半乳凝素-3在垂体腺瘤中表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     检测1.Gal-3在人垂体腺瘤组织中表达情况。2.应用RNA干扰技术沉默肿瘤细胞中Gal-3。3.体外培养并建立人垂体腺瘤细胞系。4.为探讨Gal-3在垂体腺瘤侵袭机制中的可能作用;寻找提示垂体腺瘤侵袭性的可能的临床分子生物学标志;寻找侵袭性垂体腺瘤的可能治疗靶点。方法:
     1.免疫组化法检测垂体腺瘤组织中Gal-3的表达情况,明确何种亚型腺瘤中高表达,并在高表达的垂体腺瘤中比较侵袭性与非侵袭性腺瘤Gal-3表达的差异性。原位杂交技术检测Gal-3在高表达侵袭性或非侵袭性垂体腺瘤中的核酸情况。
     2.将RNA干扰技术与慢病毒载体相结合,建立一种慢病毒载体介导的能将siRNA表达盒稳定整合于细胞基因组的RNA干扰技术。构建抑制Gal-3蛋白表达的U6-siRNA的表达盒,将此表达盒克隆到载体pGCL-GFP中,选择MCF-7细胞为靶细胞模型进行感染,采用RT-PCR、Western blotting检测mRNA和蛋白的一致性,MTT和流式细胞仪检测其对细胞增殖、凋亡的干扰情况。
     3.建立体外培养人垂体催乳素腺瘤来源细胞-F培养体系的前提下,对垂体催乳素腺瘤来源细胞-F,进行光镜细胞形态学及扫描和透射电镜细胞超微结构观察。结果:
     1.Gal-3在垂体泌乳素腺瘤及ACTH腺瘤中均有表达,尤其是垂体泌乳素腺瘤高表达。
     2.在侵袭性垂体泌乳素腺瘤中Gal-3表达水平高于非侵袭性垂体腺瘤,且存在高的核分裂像。
     3.在侵袭性垂体泌乳素腺瘤中IHC检测阳性率越高其Gal-3-mRNA表达越强。
     4.成功构建并筛选了携带有人Gal-3基因的RNAi慢病毒载体及有效靶点。
     5.Gal-3的mRNA和蛋白表达一致降低,转染组mRNA表达量(0.028%)、阴性对照组为(0.617%)和空白对照组为(0.992%),转染组mRNA干扰效率达95%(P<0.05);Gal-3蛋白表达明显下调、与阴性对照组和空白对照组相比差异明显(P<0.05),MTT显示:转染组为(0.40±3.69)%,阴性对照组(0.71±0.156)%;转染组和阴性对照组间差异均有统计学意义(P<0.05)。细胞凋亡百分率68.78%。
     6.在体外成功建立了垂体腺瘤细胞系的培养方法并完成了细胞系的体外培养。结论:
     1. Gal-3可作为一种新的术后判断侵袭性垂体泌乳素腺瘤和ACTH腺瘤的分子生物学标记。
     2.Gal-3结合高的核分裂像可以作为判断侵袭性垂体泌乳素腺瘤生物学行为的分子生物学标记
     3.应用显色原位杂交的方法能在侵袭性垂体泌乳素腺瘤病变原部位显示Gal-3的变化
     4.慢病毒载体的构建及靶点筛选,为研究Gal-3在肿瘤细胞中的作用提供实验平台
     5.慢病毒介导Gal-3-shRNA成功在体外敲减肿瘤细胞的目的蛋白,影响了肿瘤增殖凋亡。
     6.体外成功培养了具有独特形态的人垂体腺瘤细胞系
1.To observe the expression of Galectin-3 in human pituitary adenomas
     2.Galectin-3 gene silencing was appliaed by RNAi
     3.To set up the cultured system of human pituitary adenoma lines
     4. hoping to evaluate its possible role in the mechanism of pituitary adenomas'invasion. To find a possible clinical marker of invasion. And to find a possible target of treatment of invasive adenomas.
