分泌型蛋白质NBL1在体—肺分流性肺动脉高压中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:新型单侧高动力性肺动脉高压模型的建立
     目的:现有大鼠分流模型仅能导致肺血管产生Ⅰ级病变,而先天性心脏畸形患者肺组织内典型的肺血管重构改变至今尚未在大鼠分流模型中再现。本研究通过分期手术的方法,建立了一种新型单侧肺动脉高压大鼠模型,以诱导出更为严重的肺血管病变。
     方法:经右侧肋间如胸腔,结扎右肺动脉,一周后,建立颈部分流。术后即刻,8周,12周通过右心导管评估此模型对肺血流动力学的即刻和长期作用。肺组织行HE染色和Weigert's染色来评估肺血管系统形态学改变情况。同时做了右室肥厚指数计算和血气分析。
     结果:颈部分流完成瞬间肺循环即成循环高压状态,且随着病程的进展,逐步发展至临界态。肺血管病理学显示术后8周出现可逆病变(Ⅰ-Ⅱ级肺血管病变:中膜肌化,内膜增生),术后12周出现不可逆病变(Ⅲ级肺血管病变:内膜纤维化,血管腔闭塞)。同时伴有显著的右心室肥厚和氧分压的降低。
     结论:此分流模型成功诱导了肺循环的高压状态,在相对较短的时间内再现了肺血管病变由可逆状态向不可逆状态的典型转变过程。因此,本研究可为分流性肺动脉高压潜在机制的研究提供一个死亡率低,可重复强的模型选择。
     第二部分:分泌型蛋白质NBL1在体肺分流性肺动脉高压中的作用
     背景:正常情况下主要表达于肺组织,而在体肺分流性肺动脉高压时发生特征性改变的蛋白质将是先天性心脏病肺动脉高压研究的新靶点。因此,本研究旨在发现在先天性心脏病性肺动脉高压发生发展过程中发生显著改变的分泌型蛋白质。
     方法:对5例先天性心脏并合并重度肺动脉高压的病人和5例先天性心脏病且肺动脉压力正常的病人外周血进行抗体芯片的测试。筛选出变化显著的分泌型蛋白质,选择分泌型蛋白质NBL1作为进一步研究的靶点蛋白。Elisa的方法验证分泌型蛋白质NBL1在大样本的临床病例中的变化趋势及分泌型蛋白质NBL1的血浆浓度和肺血流动力学的相关性;应用RT-PCR, Western-blot及组织化学的方法在我们新近构建的大鼠体肺分流模型中进一步验证,以明确分泌型蛋白质NBL1在肺组织中的分布,表达情况及在肺动脉高压性肺组织中的变化;在肺动脉内皮细胞和肺动脉平滑肌细胞中验证NBL1的来源及重组NBL1蛋白对肺动脉内皮细胞和肺动脉平滑肌细胞增殖的影响;最后在体肺分流模型持续补充重组蛋白NBL1。
     结果:抗体蛋白芯片结果发现一些分泌型蛋白质在先天性心脏病合并肺动脉高压的病人和先天性心脏病无肺动脉高压的病人间有显著的统计学差异。我们选择NBL1进行下一步验证。RT-PCR分析发现NBL1主要特异性的表达在正常肺组织且其:mRNA水平在体肺分流大鼠模型中呈时间依赖性的下降;Western-blot分析显示NBL1在正常肺组织中高表达且在体肺分流性肺组织中亦呈时间依赖性的表达下降;组织化学显示NBL1在正常肺组织中高表达,而在体肺分流性肺组织中低水平表达。而且,细胞学研究发现肺动脉内皮细胞和肺动脉平滑肌细胞均能分泌NBL1,且这种分泌行为伴随着细胞表型和细胞周期分布的改变,另外NBL1能特异的拮抗BMP2/4对肺动脉内皮细胞和肺动脉平滑肌细胞增殖的抑制作用。先天性心脏病病人和体肺分流性SD大鼠的外周血Elisa结果发现血浆NBL1水平随着肺动脉高压程度的加重而逐渐降低;而持续补充重组NBL1蛋白使体肺分流性SD大鼠肺动脉压力进一步升高,肺血管重构程度进一步加重。
     结论:分泌型蛋白质NBL1主要高表达于正常肺组织。体肺分流性肺动脉高压性肺组织中NBL1的表达水平降低且血浆NBL1浓度和肺动脉高压的程度负相关。因此,NBL1或是先天性心脏病肺动脉高压的一个新的治疗靶点和候选生物标记物。
Part I:An original rat model of highkinetic unilateral pulmonary hypertension surgically induced by combined surgery
     Background:Characteristic morphological lesions observed in lungs of patients with congenital cardiac anomalies have not been closely generated in rat shunt-related models except reversible grade one change. This study presented an original rat model of unilateral pulmonary arterial hypertension (PAH) surgically induced by combined surgery to reproduce more advanced pulmonary vascular lesions.
