人PTP1B克隆表达及豹皮樟总黄酮治疗2型糖尿病大鼠部分机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酪氨酸磷酸酶1B(PTP1B)属于蛋白质酪氨酸磷酸酶(PTPs)家族,以跨膜受体样蛋白和胞内酶2种形式存在,催化蛋白质的磷酸化酪氨酸残基的去磷酸化反应,是哺乳动物体内最早被鉴定、纯化的PTPs[1,2]。PTP1B作用于胰岛素受体(IR),胰岛素受体底物1、2(IRS-1,IRS-2),生长因子受体结合蛋白2(Grb2),磷脂酰肌醇3激酶(PI-3K)等与胰岛素信号转导相关的蛋白,使它们的磷酸化酪氨酸残基脱磷酸,衰减胰岛素信号转导,从而产生受体后的胰岛素抵抗[3]。最近有人向小鼠的肝细胞瘤中导入针对PTP1B的siRNA,结果发现胰岛素信号转导增强[4],再次证实了PTP1B在胰岛素信号通路中的作用。
     PTP1B的高表达除了引起胰岛素抵抗外还可引起瘦素抵抗,从而引发2型糖尿病(T2DM)及肥胖[5,6]。PTP1B基因敲除鼠不仅胰岛素敏感性增强,而且去除了PTP1B对胰岛素和瘦素信号转导的抑制,使小鼠在高脂饮食条件下也不发生肥胖,且发育良好,具有正常的繁殖能力,癌症的发生率也未见提高[7],这提示了PTP1B作为胰岛素信号通路的主要负调控因子,其小分子抑制剂可能是有效的抗糖尿病/肥胖症药物,而且不产生副作用。事实上PTP1B抑制剂已成为胰岛素增敏剂的候选药物之一[8],全世界有不少实验室正在从天然中草药或人工合成的药物中以PTP1B作为靶点筛选高特异性的抑制剂。
     PTP1B与肥胖症、T2DM和肿瘤关系密切[7],因此它的大规模诱导表达对研究这些疾病有着重要的意义。本研究将PTP1B基因作为T2DM合并肥胖症的重要候选基因,结合豹皮樟总黄酮(TFLC)对T2DM大鼠模型的疗效及降糖机制研究,为TFLC应用于临床治疗肥胖合并2型糖尿病提供前期试验依据。主要研究内容包括以下四个方面:
     1.人PTP1B基因cDNA全长的克隆和原核系统表达
     取2型糖尿病人(BMI>28kg·m-2)外周抗凝静脉血,用淋巴细胞分离液分离淋巴细胞,提取总RNA,以Oligo dT为引物,合成出cDNA第一链。以逆转录(RT)产物为模板,PCR扩增出PTP1B插入片段,连接入克隆载体pMD-18T Vector中构建pMD-hPTP1B。设计带酶切位点(BamHⅠ,EcoRⅠ)的引物,以pMD-18T Vector作模板进行亚克隆,双酶切后构建原核表达载体pET28a(+)-hPTP1B,氯化钙法转化入BL21(DE3),IPTG诱导表达并对诱导剂的浓度、时间及诱导温度等条件进行了优化。从2型糖尿病患者外周血中扩增得到1301bp PTP1B cDNA全长序列,经双酶切鉴定及测序分析,表明已成功构建了原核表达载体pET28a(+)-hPTP1B;IPTG的最适诱导浓度为0.05 mmol·L-1,最适诱导时间为5 h,最适诱导温度为37℃;Western blot表明表达的重组融合蛋白具有与天然hPTP1B相同的结合抗体活性。
     2. rhPTP1B蛋白的分离纯化、酶活性测定以及抑制剂实验
     亲和层析法纯化rhPTP1B,复性后用于酶活性测定及抑制剂的实验。取细菌裂解上清液经Ni2+亲和层析柱纯化后,利用PTP1B水解特异性底物4-硝基苯基磷酸二钠盐(pNPP-Na2)的磷酸基团而产生颜色反应来测定rhPTP1B的活性,分析其与rhPTP1B浓度、底物浓度及反应温度的关系,确定钒酸钠(Na3VO4,VAN)的抑制类型和豹皮樟总黄酮(TFLC)对rhPTP1B的抑制作用和浓度依赖关系,并研究2型糖尿病常用治疗药物吡格列酮和二甲双胍对rhPTP1B有无抑制作用,探讨其有无新的降血糖机制。结果表明诱导表达纯化的rhPTP1B融合蛋白可用于抑制剂的研究:1.rhPTP1B活性随酶浓度及底物浓度的增加而增加;2. 35℃时rhPTP1B的活性最大;3.VAN的抑制作用呈浓度依赖性增强,可能为非竞争性抑制作用;4.TFLC对rhPTP1B有明显的抑制作用;5.治疗2型糖尿病的常用药物二甲双胍和吡格列酮对PTP1B酶并无明显抑制作用,说明这两种药物不是通过对PTP1B的抑制起作用的。
     3.人PTP1B基因的真核系统表达及在HepG2细胞的胰岛素信号通路中的作用
     构建真核表达载体pcDNA3.1-hPTP1B,电穿孔法转染至人肝癌HepG2细胞,G-418筛选2周后得到稳定转染的细胞株,检测rhPTP1B在转录水平和翻译水平的表达,免疫荧光法确定表达的rhPTP1B主要定位在细胞浆,MTT法初步研究rhPTP1B可能对细胞增殖和细胞周期无显著影响,免疫沉淀法结合Western blot检测其对IRS-1、IRβ的去磷酸化作用,结果表明rhPTP1B可显著减少IRS-1、IRβ的磷酸化程度,即明显衰减胰岛素刺激时胰岛素的信号转导通路;构建了真核沉默载体pBI-dsPTP1B,瞬时转染HepG2细胞,Western blot检测PTP1B的被抑制表达可达约50%。
     4.新型2型糖尿病大鼠模型的建立、TFLC的治疗及与PTP1B表达的关系
