘤方法观察了Mc3细胞干涉前后在裸鼠体内的生长情况。结果显示,BZAP45基因沉默后,Mc3细胞体外增殖变缓,细胞的群体倍增时间由原来的约23 h增为约48 h;克隆形成能力下降,克隆形成率由原来的78%下降为20%;体外迁移能力下降,Mc3、Mc3-NC和Mc3-RNAi三种细胞迁移的距离分别为65.833±4.940μm、64.733±2.684μm和45.667±3.066μm;体外侵袭能力下降,Mc3、Mc3-NC和Mc3-RNAi三种细胞到达小室底面的细胞数分别为85±6.1、82.0±7.8和24.0±3.7个;细胞超微结构改变,干涉后细胞核染色质浓缩、碎裂、边集于核膜,呈境界清楚的块状或半月状;体内成瘤速度变缓,抑瘤率约为57.95%。
     4. BZAP 45影响MMCC 3细细细胞胞胞生生生物物物学学行行为为的的机机制初探为研究BZAP45影响MC3细胞生物学行为的机制,我们利用流式细胞仪检测了干涉前后细胞周期分布的改变,并利用免疫荧光检测了细胞周期相关因子、凋亡相关因子以及细胞增殖相关因子的表达改变,结果显示,BZAP45基因干涉后,细胞出现G1期阻滞,干涉前后p53、c-myc和P21的表达无明显变化;干涉后,caspase3的表达有所升高,而cyclin-D1和PCNA的表达有所降低。
     结论:
     1. BZAP45基因在黏液表皮样癌组织和细胞中高表达。
     2.成功构建了BZAP45基因干涉的慢病毒干涉载体。并成功将MC3细胞的BZAP45基因干涉,获得了稳定的细胞株。
     3. BZAP45基因被干涉后,Mc3细胞的体内和体外的生物学特性发生改变,细胞的恶性程度下降。
     4.BZAP45基因可能与黏液表皮样癌的发生和/或发展有关。
Mucoepidermoid carcinoma (MEC) is the most common malignacy in salivary glands and accounts for about 30% of malignant tumors in salivary glands in Chinese population. Although it sometimes shows a slow growth resembling a benign lesion, this neoplasm can be highly aggressive with a dismal prognosis. A 5-year disease-free survival rate between 0 and 43% has been demonstrated in the patients with high-grade tumors.
     There is little reports about BZAP45, up to now, we only know that it serves as cell cycle regulator. Whether this gene has other funtions or its relationship with tumors has no reports.
     RNA interference (RNAi) is a cellular mechanism in which double-stranded RNA triggers the sequence-specific“silencing”or“knockdown”of gene expression. In mammalian cells this double-stranded RNA may be either a small hairpin RNA (shRNA) or a simple RNA duplex with two unpaired nucleotides on the 3'-ends (siRNA). The transfection of synthetic siRNAs causes only transient suppression of target genes, which is often limited to the cell lines that are easy to be transfected. However, compared with siRNA, shRNA is more efficient to achieve stable long-term RNAi effects.There are many vectors used in RNAi, but it is a better way to study gene funtion by construction of lentivirus-RNAi vector.
     Based on our previous work, in this study, we constructed lentivirus-RNAi vector to silence BZAP45 gene in Mc3 cells. The biofeatures changes of Mc3 cells in vivo and in vitro and the possible mechanisms were studied, including four parts as follows:
     1. To confirm the expression level of BZAP45 in MEC tissue and cells was higher than that in normal tissue and cells
     We designed specific primers of BZAP45 to verify the results of cDNA microarray by real time PCR. Rabbit antibody specific for BZAP45 was generated by immunizing rabbits with recombinant human BZAP45 protein and purified by using standard protocols. The expression level of BZAP45 in MEC and normal salivary gland tissue was detected by immunohistochemistry and real time PCR. The expression level of BZAP45 MEC cells was detected by real time PCR. The results showed that the expression level of BZAP45 in MEC tissue, Mc3 cells were much higher than that in normal fibroblast cells and normal salivary gland tissue
     2. To construct BZAP45 siRNA expression lentivirus and to infect cells
     To generate lentivirus expressing RNAi specific for the BZAP45 gene, the four siRNAs were designed based on two conservative cDNA fragments within the coding region of human BZAP45 gene. The most effective one was chosed for later study. After Mc3 cells were infected, limiting dilution assay was used to pick positive clone, and real time PCR was used to identify the infected cells. The cells expressed BZAP45 siRNA were got and were used for later study.