     Methods:Right pulmonary artery was ligated through a right posterolateral thoracotomy; subsequently, a cervical shunt was established one week later. Immediate and chronic effects on pulmonary hemodynamics were evaluated through right heart catheterization immediately after and an interval of8,12weeks. Morphological changes in pulmonary vasculature were analyzed after staining with hematoxylin-eosin and modified Weighert's method. Right ventricular hypertrophy index and artery blood gas analysis were also calculated and performed.
     Results:Pulmonary hypertensive status was successfully induced immediately after cervical surgery and progressively aggravated into a borderline state with the course advancing. Pulmonary vasculopathy demonstrated a transition from reversibility (muscularization, intimal proliferation-grade one, two) at the8th week to irreversibility (intimal fibrosis, entirely luminal occlusion-grade three) at the12week. Conspicuous right ventricular hypertrophy and descending partial arterial pressure of oxygen were also observed.
     Conclusions:This shunt-related model successfully simulated a hypertensive status in pulmonary circulation and reproduced the characteristic transition of pulmonary vasculopathy from reversibility to irreversibility within a relatively short period. Thus, this model may offer an alternative with low mortality and high reproducibility for investigations on the underling mechanisms of shunt-related PAH. PartⅡ:Secreted protein NBL1exerts a critical role in pulmonary arterial hypertension associated with systemic-to-pulmonary shunts
     Background:Proteins mainly expressed in normal lungs and characteristically changed in lungs suffering from systemic-to-pulmonary shunts will be useful research targets for pulmonary arterial hypertension in patients with congenital heart diseases(PAH/CHD). Thus, this study aimed to identify secreted proteins that significantly altered during the genesis and progression of PAH/CHD.
     Methods:An antibody microarrary procedure was performed to detect proteins whose plasma levels specifically changed in patients with congenital intracardiac shunts. Then, significantly changed proteins were identified and the target protein NBL1was determined. Real-time quantitative PCR (RT-PCR), western-blot analysis and immunohistochemistry were performed to further examine the expression changes and location of NBL1in lungs from patients and rats with systemic-to-pulmonary shunts; the potentially biological role of NBL1on HPASMCs and HPAECs proliferation were also explored. The plasma NBL1concentration in a set of120patients with or without PAH was assessed by a commercially available enzyme-linked immunosorbent assay.