     用高糖高脂乳剂灌胃雄性SD大鼠5个月,小剂量STZ注射构建T2DM模型,分别给予TFLC (400mg/kg)和阳性对照药钒酸钠(VAN,10mg/kg)灌胃治疗6周,观察疗效。结果表明:糖尿病大鼠经TFLC治疗后空腹血糖(FBG)、糖化血红蛋白(HbA1c)、胰岛素(FINS)、游离脂肪酸(FFA)、总胆固醇(TC)、甘油三酯(TG)和低密度脂蛋白(LDL-C)、胰岛素抵抗指数(HOMA-IR)显著下降,高密度脂蛋白(HDL-C)和胰岛素敏感指数(ISI)明显提高,胰岛β细胞显著增生,肝匀浆丙二醛(MDA)含量下降,超氧化物歧化酶(SOD)活性升高;肾、心肌和肝脏的病理学明显改善。RT-Real time PCR、Western blot结果表明T2DM组靶组织中PTP1B的表达明显升高,TFLC组中PTP1B的表达明显降低。与VAN相比,TFLC可明显降低血糖和血脂,减轻肝脏组织的自由基氧化应激,其改善胰岛素抵抗,可能与其显著促进胰岛β细胞的增生,明显降低靶组织中PTP1B的表达,增强胰岛素信号通路有关。
Protein tyrosine phosphatase 1B (PTP1B) belong to family of protein tyrosine phosphatases(PTPs), exists as two forms such as receptor-like and cytoplasmic signal transducing enzymes, dephosphorylate the phosphorylated tyrosine residues of substrate proteins and is the first identified and purified PTPs. PTP1B acted on the phosphorylated insulin receptor(IR), insulin receptors substrate-1 and -2(IRS-1, IRS-2), growth factor receptor binding protein 2(Grb-2) and phosphatidylinositol 3 kinase(PI-3K), which all related with insulin signal transduction, thus attenuated insulin signal transduction and resulted in post-receptor insulin resistance. Recently, someone imported siRNAs which targeted against PTP1B into mouse hepatoma and found that the insulin signal transduction was increased, thus proved the role of PTP1B in insulin signal transduction again.
     Overexpression of PTP1B could also cause leptin resistance, thus initiated the development of obesity and type 2 diabetes mellitus. Mice deficient with PTP1B exhibited increased insulin sensitivity as well as resistance to weight gain when fed with a high-fat diet, which resulted from an increased basal metabolic rate and total energy expenditure. They growed very well and had normal breeding capability and low cancer development ratio. All these results indicated that small molecular inhibitors of PTP1B would be potential effective anti-diabetic/anti-obese drugs and had no side effects. In fact, inhibitors against PTP1B had already become candicate drugs as one of insulin sensitizers; many laboratories in the world are screening inhibitors of PTP1B from Chinese traditional and herbal drugs or artificial systhesised drugs.