     3. To study the changes of biofeatures in Mc3 cells after BZAP45 scilenced in vitro and in vivo
     MTT assay, cell counting assay, colony formation assay, monolayer wound healing assay, transwell invasion assay, HE staining and transmission electron microscopy were used to detect the changes in Mc3 cells in vitro after BZAP45 scilenced, Tumorigenesis assay was used to to detect the changes in Mc3 cells in vivo after BZAP45 scilenced. The results showed that the proliferation, the ability of clone formation and migration were decreased notably. Cells doubling time of Mc3 and Mc3-RNAi was 23h and 48h, the clone forming efficiency of Mc3 and Mc3-RNAi was 78% and 20%. Following incubation of physically wounded cells for 48 h, the Mc3 and Mc3-NC migrated insignificantly at 65.833±4.940μm or 64.733±2.684μm, respectively. In contrast, the Mc3-RNAi only migrated about 45.667±3.066μm and the mobile distance of Mc3-RNAi was significantly shorter than that of controls. In transwell invasion assay, average 85±6.1 Mc3 and 82.0±7.8 Mc3-NC cells per high power field had migrated onto the filter surface while only 24.0±3.7 Mc3-RNAi cells reached on the filter. The development of Mc3-RNAi cell-related solid tumors grew slowly and the mean volume of solid MEC tumors in Mc3-RNAi group decreased by about 60%, as compared with that in control groups . As a result, the mean weight of tumors in Mc3-RNAi group was significantly lighter than that in control groups The ultrastructure of Mc3 cells also changed after BZAP45 silenced.
     4. The possible mechanisms of BZAP45 effects the biofeatures of Mc3 cells
     The cell cycle distribution was detected by flow cytometry. Also some factors related to cell cycle, apoptosis and cell proliferation were detected by immunofluorescence. The expression levels of P53, c-myc, P21 seem no change after BZAP45 silenced, but the expression level of caspase3 was higher in Mc3-RNAi cells than in the other two groups, while the expression levels of cyclin-D1 and PCNA seem lower in Mc3-RNAi cells than that in the other two groups.
     Conclusions:
     1. The expression level of BZAP45 in MEC tissues and cells was higher than that in normal salivary gland tissues and cells
     2. BZAP45-RNAi-lentivirus was constructed and Mc3 cells were infected successfully.
     3. The biofeatures in Mc3 cells after BZAP45 scilenced were changed in vitro and in vivo notably, the malignancy of Mc3 cells was decreased after BZAP45 gene scilenced.
     4. BZAP45 gene may be related to the genesis and/or development of MEC
引文
1.俞光岩.涎腺疾病.北京:北京医科大学中国协和医科大学联合出版社,1994,157-158.
    2. Seifert G, Brocheriou C, Cardesa A, et al. WHO International Histological Classification of Tumours. Tentative Histological Classification of Salivary Gland Tumours. Pathol Res Pract. 1990; 186(5):555-581
    3.张锡泽,邱蔚六.口腔颌面外科学.第二版,北京:人民卫生出版社,1987,432.
    4.李培智,颜雨春,陈铸石.细针吸细胞学在涎腺肿瘤中应用评价.安徽医学,1992,13(4):9-13.
    5.刘斌,司徒镇强,吴军正等.人黏液表皮样癌MEC-1细胞放射敏感性研究.实用口腔医学杂志,1997,13(2):126-128.
    6.刘斌,司徒镇强,吴军正. HMBA联合辐射对人黏液表皮样癌MEC-1细胞的抑制作用.实用口腔医学杂志,1995,11(2):136-138.
    7. Winslow CP, Batuello S, Chan KC. Pediatric mucoepidermoid carcinoma of the minor salivary glands. Ear Nose Throat J, 1998,77(5):390-395.
    8.吴军正,陈建元,司徒镇强等.涎腺黏液表皮样癌高转移细胞药物敏感性特点.实用口腔医学杂志,1997,13(2):118-120.
    9.贺福长,李德伦,毛天球.平阳霉素磁性脂质体对人黏液表皮样癌的体内抗瘤作用研究.实用口腔医学杂志,1997,13(2):108-110.