     1 The expression of Galectin-3 in the human pituitary adenomas was detected by immunohistochemistry, and Galectin-3 is whose protein expression more strongly level was compared between patients of invasive and non-invasive adenoma;
     Galectin-3 is whose mRNA expression more strongly in invasion pituitary adenoma or noninvasion pituitary adenoma was detected by CISH.
     2 A high specific delivery system for siRNAs mediated by retrovirus vector was established. By this system, siRNAs can be integrated into the cell genome stably.
     We design and synthesized the shDNA, which can transcribe into shRNA and interfere with Galectin-3 gene. The shDNA duplex was ligated into the recombinant vector pGCL-GFP/U6 plasmid.the positive colonies of pGCL-GFP/U6 Gal-3shDNA-lwere selected by double restriction enzyme digestion with Hpa I and Xho I, Cell line was transfect with pGCL-GFP/U6 Gal-3shDNA-1 using pGCL-GFP/U6-s crambled shDNA as control. The expression level of Galectin-3 was detected by RT-PCR and Western Blot; then PI flow cytometric analysis were performed for apoptosis, MTT assay for cell proliferation.
     3 The prolactin adenoma derived cell-F cultured in vitro was in good condition and maintained the ability of proliferation and differentiation.
     1. The expression of Galectin-3 in the human pituitary prolactin adenomas and pituitary Adrenocorticotrophic hormone adenoma.
     2. In invasive adenomas, the Galectin-3 had a higher expression level than While in non-invasive adenomas, the difference was not so obvious.
     3. After when high the expression of Galectin-3-protein was detected by IHC method, CISH was used to detect the expression of Galectin-3-mRNA.
     4 A lentivirus RNAi vector containing shRNA targeting Galectin-3 gene was successfully constructed and be in efftct targeting Galectin-3 gene and will be used as method to develop Galectin-3 gene silencing therapeutics.
     5. The recombinant vector were successful constructed which was confirm by sequencing.The in vitro experiment indicated that the expression level of Galectin-3 were down regulated by western blot and RT-PCR analyses than control group (P<0.05); The interfering efficiency of Lentiviral was 95%, MTT assay showed that the proliferation of MCF-7 were suppress to(0.40±3.69)%than control group (0.71±0.156)%.FCM assay indicated that Lentiviral vector plasmid induce apoptosis of the cell about 68.78%.
     6 The cultured system of human prolactin pituitary adenoma derived cell-F was set up
     1. Galectin-3 might as a New molectin phyology marker of operation later invasion action of pituitary adenoma by judge
     2. Galectin-3 can judged phyology action of invasion prolactin pituitary adenoma
     3. Galectin-3 might have change in invasion pituitary adenoma was detected by chromogenic in situ hybridiza tion (CISH).
     4. A lentivirus RNAi vector containing shRNA targeting Galectin-3 gene was successfully constructed will be used as method to develop Galectin-3 gene silencing therapeutics.
     5. RNA interference can successful interfere with the expression of Galectin-3 in culture tumor cell and may affect the occurrence and development of the tumor.