     PTP1B has close relationship with obesity, type 2 diabetes and tumors, so its large-scale induction expression is very important for studying these diseases. This research took PTP1B as an important candidate gene of T2DM, investigated the antidiabetic effects and possible mechanisms of TFLC on T2DM model rats. The main contents are divided into four sections as follows:
     1. Cloning and expression of human PTP1B cDNA in E.coli
     In order to express the hPTP1B protein effectively in E.Coli, total RNA was isolated from the peripheral blood mononuclear cells of type 2 diabetes mellitus. PTP1B full length cDNA sequence was amplified using two-step RT-PCR. The cloning plasmid pMD-hPTP1B was constructed, then PTP1B was subcloned with primers containing restriction endonucleases recognition sites of BamHⅠand EcoRⅠand ligated into pET-28a(+), transducted into DE3, induced with IPTG and expressed proteins were detected with SDS-PAGE and Western blot. Induction conditions of high level expression were experimented. Human PTP1B was sequenced and the plasmid pET28a(+)-hPTP1B was cut with two enzymes. PTP1B was expressed successfully in the form of insoluble inclusion body in E.Coli, SDS-PAGE analysis showed the molecular weight was about 50 kD. Western blot result showed the highly expressed protein was really PTP1B. The best induction concentration of IPTG was 0.05 mmol·L-1, the best induction time was 5h and the best induction temperature was 37℃. The rhPTP1B and corresponding prokaryotic expression plasmids were obtained, thus established a basis for screening highly specific small molecular inhibitors.
     2. High expression of rhPTP1B and in vitro inhibition experiments of TFLC
     The rhPTP1B was expressed effectively in E.coli DE3 transducted with pET28a(+)-hPTP1B, purified by affinity chromatography, then renatured, the activity was measured with different reactive conditions and inhibitors, such as Na3VO4 ,TFLC(a vulgar extract from traditional Chinese medicine called Laoying tea). The tests of enzyme activity and studies of the inhibitor were showed as following: 1. The activities of rhPTP1B increased with enzyme concentration and substrate concentration; 2. The optimal temperature was 35℃at which the enzyme activity was maximum; 3. Inhibitory manner of Na3VO4 was dependant on its concentration and possibly act as uncompetitive inhibitor. 4.TFLC had a definite inhibitory action on rhPTP1B, this maybe as one of mechanisms of its hypoglycemic effect. 5. Commonly used therapeutic drugs such as pioglitazone and metformin had no apparent inhibitory action on rhPTP1B, this result showed that the two drugs exhibited their hypoglycemic effect not through rhPTP1B.
     3. Expression and participation of human PTP1B in insulin signal transduction in human hepatoma HepG2 Cells
     Human PTP1B full length cDNA was subcloned into pcDNA3.1/His-myc-B, then transfected into the HepG2 cells. After screening with 400mg·L-1G-418 for 2 weeks, a HepG2 cell line that stably expressed hPTP1B was obtained and testified by double enzyme cutting, RT-PCR and Western blot. The ectopically expressed human PTP1B cDNA was located in cytosol by immumofluorescence method, it had no influence on cellular proliferation by MTT assay. We also showed that expressed PTP1B affected the phosphorylation of known PTP1B targets such as insulin receptor substrate-1 (IRS-1) and insulin receptor (IR) after insulin stimulation, thus participated in insulin signal transduction pathway in HepG2 cells. We also constructed RNAi plasmid called pBI-hPTP1B and found out that inhibited expression of PTP1B extent could be reached about 50%. Maybe this RNAi plasmid was used to inhibit PTP1B expression in thearapy of type 2 diabetic rats in future.
     4. Antidiabetic effect of total flavonoids from Litsea Coreana leve in high-fat emulsion/streptozotocin induced diabetic SD rats
     A study was undertaken to evaluate the hypoglycemic activity and mechanism of TFLC on a new SD rat model of type 2 diabetes mellitus. Male Sprague–Dawley rats were fed high-fat emulsion via gavage for 22 weeks, then injected with 12 mg/kg streptozotocin (STZ) and followed by 0.5ml/kg CFA injection on next day to induce type 2 diabetes mellitus. The rat models were treated with TFLC (400 mg/kg) or Na3VO4 (10 mg/kg) via gavage for 6 weeks. HFE/STZ rats became obese, insulin resistant, exhibited increased levels of fasting blood glucose(FBG), glycated hemoglobin(HbA1c), fasting insulin(FINS), free fat acids (FFA), total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA) and reduced superoxide dismutase (SOD) activities. Treatment with TFLC or Na3VO4 showed a significant decrease in FBG, HbA1c, FFA, TC, TG, MDA, HOMA-IR and a significant increase in ISI and SOD activities. Pancreatic immunohistochemistry indicated that TFLC or VAN could ameliorate auantic islets. Morphological changes in tissues of model rats included inflammation, mitochondrial lesions, steatosis, vaculous degeneration and hydropic degeneration in liver, heart and kidney while changes attenuated in two treatment groups. Expression of PTP1B were elevated in target tissues of model rats, but decreased in TFLC or Na3VO4 treatment rats. When used in a new T2DM rat model, TFLC could have anti-inflammation, anti-oxidation, insulin-sensitizing and hypoglycemic activity possibly by decreasing the elevated expression of PTP1B in the target tissues of T2DM rats.