    10.金军,张菊,张盈华等.阿霉素诱导人黏液表皮样癌细胞凋亡的形态学观察.第四军医大学学报,1997,18(1):48-50.
    11. Jia B, Situ Z, Wu J. Differentiation effect of hexamethylene bisacetamide (HMBA) on mucoepidermoid carcinoma in vivo. Chung Hua Kou Chiang Hsueh Tsa Chih, 1996,31(2):85-87.
    12.刘文书,徐雅娟.腮腺黏液表皮样癌120例临床分析.吉林医学,2001,22 (1):8-9.
    13.曹强,李淑艳,顾晓明.黏液表皮样癌128例疗效分析.实用口腔医学杂志,2001,17(1):41-43.
    14. Inagaki M, Yuasa K, Nakayama E, et al. Mucoepidermoid cacinoma in the mandible : findings of panoramic radiography and computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(5):613-618.
    15.俞光岩,高岩,吴奇光等.癌胚抗原在黏液表皮样癌中的分布特征及其临床意义.实用口腔医学杂志,1993,9(1):11-13.
    16. Shankey TV, Rabinovitch PS, Bagwell B, et al. Guidelines for implementation of clinical DNA cytometry. Cytometry,1993, 14(5):472-477.
    17. Batsakis JG. Staging of salivary gland neoplasms: role of histopathologic and molecular factors. Am J Surg. 1994; 168(5): 386-390.
    18. Hicks MJ, el-Naggar AK, Byers RM, et al. Prognostic factors in mucoepidermoid carcinomas of major salivary glands: a clinicopathologic and flow cytometric study. Eur J Cancer B Oral Oncol. 1994; 30B(5): 329-334.
    19. Gemryd P, Lundquist PG, Tytor M, et al. Prognostic significance of DNA ploidy in mucoepidermoid carcinoma. Eur Arch Otorhinolaryngol. 1997; 254(4):180-185.
    20. Bang G, Donath K, Thoresen S, et al. DNA flow cytometry of reclassified subtypes of malignant salivary gland tumors. J Oral Pathol Med. 1994; 23(7): 291-297.
    21. Yang L, Hashimura K, Qin C, et al. Immunoreactivity of proliferating cell nuclear antigen in salivary gland tumours: an assessment of growth potential. Virchows Arch A Pathol Anat Histopathol. 1993; 422(6): 481-486.
    22. Cardoso WP, Denardin OV, Rapoport A, et al. Proliferating cell nuclear antigen expression in mucoepidermoid carcinoma of salivary glands. Sao Paulo Med J. 2000 May 4; 118(3):69-74.
    23. Zhu Q, Tipoe GL, White FH. Rative activity as detected by immunostaining with Ki-67 and proliferating cell nuclear antigen in benign and malignant epithelial lesions of the human parotid gland. Anal Quant Cytol Histol. 1999 Aug;21(4):336-342.
    24. Hicks J, Flaitz C. Mucoepidermoid carcinoma of salivary glands in children and adolescents: assessment of proliferation markers. Oral Oncol. 2000; 36(5): 454-60.
    25. Takahashi M, Adachi T, Matsui R, et al. Assessment of proliferating cell nuclear antigen immunostaining in parotid tumors. Eur Arch Otorhinolaryngol. 1998; 255(6): 311-4.
    26. Gerdes J, Li L, Schlueter C, Duchrow M et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 1991; 138(4): 867-873.
    27. Kiyoshima T, Shima K, Kobayashi I, et al. Expression of p53 tumor suppressor gene in adenoid cystic and mucoepidermoid carcinomas of the salivary glands. Oral Oncol. 2001; 37(3): 315-322.
    28. Skalova A, Lehtonen H, von Boguslawsky K, et al. Prognostic significance of cell proliferation in mucoepidermoid carcinomas of the salivary gland: clinicopathological study using MIB 1 antibody in paraffin sections. Hum Pathol. 1994; 25(9): 929-935.
    29. Yin HF, Okada N, Takagi M. Apoptosis and apoptotic-related factors in mucoepidermoid carcinoma of the oral minor salivary glands. Pathol Int. 2000; 50(8): 603-609.
    30. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990Jul;5(7):953-62.