     6. The cultured system of human prolactin pituitary adenoma derived cell-F have been set up.
引文
[1]Scheithauer B W, Kovacs K T, Laws E R, et al. Pathology of invasive pituitary tumors with special reference to functional classification[J]. J Neurosurg 1986,65:733-744
    [2]Tadashi Yoshii, Tomoharu Fukumori, Yuichiro Honjo et al. Galectin-3 Phosphorylation Is Required for Its Anti-apoptotic Function and Cell Cycle Arrest[J]. J. Biol. Chem.,2002, Vol.277, Issue 9,6852-6857, March 1
    [3]Mehrotra P, Okpokam A, Bouhaidar R, et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms [J]. Histopathology, 2004, Nov,45(5):493-500
    [4]Dominik Riss, Long Jin, Xing Qian, et al. Differential Expression of Galectin-3 in pituitary tumoes[J]. cancer research,2003,63:2251-2255
    [5]Naoto Maeda, Norifumi Kawada, Shuichi Seki, et al. Stimulation of Proliferation of Rat Hepatic Stellate Cells by Galectin-1 and Galectin-3 through Different Intracellular Signaling Pathways[J]. The journal of biological chemistry.2003,278,21,23,18938-18944
    [6]Chiariotti L, Salvatore P, Benvenuto G, et al. Control of Galectin gene expression[J].cancer 1999,81:381-388
    [7]Chiariotti L, Salvatore P, Frunzio R, et al. Galectin genes:regulation of expression[J]. Glycoconj J,2004,19(7-9):441-9
    [8]kadrofsle M M, Openo K P, Wang J L. The human LGALS3gene determination of the gene structure and functional characterization of the promoter[J].Arch biochem biophys,1998,349:7-20
    [9]Shimura T, Takenaka Y, Tsutsumi S, et al. Galectin-3, a novel binding partner of beta-catenin[J]. Cancer Res,2004, Sep 15,64(18):6363-6367
    [10]S Califice, Castronnovo F, Van Den Brrule, Galectin-3 and cancer[J], Int J Oncol,2004,25:983-992.
    [11]Mehrotra P, Okpokam A, Bouhaidar R,et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms [J]. Histopathology.2004;45(5):493-500
    [12]Scheithauer B W, Kovacs K T, Laws E R, et al. Pathology of invasive pituitary tumors with special reference to functional classification[J]. J Neurosurg 1986,65:733-744
    [13]Kreutzer J, Fahlbusch R. Diagnosis and treatment of pituitary tumors[J]. Current Opinion Neurol,2004,17 (6):693-703.
    [14]Wang hong, Wang Ming-dong, Ma wen-bin, et al. Significance and Expressive of the Galectin-3 in the Patients with Invasive Prolactinomas[J], Chinese medical science 2005;27(3):380-1.
    [15]Yu LG, Andrews N, Zhao Q, et al. Galectin-3 interaction with Thomsen-Friede nreich disaccharide on cancer-associated MUC1 causes increased cancer cell-end othelial adhesion[J]. J Biol Chem.20067; 1-10
    [16]George Kontogeorgos. Predictive Markers of Pituitary Adenoma Behavior[J], Neuroendocrinology 2006;83:179-188
    [17]Gup ta D, Middleton LP, Whitaker MJ, et al. Comparison of fluorescence and chromogenic in situ hybridization for detection of HER22/neu oncogene in braest cancer[J]. Am J Clin Pathol,2003,119:3812387.
    [18]Jane JA and Laws ER.The surgical management of pituitary adenomas in a series of 3093 patients[J]. J Am Coll Surg 2001,193:651-659
    [19]Nomikos P et al. Current management of prolactinomas[J]. J Neuroophthalmol 2001,54:139-150
    [20]Torres-Cabala C, Bibbo M, Panizo-Santos A, et al. Proteomic identification of new biomarkers and application in thyroid cytology[J]. Acta Cytol.2006; 50 (5):518-28
    [1] Elbashir SM, Harborth J, Weber K, et al.Analysis of gene function in somatic mammalian cells using small interfering RNAs[J].Methods,2002 26:191-213
    [2] Herve Vaucheret, Christophe Beclin and Mathilde Fagard, et al[J]. Journal of cell Science.2001,114: 3083-3089
    [3] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature.1998, 391: 806-811
    [4] Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana Proc[J].Natl.Acad.Sci.2000,97: 4985-4990
    [5] Rene F.Ketting, Sylvia E.J.Fischer, Emily Bernstein, titia Sijen, Gregory J.Hannon, and Ronald H.A.Plasterkl. Dicer functions in RNA interference and in synthesis of small RNA involved in the developmental timing in C.elegans[J].Genes & Dev. 2001,15:188-200