引文
1. Tonks, N. K., Diltz, C. D., Fischer, E. H. Purification of the major protein-tyrosine-phosphatases of human placenta[J]. J. Biol. Chem. 1988, 263: 6722-6730.
    2.Charbonneau H, Tonks N K, Kumar S, et al. Human placenta protein-tyrosine phosphatase: amino acid sequence and relationship to a family of receptor-like proteins[J].Proc.Natl.Acad.Sci.USA, 1989,86: 5252–5256.
    3.Dadke S, Kusari J, Chernoff J. Down-regulation of insulin signaling by protein-tyrosine phosphatase 1B is mediated by an N-terminal binding region[J]. J. Biol. Chem.2000, 275(31):23642-23647
    4. Koizumi M, Takaqi-Sato M, Okuyama R, et al. Direct comparison of in vivoantisense activity of ENA oligonucleotide targeting PTP1B RNA with that of 2-o-ethyl-modified oligonceotides[J]. Oligonucleotides, 2006, 16(3):253-62
    5. Cheng, A.,Uetani, N., Simoncic, P. D., Chaubey, V. P., Lee-Loy, A., McGlade, C. J., Kennedy, B. P., Tremblay, M. L. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B[J]. Dev. Cell, 2002, 2: 497-503.
    6.王辰,王沥,杨泽,蛋白质酪氨酸磷酸酶1B(PTP1B)与2型糖尿病及肥胖的关系[J],遗传,2004,26:941-946
    7. Elchebly M, Payette P, Michaliszyn E,et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene[J]. Science, 1999, 283:1544–1548.
    8. Pei Z, Liu G, Lubben TH. Inhibition of protein tyrosine phosphatase 1B as a potential treatment of diabetes and obesity[J].Curr. Pharma. Design. 2004, 10:3481-3504.
    9. Brown-Shimer, S., Johnson, K. A., Lawrence, J. B., Johnson, C., Bruskin, A.,Green, N. R., Hill, D. E. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B[J]. Proc. Nat. Acad. Sci.USA. 1990, 87: 5148-5152.
    10. Forsell P K A L, Boie Y, Montalib J, Collins S, et al. Genomic Characterization of the human and mouse protein tyrosine phosphatase-1B[J].Gene,2000, 260:145–153.
    11. Frangioni J V, Beahm P H, Shifrin V C A, et al.The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence[J].Cell, 1992,68: 545– 560.
    12. Klupa T, Malecki M T, Pezzolesi M, et al. Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-13.2[J]. Diabetes, 2000, 49:2212–2216.
    13. J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南第3版[M],北京:科学出版社2001:1252–1259.
    14. Zhang Z Y. Protein tyrosine phosphatases: structure and function,substrate specificity, and inhibitor development[J]. Annu Rev Pharmacol Toxicol, 2002,42:209–34.
    15.Ostman A, Bohmer F D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases[J]. Trends Cell Biol, 2001, 11: 258– 66.
    16. Kennedy, B. P., Ramachandran, C. Protein tyrosine phosphatase-1B in diabetes[J]. Biochem. Pharm. 2000, 60: 877-883.
    17. Booth G L, Kapral M K, Fung K,et al. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study[J].The Lancet, 2006, 368: 29–36.
    18. Gum RJ, Gaede LL, Koterski SL, et al. Reduction of protein tyrosine phosphatase
    1B increases insulin-dependent signaling in ob/ob mice[J]. Diabetes, 2003, 52(1):21-28
    19.Ahmad, F., Azevedo, J. L., Jr., Cortright, R., Dohm, G. L., Goldstein, B. J. Alternations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes[J]. J. Clin. Invest. 1997, 100: 449-458.
    20. Harley EA,Levens N.Protein tyrosine phosphatase 1B inhibitors for the treatment of type 2 diabetes and obesity:recent advances[J].Curr Opi in Invest Drugs. 2003, 4:1179-1189.
    21.范清林,魏伟,邹文艺,等.人sTRAIL基因的克隆、表达纯化及对人A549细胞的抗肿瘤活性作用[J].中国药理学通报,2006,22(2):228-233.
    1.Puius YA,Zhao Y,Sullivan M,et al. Crystal structure of protein tyrosine phosphatase 1B complexed with two phosphotyrosine molecules[J].Pro Nat Aca Sci USA. 1997; 94(25):13420-13425.
    2.Sun JP, Fedorov AA,Lee SY,et al.Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor[J]. J Bio Chem.2003; 278:12406-12414.
    3.Xie J,Seto CT. Investigations of linker structure on the potency of a series of bidentate protein tyrosine phosphatase inhibitors[J].Bioorg Med Chem. 2005;13:2981-2991.