    31. Cho KJ, Kim JY, Lee SS, Oh KK. Mucoepidermoid carcinoma of the salivary gland--a clinico-pathologic and immunohistochemical study for c-erbB-2 oncoprotein. J Korean Med Sci. 1997; 12(6): 499-504.
    32. Gibbons MD, Manne U, Carroll WR, et al. Molecular differences in mucoepidermoid carcinoma and adenoid cystic carcinoma of the major salivary glands. Laryngoscope. 2001; 111(8): 1373-1378.
    33. Press MF, Pike MC, Hung G, et al. Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res. 1994; 54(21): 5675-5682.
    34. Suzuki M, Ichimiya I, Matsushita F, et al. Histological features and prognosis of patients with mucoepidermoid carcinoma of the parotid gland. J Laryngol Otol. 1998; 112(10): 944-947.
    35. Ito R, Yasui W, Ogawa Y, et al. Reduced expression of cyclin-dependent kinase inhibitor p27(Kip1) in oral malignant tumors. Pathobiology. 1999 Jul-Aug;67(4):169-73.
    36. Okabe M, Inagaki H, Murase T, et al. Prognostic significance of p27 and Ki-67 expression in mucoepidermoid carcinoma of the intraoral minor salivary gland. Mod Pathol. 2001; 14(10): 1008-1014.
    37. Choi CS, Choi G, Jung KY, et al. Low expression of p27(Kip1) in advanced mucoepidermoid carcinomas of head and neck. Head Neck. 2001; 23(4): 292-297.
    38. Hoyek-Gebeily J, NehméE, Aftimos G, et al. Prognostic significance of EGFR, p53 and E-cadherin in mucoepidermoid cancer of the salivary glands: a retrospective case series. J Med Liban. 2007; 55(2): 83-88.
    39. Yang R, Gombart AF, Serrano M, et al. Mutational effects on the p16INK4atumor suppressor protein. Cancer Res. 1995; 55(12): 2503-2506.
    40. Cerilli LA, Swartzbaugh JR, Saadut R, et al. Analysis of chromosome 9p21 deletion and p16 gene mutation in salivary gland carcinomas. Hum Pathol. 1999; 30(10):1242-1246.
    41. Xing R, Regezi JA, Stern M, et al. Hyaluronan and CD44 expression in minor salivary gland tumors. Oral Dis. 1998; 4(4): 241-247.
    42. Kapadia SB, Barnes L. Expression of androgen receptor, gross cystic disease fluid protein, and CD44 in salivary duct carcinoma. Mod Pathol. 1998; 11(11): 1033-1038.
    43.吴轶群,张伟国,张志愿. CD44s和CD44v6在涎腺腺样囊性癌中的表达.中华口腔医学会第五届口腔病理学术会议论文汇编,1999,36.
    44.李峥,王淑强,李春智等.热休克蛋白60和Pan-钙黏蛋白在涎腺黏液表皮样癌中的表达.中国老年学杂志,2005,25(12):1466-1467.
    45.潘娟新,徐炜.多药耐药基因在涎腺黏液表皮样癌中的表达意义.实用肿瘤学杂志,2006,20(1):12-14.
    46.王琳琳,朱炎.血管内皮生长因子在口腔恶性肿瘤研究中的进展.口腔颌面外科杂志,2006,16(1):87-90.
    47. Kvzas PA, Stefanon D, Batistatou A, et al. Prognostic significance of VEGF immunohistochemical expression and tumor angiogenesis in head and neck sauamous cell carcinoma. Cancer Kes Oncol, 2005,131(9):624-630.
    48.吕洋,刘博,吴靖芳.大肠癌相关生物标志物病理学进展.河北北方学院学报(医学版),2007,24(1):80-83.
    49. Mitra P, Vaughan PS, Stein JL,et al. Purification and functional analysis of a novel leucine-zipper/nucleotide-fold protein, BZAP45, stimulating cell cycle regulated histone H4 gene transcription. Biochemistry, 2001; (40): 10693-10699.
    50. Olsen JC. EIAV, CAEV and other lentivirus vector systems. Somat Cell MolGenet. 2001; 26(1-6): 131-145.
    51.黄黎珍,刘光泽,顾为盼.慢病毒载体法制备转基因动物研究进展.实验动物与比较医学.2007,27(1):63-66.