    [6] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA mterference.Nature.2001,409:363-366
    [7] GyOrgy Hutvagner and Phillip D Zamore[J]. Current Opinion in Genetics &Development.2002,12:225-232
    [8] Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing[J].Cell.2001,107:465-476
    [9] Paul C P, Good P D, Li S X, et al. Localied expression of small RNA inhibitors in human ceil[J]. Mol Ther 2003,7:237-247
    [10] Paul Ahlquist. RNA-dependent RNA polymerases, viruses, and RNA silencing[J].Science 2002.296:1270-1273
    [11] Kazuko Nishikura. A short primer on RNAi: RNA-directed RNA polymerase acts as akey catalyst[J].Cell.2001,107: 415-418
    [12] Bernstein E, Denli AM, Hannon GJ The rest is silence[J]. RNA.2001,7:1509-1521
    [13] Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature 2000,404:293-295
    [14] Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi[J]. Science.2001,293:1146-1150
    [15] Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway[J]. Cell.2001,107:309-321
    [16] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].. Nature.2001,411:494-498
    [17] Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H.Arabidopsis SGS2 and SG$3 genes are required for posttranscriptional gene silencing and natural virus resistance[J]. Cell.2000,101:533-542
    [18] Vicki Vance and Herve Vaucheret. RNA silencing in plants-defense and counterdefense[J]. Science. 2001,292:2277-2280
    [19] Kim SK. Functional genomics: the worm scores a knockout[J]. Curr Biol. 2001 Feb 6;11(3):R85-7.
    [20] Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi[J]. Curr Biol. 2001 Feb 6;11(3):171-6.
    [21] Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs[J]. J Cell Sci. 2001 114(Pt 24):4557-65.
    [22] Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev[J]. 1999 Dec 15;13(24):3191-7.
    [23] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J], Science.2002,296:550-553
    [24] Yu JY, DeRuiter SL, Turner DL. RNA interference by expression ofshort-interfering RNAs and hairpin RNAs in mammalian cells [J].Proc.Natl.Acta.Sci. 2002,99:6047-6052
    [25] Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlu N, Bork P, Hyman AA. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III[J]. Nature. 2000,408:331-336
    [26] Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, Bishop JM. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells[J]. Proc Natl Acad Sci USA.2002,99(15):9942-7.
    [27] Leirdal M, Sioud M. Gene silencing in mammalian cells by preformed small RNA duplexes[J]. Biochem Biophys Res Commun. 2002,295(3):744-8
    [28] Castanotto D, Li H, Rossi JJ (2002). Functional siRNA expression from transfected PCR products[J]. RNA, 8(11):1454-1460.
    [29] Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells[J]. Proc Natl Acad Sci USA. 2002 , 99(23): 14943-5.
    [30] Whitelaw, E., Tsai, S., Hogben, P. and Orkin. S. Regulated expression of globin chains and erythroid transcription factor GATA-1 during erythropoiesis in the developing mouse[J]. Mol. Cell Biol. 1990; 10: 6596.
    [31] Vicki Vance and Herve Vaucheret. RNA silencing in plants—defense and counterdefense[J]. Science. 2001,292:2277-2280
    [32] Li H, Li WX, Ding SW Induction and suppression of RNA silencing by an animal virus[J]. Science. 2002,296:1319-1321
    [33] Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA. 2003,9(4):493-501.
    [34] Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammaliancells, stem cells and transgenic mice by RNA interference[J]. Nat Genet.2003,33(3):401-6.
    [35] Gourdon, G., Sharpe, J. , Higgs, D. , and Wood. W. The mouse a-globin locus regulatory element[J]. Blood. 1995,86: 766.
    [36] Moon, A. and Ley. T. Conservation of the primary structure, organization and function of the human and mouse p-globin locus-activating regions[J]. Proc.Natl. Acad. Sci. 1990; 87: 7693.
    [37] Hug, B., Moon, A. and Ley. T. Structure and function of the murine P-globin locus control region 58 HS3[J]. Nucleic Acids Res. 1992; 20: 5771.