    4. Z.Y. Zhang, Protein tyrosine phosphatases: structure and function,substrate specificity, and inhibitor development[J]. Annu Rev Pharmacol Toxicol, 2002, 42:209–234.
    5.靳挺,关怡新,费铮铮,等。重组人-干扰素包涵体稀释复性[J]。化工学报,2004,55(5):770-774.
    6. Gum RJ, Gaede LL, Koterski SL, et al. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice[J]. Diabetes, 2003, 52(1):21-28
    7. Zabolotny JM, Haj FG, Kim YB, et al. Transgenic overexpression of protein tyrosinephosphatase 1B in muscle causes insulin resistance,but overexpression with leukocyte antigen-related phosphatase does not additively impare insulin action[J]. J Biol Chem, 2004, 279(23):24844-24851
    8. Liu G. Technology evaluation: ISIS-113715, Isis[J].Curr Opin Mol Ther, 2004, 6(3):331-336.
    9.Dadke S, Kusari J, Chernoff J. Down-regulation of insulin signaling by protein tyrosine phosphatase 1B is mediated by an N-terminal binding region[J].J Biol Chem. 2000, 275(31):23642-23647
    10. Talor SD. Inhibitors of protein tyrosine phosphatase 1B(PTP1B) [J]. Curr Top Med Chem, 2003, 3(7):759-782
    11. Xie J, Soto CT. A two stage click-based library of protein tyrosine phosphatase inhibitors[J]. Bioorg Med Chem, 2007, 15(1):458-473
    12. Wan ZK, Lee J, Xu WX, et al. Monocyclic thiophenes as protein tyrosine phosphatase 1B inhibition: Capturing interactions with Asp48[J]. Bioorg Med Chem. Lett, 2006, 16(18):4941-4945
    13. Zhang, S., Zhang, Z.Y. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery[J]. Drug Discov Today, 2007,12, 373-381.
    14. GluzmanY. SV40-transformed simian cells support the replication of early SV40 mutants[J]. Cell, 1981, 23(1):175-82
    15.彭凌,朱必凤,刘主,包涵体复性研究[J].韶关学院学报·自然科学,2007,28(6):89-93
    16. Goldfine AB, Simonson DC, Folli F, et al. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus[J]. Mol cell biochem,1995, 153(l-2):217-231.
    1. Ostman, A., Bohmer, F.D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases[J]. Trends Cell Biol., 2001,11, 258– 266.
    2.Ahmad, F., Li, P.M., Meyerovitch, J., et al. Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway[J]. J Biol Chem.,1995,270, 20503-20508.
    3. Saltiel AR and Kahn CR. Insulin singalling and the regulation of glucose and lipid metabolism[J].Nature, 2001, 414(6865):799-806.
    4. Goldfine ID. The insulin receptor: molecular biology and transmembrane signaling [J]. Endocrine reviews,1987, 8(3):235-255.
    5. Xu J F, Lin Li, Jie Hong, et al. Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: Evidence for non-synergetic cooperation[J].Cell Bio Inter, 2007,31: 88–91.
    6. Klaman LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreasedadiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice[J]. Mol Cell Biol.,2000,20, 5479–5489.
    7. Accili D, Drago J, Lee EJ, et al.Early neonatal death in mice homozygous for a null allele of the insulin receptor gene[J]. Nat genetics,1996,12(l):106-109.
    8. R S Thies, J M Molina, T P Ciaraldi,et al. Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects.Diabetes,1990, 39(2):250-259.
    9.Salmeen A,Andersen JN,et al.Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B[J].Mol Cell.2000;6:1401-1412.
    10. Ellis L, Morgan DO, Clauser E, et al. A membrane-anchored cytoplasmic domain of the human insulin receptor mediates a constitutively elevated insulin-independent uptake of 2-deoxyglueose[J].Mol Endocrin,1987,l(l):15-24.
    11. Dadke, S., Kusari, J., Chernoff, J. Phosphorylation and activation of protein tyrosine phosphatase (PTP)1B by insulin receptor[J]. Mol Cell Biochem, 2001,221, 147–154.
    12. Bradley A. Zinker , Cristina M. Rondinone, James M. Trevillyan, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice[J]. Proc Natl Acad Sci USA. 2002, 99(17):11357-11362.
    13. Janice M. Zabolotny, Fawaz G. Haj, Young-Bum Kim, et al.Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with Leukocyte Antigen-related Phosphatase does not additively impair insulin action[J]. J Biol Chem., 2004,279(23):24844-24851.
    14. Denis Mottet, Valéry Dumont, Yann Deccache,et al.Regulation of hypoxia-inducible factor-1αprotein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3βpathway in HepG2 cells[J]. J Biol Chem., 2003, 278(33), 31277-31285.