    52.罗望,张泓,许淼等.慢病毒-基因转移的潜在新载体.江苏药学与临床研究, 2006,14(6):366-371.
    53. Collins KL, Chen BK, Kalams SA, et al. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature. 1998; 391(6665): 397-401.
    54. Naldini L, Bl?mer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996 Apr 12;272(5259):263-267.
    55. Kafri T, Bl?mer U, Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet. 1997; 17(3): 314-317.
    56.王鸿鹄.基因治疗中慢病毒载体的最新进展.国外医学输血及血液学分册, 2002,25(5):401-404.
    57. Iwakuma T, Cui Y, Chang LJ. Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology. 1999; 261(1): 120-132.
    58. Miyoshi H, Bl?mer U, Takahashi M, et al. Development of a self-inactivating lentivirus vector. J Virol. 1998 Oct;72(10):8150-8157.
    59. Dougherty JP, Temin HM. A promoterless retroviral vector indicates that there are sequences in U3 required for 3' RNA processing. Proc Natl Acad Sci U S A. 1987; 84(5): 1197-1201.
    60. Yu SF, von Rüden T, Kantoff PW, et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A. 1986; 83(10): 3194-3198.
    61. Dull T, Zufferey R, Kelly M, Mandel RJ, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998; 72(11): 8463-8471.
    62. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998; 72(12): 9873-9880.
    63. Peng WJ, Pan JT, Lai MC, et al. The genome of Moloney murine leukemia virus can be integrated by the integrase of human immunodeficiency virus type 1 expressed alone in vivo. Proc Natl Sci Counc Repub China B. 1997; 21(4):144-160.
    64. Douglas JL, Lin WY, Panis ML, et al. Efficient human immunodeficiency virus-based vector transduction of unstimulated human mobilized peripheral blood CD34+ cells in the SCID-hu Thy/Liv model of human T cell lymphopoiesis. Hum Gene Ther. 2001; 12(4): 401-413.
    65. von Schwedler U, Kornbluth RS, Trono D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Natl Acad Sci U S A. 1994; 91(15): 6992-6996.
    66. Orlinsky KJ, Gu J, Hoyt M, et al. Mutations in the Ty3 major homology region affect multiple steps in Ty3 retrotransposition. J Virol. 1996; 70(6): 3440-3448.
    67. Gerolami R, Uch R, Faivre J, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral vectors. J Hepatol. 2004; 40(2): 291-297.
    68. Yu D, William WJ, Martin EG,et al. Prostate-tumor targeting of gene expressing by lentiviral vectors containing elements of Probasin promoter. The Prostate, 2004; 59(4): 370-382.
    69. Banerjea A, Li MJ, Bauer G, et al. Inhibition of HIV-1 by lentiviralvector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther. 2003; 8(1): 62-71.
    70. Li MJ, Bauer G, Michienzi A, et al. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther. 2003; 8(2): 196-206.
    71. Davis BM, Humeau L, Dropulic B. In vivo selection for human and murine hematopoietic cells transduced with a therapeutic MGMT lentiviral vector that inhibits HIV replication. Mol Ther. 2004; 9(2): 160-172.
    72. Lo Bianco C, Schneider BL, Bauer M, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc Natl Acad Sci USA. 2004; 101(50): 17510-17515.
    73. Yoshimitsu M, Sato T, Tao K, et al. Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors. Proc Natl Acad Sci U S A. 2004; 101(48): 16909-16914.
    74. Stripecke R, Koya RC, Ta HQ, et al. The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors. Blood Cells Mol Dis. 2003; 31(1): 28-37.
    75. Saulnier SO, Steinhoff D, Dinauer MC, et al. Lentivirus-mediated gene transfer of gp91phox corrects chronic granulomatous disease (CGD) phenotype in human X-CGD cells. J Gene Med. 2000; 2(5):317-325.
    76. Xia XG, Zhou H, Samper E, et al. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet. 2006; 2(1): e10.
    77. Coumoul X, Shukla V, Li C, et al. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res. 2005; 33(11):e102.
    78. Milen K, Minqiang C, Frank, et al. Germline transmission and expression of an RNAi cassette in mice generated by a lentiviral vector system. Transgenic Res. 2007,16: 783-793.