    [38] Manche L,Green S R, MathewsM B.Intreaction between double-stranded RNA regulators and the protein kinase[J] .Dai Mol Cell Bioll992,12:5238-5248
    [39] Leder, A., Kuo, A., Shen, M. and Leder. P. In situ hybridization reveals coexpression of embryonic and adult P-globin genes in the earliest murine erythrocyte progenitors [J]. Development. 1992,116:1041.
    [40] Brotherton, T., Chui, D.H., Gauldie, J. and Patterson. M. Hemoglobin ontogeny during normal mouse fetal development[J]. Proc. Natl. Acad. Sci. 1979, 76: 2853.Wawrzyniak, C. and R. Popp. Expression of the two adult P-globin genes in mouse yolk sac and fetal liver erythrocytes[J]. Dev. Biol. 1987,119: 299.
    [41] Gil J and Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase(PKR) Mechanism of action[J]. Apoptosis2000,5:107-114
    [42] Paddison PJ,Caudy AA,Bernstein E, et al. Short RNAs harrpin (shRNAs)induce sequence -specific silencing in mammalian cell[J]. Genes Dev 2002, 16: 948-958
    [1]Bettio D,RizziN,Giardino D,et al.Cytogenetic study of pituitary adenoma [J].Cancer Genet Cytogenet 1997,98(2):131-136
    [2]Rock JP,Babu VR,Drumheller T,et al.cytogene findings in pituitary adenoma:results of a pilot study[J].surg neurol,1993,40(3); 224-229
    [3]Larsen JB,Schroder HD,Sorensen AG,et al.Simple numerical chromosome aderration characterize pituitary adenoma[J].cancer gene cytogene,1999,114 (2):114-119.
    [4]Finelli P,Giardino D,Rizzi N,et al.Nonrandom trisomies of chromosomes 5 8 and 12 in the prolactinoma subtype of pituitary adenoma:conventional cytogenetics and interphase FISH study[J].Int J Cancer,2000,86(3):344-350
    [5]马文雄,惠国桢,凌伟华等.垂体腺瘤染色体、细胞增殖周期、PCNA及hst基因的检测[J].实用癌症杂志,2002,17(5);468-470.
    [6]高衡,冯东侠,惠国桢等,垂体腺瘤染色体改变与侵袭性的相关性[J],中华神经外科疾病研究杂志,2004,3(3)230-233
    [7]Mertens F, Johansson B, Hoglund M, et al. Chromosomal imblance map of malignant solid tumor:a cytogenetic survey of 3185 neoplasms[J]. Cancer Res 1997,57:276
    [8]Rock JP,Babu VR,Drumheller T,et al.cytogene findings in pituitary adenoma results of a pilot study [J].surg neurol,1993,40(3); 224-229
    [1]Scheithauer Bernd W, Gaffey ThomasA, Lioyd RicardoV, et al. pathobiology of pituitary adenoma and carcinomas, Neurosurgery 2006 59:341-353.
    [2]Scheithauer Bernd W, Kovacs K, Horvath E, et al. WHO2000 Histologic typing of endocrine tumours. New York, spring-verlag,2000,pp 15-90.
    [3]Thapar K, Kovacs K, Scheithauer B, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas:an analysis using the MIB-1 antibody. Neurosurgery 1996; 38:99-107.
    [4]Kontogeorgos G:Innovations and controversies in the WHO classification of pituitary adenomas. Acta Neuropathol (Berl) 2006; 111:73-75.
    [5]Marco Losa, Enrica Ciccarelili, Pietro Mortini, et al. Effects of Octeotide Treatment on the Proliferation and Apoptotic Index of GH-Secreting Pituitary adenoma.The Journal of Clinical Endocrinology &Metabolism.2001, 86:5194-5200.
    [6]Woessner RD, Mattern MR, Mirablli CK, et al. Cell growth differ, Prolifera. 1991,2:209-14
    [7]Saeger W, Schreiber S, Ludecke DK.Cyclins D1 and D3 and topoisomerase in inactive pituitary adenoma.Endocr pathol 2001,12:39-47
    [8]Munscher A, Schmid M, Saeger W, et al. GH-, PRL-, POMC-,_-TSH-,_-LH-,-FSH-mRNA in gonadotroph adenomas of the pituitary by in situ hybridization in comparison with immunostaining and clinical data. Endocr Pathol 2001; 12:171-180.