    15. Koizumi, M., Takagi-Sato, M., Okuyama, R., et al. Direct comparison of in vivo antisense activity of ENA oligonucleotides targeting PTP1B mRNA with that of 2'-O-(2-methoxy)ethyl-modified oligonucleotides[J]. Oligonucleotides, 2006,16, 253-262.
    16. Jun Wang, Ephrem Tekle, Hammou Oubrahim, et al. Stable and controllable RNA interference: investigating the physiological functionof glutathionylated actin[J]. Proc Natl Acad Sci USA., 2003, 100 (9), 5103–5106.
    1.Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors[J]. JAMA.2003; 289:76–79.
    2. Yong WU, Jing-ping OU-YANG, Ke WU, et al. Hypoglycemic effect of astragalus polysaccharide and its effect on PTP1B[J]. Acta Phama Sin, 2005,26(3):345-352.
    3.刘锦红,豹皮樟对小鼠血糖和血脂的影响观察,中华实用中西医杂志,2003,16(14):2057.
    4.刘金龙,郑小江,熊彪,豹皮樟成分研究[J],时珍国医国药,2006,17(11),2154-2155.
    5.陈玉璞,程文明,李俊,豹皮樟中黄酮类化学成分分析[J],安徽医科大学学报,2008,43(1),19-21.
    6. Wang TY, Li J, Ge JF, et al. Preliminary study of total flavonoids from Litsea coreana Levl. on experimental adjuvant-induced arthritis in rats[J]. Am J Chin Med, 2008; 36(5):899-912.
    7. Wang JQ, Li J, Zou YH, et al. Preventive effects of total flavonoids of Litsea coreana leve on hepatic steatosis in rats fed with high fat diet[J]. J Ethnopharmacol, 2009, 121(1):54-60.
    8.吕雄文,李俊,邹宇宏,等,豹皮樟总黄酮降血糖作用的实验研究[J],中国中医药科技,2008,15(2),119-121.
    9.鲁云霞,孙玉秀,汪凌云,等,重组人PTP1B的原核表达及TFLC的体外抑制剂实验[J],中国医药生物技术,2009,4(3),212-218.
    10.程文明,王小华,陆维丽,等,用正交设计法优选豹皮樟总黄酮的提取工艺[J],安徽医药,2005,9(10),729-730.
    11.倪鸿昌,李俊,金涌等。大鼠实验性高脂血症和高脂血症性脂肪肝模型研究[J].中国药理学通报, 2004,20(6):703-706.
    12.孙俊英,郭延云,陈丽,等,2型糖尿病大鼠模型的建立与评价[J],安徽医科大学学报,2007,42(4),433-435.
    13. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man[J]. Diabetologia, 1985, 28:412-419.
    14.李光伟,潘孝仁,Stephen Lillioja,et al.检测人群胰岛素敏感性的一项新指数,中华内科杂志,1993,32(10):656-660.
    15. Gavino VC, Miller JS, Ikharebha SO, et al. Effect of polyunsaturated fatty acids andantioxidants on lipid peroxidation in tissue cultures[J]. J Lipid Res, 1981,22(5):763-769.
    16.Swapan Kumar Das, Steven C Elbein. The genetic basis of type 2 diabetes [J].Cellscience. 2006, 2(4): 100–131.
    17. Kahn BB, Flier JS. Obesity and insulin resistance[J]. J Clin Invest. 2000; 106: 473–481.
    18. R Nino-Fong, TM Collins, and CB Chan. Nutrigenomics,β-cell function and type 2 diabetes[J].Curr Genom. 2007, 8(1): 1–29.
    19.Alan R. Shuldiner, John C. McLenithan. Genes and pathophysiology of type 2 diabetes: more than just the Randle cycle all over again[J]. J Clin Invest. 2004,114(10): 1414–1417.
    20. K. Srinivasan, B. Viswanad, Lydia Asrat, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening[J]. Pharm Res. 2005;52: 313–320.
    21. Peterson RG.The Zucker diabetic fatty (ZDF) rat. Animal Models of Diabetes-A Primer. Edited by AAF Sima and E Shafrir[M]. Amsterdam, Harwood Academic Publishers, 2001, 109–128
    22. Alice Y.Y. Cheng and I. George Fantus. Oral antihyperglycemic therapy for type 2 diabetes mellitus[J]. CMAJ. 2005; 172(2): 213–226.
    23.Alarcon-Aguilara FJ, Rornan-Ramos R, Perez-Gutierrez S. Study of the anti-hyperglycemic effect of plants used as antimodels[J]. J Ethnopharmacol.1998; 61 (Pt 2): 101–110.