    79. Lois C, Hong EJ, Pease S, et al. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002; 295(5556): 868-872.
    80. Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 2003 Nov;4(11):1054-1060.
    81. Hofmann A, Kessler B, Ewerling S, et al. Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther. 2006 Jan;13(1):59-66.
    82. McGrew MJ, Sherman A, Ellard FM, et al. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep. 2004 Jul;5(7):728-733.
    83. Scott BB, Lois C. Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16443-16447.
    84.张敬之,郭歆冰,谢书阳等.用慢病毒载体介导产生绿色荧光蛋白(GFP)转基因小鼠.自然科学进展,2006,16(5):571-577.
    85. Katayama K, Wada K, Miyoshi H, et al. RNA interfering approach for clarifying the PPARgamma pathway using lentiviral vector expressing short hairpin RNA. FEBS Lett. 2004; 560(1-3): 178-182.
    86 Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004; 428(6981): 431-437.
    87. Jorgensen R. Altered gene expression in plants due to transinteractions between homologous genes. Trends Biotechnol 1990; 8(12): 340-344.
    88. Cogoni C, Romano N, Macino G. Suppression of gene expression byhomologous transgenes. Antonie Van Leeuwenhoek 1994; 65(3): 205-9.
    89. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995; 81(4): 611-620.
    90. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-811.
    91. Prawitt D, Brixel L, Spangenberg C, et al. RNAi knock-down mice: an emerging technology for post-genomic functional genetics. Cytogenet Genome Res 2004; 105(2-4): 412-421.
    92. Kim VN. RNA interference in functional genomics and medicine. J Korean Med Sci. 2003; 18(3): 309-318.
    94. Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002; 297(5589): 2053-2506.
    95. Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000; 97(9): 4985-90.
    96. Sijen T, Kooter JM. Post-transcriptional gene-silencing: RNAs on the attack or on the defense? Bioessays. 2000 Jun;22(6):520-531.
    97. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001; 409(6818): 363-366.
    98. Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 2002; 110(5): 563-574.
    99. Chiu YL, Rana TM. RNAi in human cells: basic structural and functionalfeatures of small interfering RNA. Mol Cell. 2002; 10(3): 549-561.
    100. Blaszezyk J, Tmpea JE, BubunenkoM, et a1. Crystallographic and modcling studies of RNase III suggest a mechanism for double - stranded RNA cleavage. Structure (Camb). 2001; 9 (12): 1225-1236.
    101. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-297.
    102. Carmell MA, Xuan Z, Zhang MQ, et al. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002; 16(21):2733-2742.
    103. Doi N, Zenno S, Ueda R, et al. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol. 2003; 13(1): 41-46.
    104. Okamura K, Ishizuka A, Siomi H, et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 2004; 18(14): 1655-1666.
    105. Tomari Y, Matranga C, Haley B, et al. A protein sensor for siRNA asymmetry. Science. 2004; 306(5700): 1377-1380.
    106. Rivas FV, Tolia NH, Song JJ, et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol. 2005; 12(4): 340-349.
    107. Meister G, Landthaler M, Patkaniowska A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004; 15(2): 185-197
    108. Voinnet O, Vain P, Angell S, et a1. Systemic spread of sequence speeific transgene RNA degradation in plants is initiated by localized introduction of ectopie promoterless DNA. Cell. 1998, 95(2): 177-187
    109. Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegansrequires the putative transmembrane protein SID-1. Science. 2002; 295(5564): 2456-2459.
    110. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296(5567): 550-553.
    111. Ng? H, Tschudi C, Gull K, et a1. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA. 1998; 95(25): 14687-14692.
    112. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA. 1998; 95(26): 15502-15507.
    113. Harborth J, Elbashir SM, Bechert K, et a1. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci. 2001; 114(Pt24): 4557-4565.
    114. Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol. 2000; 10(19): 1191-1200.
    115.石智,符立梧. RNAi及其在肿瘤研究中的应用.生物化学与生物物理进展.2004,31(6): 492-4991.
    116. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391(6669): 806-811.
    117. Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 2002; 26(2): 199-213.
    118. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate newsiRNAs. Cell. 2001; 107(3): 297-307.