    [9]Vidal S, Kovacs K, Horvath E, et al. Topoisomerase II alpha expression in pituitary adenomas and carcinomas:relationship to tumor behavior. Mod Pathol 2002; 15:1205-1212.
    [10]The odoropoulou M, Zhang J, Laupheimer S, et al. A somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac expression. Cancer Research,2006,66:1576-1582.
    [11]ZhaoD, Tomono Y, Nose T. Expression of p27kipl and ki-67 in pituitary adenoma:an investigation of marker of adenoma invasiveness. Acta Neurochir 1999,141; 187-192
    [12]Thapar K, Kovacs K, Scheithauer BW, et al. Proliferative activity and invasiveness among pituitary adenoma and carcinomas:an analysis using the MIB-1 antibody,1996,38(1):99-107.
    [13]Lloyd RV, Kovacs K, Young WF Jr,:et al. Pituitary tumours:introduction; in DeLellis RA,Lloyd RV, Heitz PU, Eng C (eds):WHO Classification of Tumours. Pathology and Genetics. Tumours of Endocrine Organs. Lyon, IARC Press,2004, pp 10-13.
    [14]JRamond, DB Zimonjic, CMignon, et al. Mapping of the galectin-3 gene to human chromosome 14 at region 14q21-22, Manm genome,1997,8:706-707
    [15]MM.Kadrofske, KP Openo, JL,Wang. The human LGALS3 genes; determination of the gene structure and functional characterization of the promoter, Arch biochem biophys,1998,349; 7-20
    [16]Katharina H. Ruebel, Long Jin, Xing Qian, et al. Effects of DNA Methylation on Galectin-3 Expression Pituitary tumors. Cancer Res,2005,65(4),1136-1140
    [17]Wang hong, Wang Ming-dong, Ma wen-bin, et al. Significance and Expressive of the Galectin-3 in the Patients with Invasive Prolactinomas, Chinese medical science 2005;27(3):380-1.
    [18]CaoY, PrescottSM. Many action of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol.2002,190:279-286.
    [19]Vidal S, Kovacs K, Bell D, et al. Cyclooxygenase-2 expression in human pituitary tumors.Cancer2003,97 (11) 2815-2820
    [20]Fosslien E.Molecular pathology of cyclooxygenase-2 in neoplasia. Ann clin lab sic.2000,30:3-21
    [21]Patel YC:Somatostatin and its receptor family.Front Neuroendocrinol 1999; 20: 157-198.
    [22]Gaffey TA, Scheithauer BW, Leech, RW, et al. pituitary adenoma:A DNA flow study of 192 clinicalopathologically characterized tumors. Clin Neuropathol, 2005,24:56-63
    [23]YoshinoA, KatayamaY, FukushimaT, et al. Telomerase activity in pituitary adenoma:significance of telomerase expression in predicting pituitary adenoma recurrence. Journal of neurooncology,2003,63:155-162
    [24]KimNM. Clinical limplications telomerase in carcer. Eurncer 1997,33:781
    [25]Shay JW, Bacehetti S, Asurvey of telomerase activity in human cancer, Eur J Cancer.1997,33:787.
    [26]M Pawlikowski.Immunostaining of thymosin peptides in human pituitary adenoma. Int Thymol,1999,7:607-611.
    [27]Desai B, Burrin JM, Nott CA, et al. Glycoprotein alpha-subunit production and plurihom onality in human corticotroph tumours an in vitro and immmunohisto chemical study. Eur J Endocrinol,1995,133:25-32.