    24.Wu YC, Hsu JH, Liu IM, et al. Increase of insulin sensitivity in model rats received die-huang-wan, a herbal mixture used in Chinese traditional medicine[J]. Acta Pharmacol Sin. 2002; 23: 1181–1187.
    25. Lowel BB, Shulman GI.Mitochondria1 dysfunction and type 2 diabetes[J].Science, 2005,307,384-387.
    26. Qu Fan Collins,Hui-Yu Liu, Jingbo Pi, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase[J]. J Biol Chem. 2007, 282(41): 30143–30149.
    27. Ye, H., Yu, J. The Preliminary studies on antioxidation of three kinds of flavoniods from Litsea coreana[J]. Chin Crude Drug 2004, 27, 113–116.
    1. A.R. Saltiel, New perspectives into the molecular pathogenesis and treatment of type
    2 diabetes[J], Cell, 2001;104: 517– 529.
    2. Z.Y. Zhang, Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development[J].Annu. Rev. Pharmacol.Toxil. 2002; 42: 209–234.
    3. H. Charbonneau, N.K. Tonks, S. Kumar, et al. Human placenta protein tyrosine phosphatase: amino acid sequence and relationship to a family of receptor-like proteins[J]. Proc. Natl. Acad. Sci. USA. 1989;86: 5252–5256.
    4.Sanjai Kumar,Fubo Liang,David S,et al. Molecule approach to studying protein tyrosine phosphatase[J]. Methods, 2005, 35(1):9-21.
    5.A. Ostman, F.D. Bohmer, Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases[J], Trends Cell Biol, 2001; 11, 258– 266.
    6.Chiarugi, P., Taddei, M. L., Schiavone, N., et al. LMW-PTP is a positive regulator of tumor onset and growth[J]. Oncogene. 2004, 23: 3905-3914.
    7.Kikawa, K. D.; Vidale, D. R.; van Etten, et al. Regulation of the EphA2 Kinase by the Low Molecular Weight Tyrosine Phosphatase Induces Transformation[J].J. Biol. Chem. 2002, 277: 39274-39279.
    8. J.V. Frangioni, P.H. Beahm, V. Shifrin, C.A. et al .The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence[J]. Cell, 1992; 68: 545– 560.
    9. Klupa T, Malecki MT, Pezzolesi M,et al. Further evidence for a susceptibility locusfor type 2 diabetes on chromosome 20q13.1-13.2[J]. Diabetes, 2000; 49, 2212–2216.
    10. Ines Anderie, Irene Schulz, Andreas Schmid. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets[J]. Cellular Signalling, 2007; 19: 582–592.
    11. N. Dube, A. Cheng, M.L. Tremblay, The role of protein tyrosine phosphatase 1B in Ras signaling[J]. Proc. Natl. Acad. Sci. USA. 2004; 101:1834-1839.
    12.Lee H, Xie L, Luo Y,et al. 2006. Identification of phosphocaveolin-1 as a novel protein tyrosine phosphatase 1B substrate[J]. Biochemistry 2006; 45:234–240.
    13.Haj FG,Verveer PJ,Squire A,et al.Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum[J].Science.2002;295:1708-1711. 14.
    14.Booth GL, Kapral MK, Fung K,et al. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study[J]. The Lancet, 2006;368: 29–36.
    15. Fernandez-Veledo S, Nieto-Vaquez I, Rondinone CM, et al. Liver X receptor agonists ameliorate TNF-αinduced insulin resistance in Murine brown adipocyte by downregulating PTP1B gene expression[J]. Diabetologia, 2006, 49(12): 3038-3048
    16. Dadke S,Kusari J, Chernoff J. Phosphorylation and activation of protein tyrosine phosphatase (PTP)1B by insulin receptor[J]. Mol Cell Biochem, 2001;221:147–154.
    17. Bogeski I, Bozem M, Sternfeld L, et al. Inhibition of PTP1B by ROS leads to mainteinance of Ca2+ influx Follows the store depletion in HER 293 Cells[J]. Cell Calcium, 2006, 40(1):1-10
    18. Dadke S,Kusari J, Chernoff J. Phosphorylation and activation of protein tyrosine phosphatase (PTP)1B by insulin receptor[J]. Mol Cell Biochem, 2001, (221):147-154.
    19.Dadke S,Kusari J, Chernoff J. Down-regulation of insulin signaling by protein-tyrosine phosphatase 1B is mediated by an N-terminal binding region[J]. J Biol Chem, 2000; 275:23642–23647.
    20. Santaniemi M, Ukkola O , Kesaniemi Y A. Tyrosine phosphatase 1B and leptinreceptor genes and the InsR interaction in type2 diabetes[J]. J Inter Med, 2004, 256:48-55.
    21.Brian P. Kennedy, Chidambaram R., Protein tyrosine phosphatase-1B in diabetes[J]. Biochem. Pharmacol, 2000, 60: 877–883.