    119. Sabine B. Antisense-RNA regulation and RNA interference. Biochem Biophys Acta. 2002;1575(123):15-25.
    120. Gan L, Anton KE, Masterson BA, et al. Specific interference with gene expression and gene function mediated by long double stranded RNA in neural cells. J Neurosci Methods. 2002; 121(2): 151-157.
    121. Gonczy P, Echeverri C, Oegema K, et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000; 408 (6810): 331 - 336.
    122. Quan GX, Kanda T, Tamura T. Induction of the white egg3 mutant phenotype by injection of the double2stranded RNA of the silkworm white gene. Insect Molecular Biology. 2002, 11(3): 217-222.
    123. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000; 2(2): 70-75.
    124. Svoboda P, Stein P, Hayashi H, et al . Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000; 127(19): 4147-4156.
    125. Elbashir SM, Lendeckel W, Tuschl T, et al . RNA interference is mediated by 212 and 222 nucleotide RNAs. Genes Dev. 2001; 15(2): 188-200.
    126. Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000; 97(9): 4985 - 4990.
    127. Song E , Lee SK, Wang J , et al. RNA interference targeting Fas protects mice fromfulminant hepatitis. Nature.2003; 9(3): 347-351
    128. Stevenson M. Dissecting HIV-1 through RNA interference. Nature. 2003;3(11): 851-858
    129. Aplen NJ, Taylor JP, Statham VS, et al. Rescue of polyglutamine mediated cytotoxicity by double-strand RNA-mediated RNA interference. Hum Mol Genet. 2002; 11(2): 175-184
    130. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol. 2002; 20(10): 1006-1010.
    131. Miller VM, Xia H, Ginger L, et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA. 2003; 100(12):7195-7200
    132. Hemann MT, Fridman JS, Zilfou JT, et al. An epiallelic series of p53 hypomorphs created by stable RNAi produced distinct tumor phenotypes in vivo. Nature. 2003; 33(3):396-400.
    133. Mccaffrey A P, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature. 2002; 418(6893):38-39.
    134. Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nature Cell Biology. 2003; 5(9):834~839.
    135.张利生,陈大元.RNA干涉及其应用前景.遗传,2003,25(3):341-344.
    136.张祖新.RNA干涉原理及其应用.湖北农学院学报,2002,22(6):560-565.
    137. Guo S, Kemphues K, Par I. Agene required for establishing polarity in C. elegansembryos, encodes a putative Set/Thr kinase that is asymmet rically distributed. Cell. 1995; 81:611-620.
    138. Pesce M, Wang X, Wolgemuth DJ, et al. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev. 1998; 71(1-2): 89-98.
    139. Su HL, Malbon CC, Wang HY. Increased expression of Gi alpha 2 in mouse embryo stem cells promotes terminal differentiation to adipocytes. Am J Physiol. 1993; 265(6Pt1): C1729-1735.
    140. Lyer RP, Agami R, Pandey RK. RNA iterference: Anexciting new approach for target validation, gene expression analysis, and therapeutics. DrugsFuture. 2003; 28(1): 51-59.
    141. Jain KK. RNAi and siRNA intarget validation. DrugDiscov Today. 2004; 9(7) :307-309.
    142. Agami R. RNAi and related mechanisms and theirpotentialuse for therapy. Curr Opin Chem Biol. 2002; 6(6): 829-834.
    143. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004; 10(8): 789-799.
    144. Paddison PJ, Caudy AA, Sachidanandam R, et al. Short hairpin activated gene silencing in mammalian cells. Methods Mol Biol. 2004; 265: 85-100.
    145. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002; 296(5567): 550-553.
    146. Yoshinouchi M, Yamada T, Kizaki M, et al. In vitro and in vivo growth suppression of human papillomavirus 162 positive cervical cancer cells by E6 siRNA. Mol Ther. 2003; 8: 762-768.
    147. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004; 432(7014): 173-178.
    148. Dorsett Y, Tuschl T. siRNAs, Applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004; 3(4): 318-329.
    149. Varambally S, Dhanasekaran SM, Zhou M, et al. The Polycomb groupprotein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419: 624-629.
    150. Yin JQ, Gao J, Shao R, et al. SiRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Onc. 2003; 3(4): 194-204.
    151. Dimova DK, Stevaux O, Frolov MV, et al. Cell cycle-dependent and cell cycle- independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev. 2003; 7(18): 2308-2320.