    [28]Turner HE, Nagy ZS, Gatter KC, et al. Angiogenesis and cell proliferation in pituitary adenoma. J Endocrinol Invest,1999,22(7):481
    [29]Lohrer P, Gloddek J, Hopfner U, et al. Vascular endothelial growth factor production and regulation in rodent and human pituitary tumors cells in vitro, Neuroendocrinology,2001 74 95-105
    [30]SABorg, K E Kerry, J A Royds, et al. Correlation of VEGF production with Iland IL6 secretion by human pituitary adenoma cells. European Journal of Endocrinology,2005 152:293-300
    [31]He DS, Chen MZ, Wang HJ, et al. Role of matrix metalloproteinases-9,2 and thire inhibitor-TIMP-1,2 in invasive pituitary adenoma biological behavior.Ai zheng 2002,21(10):1124-1128
    [1]Colao A Pituitary tumors in childhood. In:New MI, ed. Pediatric endocrin eology, Chap.20043. www.endotext.org
    [2]Partington MD, Davis DH, Laws Jr ER, et al. Pituitary Adenomas in childhood and adolescence. Results of transsphenoidal surgery [J]. J Neurosur g,1994,80 (2):209-216
    [3]Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas:a systematic review[J]. Cancer,2004,101 (3):613-619.
    [4]Colao A, Lombardi G. Growth hormone and prolactin excess [J]. Lancet,1998,352 (9138):1455-1461
    [5]Ciccarelli A, Daly AF, Beckers A. The epidemiology of prolactinomas[J]. Pituitary.2005,8(1):3-6
    [6]Colao A, Sarno AD, Cappabianca P, et al. Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia[J].Eur J Endocrinol 2003,148(3):325-331
    [7]王洪,王明栋,马文斌,等.半乳凝素-3在侵袭性垂体泌乳素腺瘤中表达及意义[J].中国医学科学院学报,2005,27(3):380-1.
    [8]Asa SL & Ezzat S. Genetics and proteomics of pituitary tumors [J]. Endocrine. 2005,28(1):43-47.
    [9]Verge's B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1):data from the France-BelgiumMEN1 multicenter study[J]. Journal of Clinical Endocr inology and Metabolism 2002,87(2):457-465.
    [10]Daly AF, Jaffrain-Rea ML & Beckers A. Clinical and genetic features of familial pituitary adenomas [J]. Hormone and Metabolic Research 2005,37(6):347-354.
    [11]Wautot V, Vercherat C, Lespinasse J, et al. Germline mutation profile of MEN1 in multipleendocrine neoplasia type 1:search for correlation between phenotype and the functional domains of the MEN1 protein[J]. Human Mutation 2002,20(l):35-47.
    [12]Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27Kiplcause a multiple endocrine neoplasia syndrome in rats and humans[J]. PNAS 2006,103(42):15558-15563.
    [13]Veugelers M, Wilkes D, Burton K, et al:Comparative PRKAR1A genotype-phenotype analyses in humans with Carney complex and prkarla haploin suffi cientmice[J]. PNAS 2004,101(39):14222-14227.
    [14]Daly AF, Jaffrain-Rea ML, Ciccarelli A, et al. Clinical characterization of familial isolated pituitary adenomas [J]. Journal of Clinical Endocrinology and Metabolism 2006,91(9):3316-3323.
    [15]Frohman LA & Eguchi K. Familial acromegaly[J]. Growth Hormone and IGF Research 2004 14 Suppl 90-96.
    [16]Luccio-Camelo DC, Une KN, Ferreira RE, et al. A meiotic recombination in a new isolated familial somatotropinoma kindred[J]. European Journal of Endocrinology 2004,150(5):643-648.
    [17]Daly AF, Vanbellinghen JF, Khoo SK, et al.Aryl hydrocarbon receptorinteracting protein gene mutations in familial isolated pituitary adenomas:analysis in 73 families[J]. Journal of Clinical Endocrinology and Metabolism 2007,92 (5):1891-1896.
    [18]Muhr C, Bergstrom K, Grimelius L, et al. A parallel study of the roentgen anatomy of the sella turcica and the histopathology of the pituitary gland in 205 autopsy specimens[J]. Neuroradiology.1981,21 (2):55- 65.