    22. Goldstein BJ, Bittner-Kowalczyk A, White MF, et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B[J]. J Biol Chem, 2000, 275: 4283–4289.
    23.Koizumi M,Takaqi-Sato M,Okuyama R,et al. Direct comparison of in vivo antisense activity of ENA oligonucleotide targeting PTP1B RNA with that of 2-o-ethyl-modified oligonceotides[J]. Oligonucleotides, 2006, 16(3):253-262.
    24. B L Seely, P A Staubs, D R Reichart, et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor[J]. Diabetes, 1996, 45(10): 1379-1385.
    25. Nieto-Vaquez I, Fernandez-Veledo S, de Alvaro C, et al. PTP1B-deficient myocyte showed increased insulin sensititvity protection against TNF-αinduced insulin resistance[J]. Diabetes, 2007, 56(2):404-413
    26. Ivan Bogeski, Monika Bozem, Lutz Sternfeld, et al. Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK 293 cells[J]. Cell Calcium, 2006,40(1):1-10.
    27. Sofi G Julien, Nadia Dube, Michelle Read, et al, Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis[J]. Nature genetics.2007;39(3),338–346.
    28. Jennifer, L.B., Nicholette, D.P., Josyf ,C.M.et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes,2004,53, 3007-3012.
    29.Di Paola R, Frittitta L,Mscio G, et al.A Variation in 3-prime UTR of hPTP1B increases specific gene expression and association with insulin resistance[J]. Am J Hum Genet, 2002, 70: 806–812.
    30.Mok A, Cao H, Zinman B, Hanley A J G, et al. A single nucleotide polymorphism in protein tyrosine phosphatase PTP1B is associated with protection from diabetes or impared glucose tolerance in Oji-Cree[J]. J Clin Endocr Metab, 2002;87:724–727.
    31.张宏利,朱教达,骆天红等,蛋白酪氨酸磷酸酶1B基因多态性与2型糖尿病和肥胖的相关性研究[J].中华内分泌代谢杂志,2006;22(1),45–48.
    32. Cheyssac C , Lecoeur C , Dechaume A ,et al . Analysis of common PTPNI Gene variants in type2 diabetes, obesity and associated phenotypes in the French population[J]. BMC Med Genet, 2006, 7:44.
    33. Palmer N D, Bento J L, Mychaleckyj JC, et al .Association of protein tyorsine phosphatase 1B gene polymorphisms with measures of glucose homeostasis in Hispanic Americans: the insulin resistance atherosclerosis study (InsRAS) family study[J]. Diabetes, 2004, 53:3013-3019.
    34. Gouni-Berthold I, Giannakidou E, Muler-Wieland D, et al. The Pro387 Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes Mellitus type2 in a German population[J]. J.Inter. Med, 2005, 257:272-280.
    35.Stuible M,Zhao L, Aubry I, et al. Cellular inhibition of PTP1B by uncharged thioxothiazolidinone derivatives[J]. Chem Bio Chem, 2007, 8(2):179-186.
    36.Sparks RB,Polam P,Zhu Wu,et al.Benzothiazole benzimidazole S-IZD derivative as PTP1B inhibitors[J].Bioorg Med Chem Lett, 2007,17(3):736-740.
    37. Xavier Espanel and Rob Hooft van Huijsduijnen.Applying the SPOT peptide synthesis procedure to the study of protein tyrosine phosphatase substrate specificity: probing for the heavenly match in vitro[J]. Methods, 2005,35(1):64-72.
    38. Wei Zhang, Di Hong, Yueyang Zhou, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B,enhancing insulin receptor phosphorylation and stimulating glucose uptake[J]. Biochim.Biophy.Acta, 2006, 1760:1505–1512.
    39.Paul J Ala,Gonneville L,Hillman M,et al. Structual insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of PTP1B[J].Bio Chem, 2006,281(49):38013-38021.
    40. Yong WU, Jing-ping OU-YANG, Ke WU, et al. Hypoglycemic effect of astragalus polysaccharide and its effect on PTP1B[J]. Acta Phamaco Sini, 2005,26(3):345-352.
    41. D. R. Powell. Obesity drugs and their targets: correlation of mouse knockout phenotypes with drug effects in vivo [J]. Obesity Reviews, 2006, 7(1): 89-108.
    42. Senugmi Yang, MinKyun Na, Jun Pil Jang, et al.Inhibition of Protein Tyrosine Phosphatase 1B by Lignans from Myristica fragrans[J]. Phytother Res. 2006, 20,680–682.
    43. Forghieri M, Laggner C, Paoli P, et al. Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors[J].Bioorg Med Chem. 2009;17(7):2658-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700