    152.潘秋卫,蔡荣,刘新垣等.肿瘤基因治疗新策略—RNA干扰.科学通报. 2006; 51(9): 993-997
    153. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet. 2003; 33(3): 396-400.
    154. Li K, Lin SY, Brunicardi FC, et al. Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res. 2003; 63(13): 3593-3597.
    155. Crans-Vargas HN, Landaw EM, Bhatia S, et al. Expression of cAMP response-element binding protein in acute leukemia. Blood. 2002; 99: 2617-2619.
    156. Bruno S, Ghiotto F, Fais F, et al. The PML gene is not involved in the regulation of MHC class I expression in human cell lines. Blood. 2003; 101: 3514-3519.
    157. Weissenberger J, Loeffler S, Kappeler A, et al. IL-6 is required for glioma development in a mouse model. Oncogene. 2004; 23(19): 3308-3316.
    158. Zhang L, Yang N, Mohamed-Hadley A, et al. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesisgene therapy of cancer. Biochem Biophys Res Commun. 2003; 303: 1169-1178.
    159. Niu Q, Perruzzi C, Voskas D, et al . Inhibition of Tie-2 signaling induces endothelial cell apoptosis, decreases Akt signaling, and induces endothelial cell expression of the endogenous anti-angiogenic molecule, thrombospondin21. Cancer Biol Ther. 2004; 3: 402-405.
    160. Liu LT, Chang HC, Chiang LC,et al. Histone deacetylase inhibitorup-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res. 2003; 63(12): 3069-3072.
    161. Nieth C, Priebsch A, Stege A, et al . Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi ). FEBS Lett. 2003, 545: 144-150.
    162. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003; 21(6): 639-644.
    163. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression andreplication of RNA interference. Hepatology. 2003; 37: 764-770.
    164. Butz K, Ristriani T, Hengstermann A, et al. SiRNA targeting of the viral E6 oncogene efficiently kills human papillomaviruspositive cancer cells. Oncogene. 2003; 22(38): 5938-5945.
    165. Milner J, Jiang M. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA , a primer of RNA interference. Oncogene. 2002; 21: 6041-6048.
    166. Yá?ez M, Roa I, García M, Ibacache G, Villaseca M. Bcl-2 gene protein expression in salivary gland tumors. Rev Med Chil. 1999,127(2):139-142.
    167. Cerilli LA, Swartzbaugh JR, Saadut R, Marshall CE, Rumpel CA, Moskaluk CA, Frierson HF Jr. Analysis of chromosome 9p21 deletion and p16 gene mutation in salivary gland carcinomas. Hum Pathol. 1999, 30(10):1242-1246.
    168. Yoo J, Robinson RA. H-ras gene mutations in salivary gland mucoepidermoid carcinomas. Cancer. 2000, 88(3):518-523.
    169. Mannweiler S, Beham A, Langner C. MUC1 and MUC2 expression in salivary gland tumors and in non-neoplastic salivary gland tissue. APMIS. 2003, 111(10):978-984.
    170. Alves FA, Pires FR, De Almeida OP, Lopes MA, Kowalski LP.PCNA,Ki-67 and p53 expressions in submandibular salivary gland tumours. Int J Oral Maxillofac Surg. 2004, 33(6):593-597.
    171. Weed DT, Gomez-Fernandez C, Pacheco J, Ruiz J, Hamilton-Nelson K, Arnold DJ, Civantos FJ, Zhang J, Yasin M, Goodwin WJ, Carraway KL. MUC4 and ERBB2 expression in major and minor salivary gland mucoepidermoid carcinoma. Head Neck. 2004, 26(4):353-364.
    172. Nguyen LH, Black MJ, Hier M, Chauvin P, Rochon L. HER2/neu and Ki-67 as prognostic indicators in mucoepidermoid carcinoma of salivary glands. J Otolaryngol. 2003, 32(5):328-331.
    173. Pires FR, de Almeida OP, de Araujo VC, Kowalski LP. Prognostic factors in head and neck mucoepidermoid carcinoma. Arch Otolaryngol Head Neck Surg. 2004, 130(2):174-180.
    174. Zamore P D, Tuschl T, Sharp P A, et al.RNAi:double- stranded RNA directs the ATP- dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000( 101) :25- 33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700