    [19]Lloyd RV, Kovacs K, Young WF Jr,:et al. Pituitary tumours:introduction; in DeLellis RA,Lloyd RV, Heitz PU, Eng C (eds):WHO Classification of Tumours. Pathology and Genetics. Tumours of Endocrine Organs. Lyon, IARC Press,2004, pp 10-13.
    [20]YoshinoA, KatayamaY, FukushimaT, et al. Telomerase activity in pituitary adenoma:significance of telomerase expression in predicting pituitary adenoma recurrence [J]. Journal of neurooncology.2003,63(2):155-162
    [21]Shay JW, Bacehetti S, Asurvey of telomerase activity in human cancer[J], Eur J Cancer.1997,33(5):787.
    [22]Katharina H. Ruebel, Long Jin, Xing Qian, et al. Effects of DNA Methylation on Galectin-3 Expression Pituitary tumors [J]. Cancer Res,2005,
    65(4),1136-1140
    [23]史彦芳 王明栋 马文斌,等.垂体泌乳素腺瘤中Galectin-3mRNA表达与临床生物学行为之间的关系[J].中华神经外科杂志,2007,23(11):889-891
    [24]M Pawlikowski. Immunostaining of thymosin peptides in human pituitary adenoma. Int Thymol.1999,7; 607-611.
    [25]Turner HE, Nagy ZS, Gatter KC, et al. Angiogenesis and cell proliferation in pituitary adenoma[J]. J Endocrinol Invest,1999,22(7):481
    [26]Lohrer P, Gloddek J, Hopfner U, et al. Vascular endothelial growth factor production and regulation in rodent and human pituitary tumors cells in vitro [J]. Neuroendocrinology,2001,74(2):95-105
    [27]SABorg, K E Kerry, J A Royds, et al. Correlation of VEGF production with Ilalpha and IL6 secretion by human pituitary adenoma cells [J]. European Journal of Endocrinology.2005,152(2):293-300
    [28]CaoY, PrescottSM. Many action of cyclooxygenase-2 in cellular dynamics and in cancer[J]. J Cell Physiol.2002,190(3):279-286.
    [29]Wolfsberger S, Wunderer J, Zachenhofer I et al.Expression of cell proliferation markers in pituitary adenomas-correlation and clinical relevance of MIB-1 and anti-topoisomerase-IIalpha. Acta Neurochir (Wien) 2004 Aug; 146(8):831-9
    [30]Scheithauer BW, Laws ER Jr, Kovacs K, et al.Pituitary adenomas of the multiple endocrine neoplasia type I syndrome[J]. Seminars in Diagnostic Pathology.1987,4(3):205-211.
    [31]Beckers A. Familial isolated pituitary adenomas. The Ninth International Work shop on multiple endocrine neoplasia (MEN2004) [J]. Journal of Internal Medicine 2004,255(2):696-730.
    [32][32] Ciccarelli A, Daly AF & Beckers A. The epidemiology of prolactinomas[J]. Pituitary,2005,8(1):3-6.
    [33]Oliveira M, Marroni CP, Pizarro CB,et al. Expression of p53 protein in pituitary adenomas [J]. Braz J Med Biol Res.2002 May;35(5):561-5.
    [34]ZhaoD, Tomono Y, Nose T. Expression of p27kipl and ki-67 in pituitary adenoma:an investigation of marker of adenoma invasiveness[J]. Acta Neurochir,1999; 141 (2):187-192.
    [35]Verge's B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1):data from the France-BelgiumMEN1 multicenter study[J]. Journal of Clinical Endocrin ology and Metabolism 2002,87 (2):457-465.
    [36]Nilsson B, Gustavasson-Kadaka E, Bengtsson BA, et al. Pituitary adenomas in Sweden between 1958 and 1991:incidence, survival, and mortality[J]. J Clin Endocrinol Metab.2000,85(4):1420-1425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700