     Results:The antibody microarrary procedure derived several proteins with s tatistically significant differences between patients with or without PAH. Secreted protein NBLl, which appeared as a valuable candidate for molecular markers of PAH, was selected for validation. Quantitative RT-PCR analysis revealed that NBL1was expressed with much higher specificity in normal lung tissues than in other systemic organ tissues, and the mRAN level was downregulated in a time-related modus in lungs suffering from systemic-to-pulmonary shunts; Western blot analysis revealed that NBL1was highly expressed in normal lung tissues and similarly a time-related reduction was also observed in pulmonary hypertensive lungs; Immunohistochemical analysis showed that NBL1was highly detected in normal lung tissues and was significantly down-regulated with the progression of PAH. Furthermore, NBL1could specially reverse the inhibitory effect of BMP2/4on HPASMCs and HPAECs proliferation; Elisa-kit also determined a detectable level of NBL1in the supernatants of culture media of the HPASMCs and HPAECs. Finally, plasma NBL1concentration was significantly downregulated according to the PAH/CHD stage.
     Conclusion:NBLl is a secreted protein that is highly and mainly expressed in lungs. Downregulation of NBL1correlated with the severity of PAH. NBL1might be a candidate biomarker and a novel therapeutic target for PAH/CHD.
引文
1. Runo JR, et al. Primary pulmonary hypertension. Lancet 2003; 361:1533-1544.
    2. Yamaki S, et al. Lung biopsy diagnosis of operative indication in Secundum arterial septal defect with sever pulmonary vascular disease. Chest 2004; 126(4):1042-1047.
    3. Marlene Rabinovitch, et al. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 2008;118:2372-2379.
    4. Orme NM, et al. Age-related changes among 25 patients with congenital cardiac left-to-right shunts and irreversible plexogenic pulmonary arteriopathy. Cardiovascular Pathology 2008;17:382-391.
    5. Liu YL, et al. Midterm results of arterial switch operation in older patients with sever pulmonary hypertension. Ann Thorac Surg 2010;90:848-55.
    6. Pietra GG, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. Journal of the American College of Cardiology 2004;43(12):25S-32S.
    7. Park K, et al. Transition from intravenous epoprostenol to oral or subcutaneous therapy in pulmonary arterial hypertension:A retrospective case series and systematic review. Can Respir J.2011;18(3):157-62.
    8. Park MH, et al. Usefulness of B-type natriuretic peptide as a predictor of treatment outcome in pulmonary arterial hypertension. Congest Heart Fail 2004;10:221-5.
    9. Leuchte H, et al. Characterization of brain natriuretic peptide in long-term follow-up of pulmonary arterial hypertension. Chest 2005;128:2368-74.
    10. Wilkins MR, et al. Sildenafil versus endothelin receptor Antagonist for pulmonary hypertension (SERAPH) Study. Am J Respir Crit Care Med 2005;171:1292-7.
    11. Torbicki A, et al. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 2003;108:844-8.
    12. Allanore Y, et al. N-terminal probrain natriuretic peptide as a diagnostic marker of early pulmonary artery hypertension in patients with systemic sclerosis and effects of calcium-channel blockers. Arthritis Rheum 2003;48:3503-8.
    13. Rubens C, et al. Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension. Chest 2001;120:1562-9.
    14. Girgis RE, et al. Decreased exhaled nitric oxide in pulmonary arterial hypertension: response to bosentan therapy. Am J Respir Cirt Care Med 2005:172:352-7.
    15. Sakamaki F, et al. Increase in thrombomodulin concentrations after pulmonary thromboend arterctomy in chronic thromboembolic pulmonary hypertenion. Chest 2003;124:1305-11.
    16. Shitrit D, et al. Significance of a plasma D-dimer test in patients with primary pulmonary hypertension. Chest 2002;122:1674-8.
    17. Humbert M, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Cirt Care Med 1995;151:1628-31.
    18. Kimura H, et al. Plasma monocyte chemoattractant protein-1 and pulmonary vascular resistance in chronic thromboembolic pulmonary hypertension. Am J Respir Cirt Care Med 2001;164:319-24.
    19. Tajsic T, et al. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2011;1:295-317.
    20. Manetti M, et al. A genetic variation located in the promoter region of the UPAR(CD87) gene is associated with the vascular complication of systemic scleroiss. Arthritis& Rheumatism 2011;63(1):247-256
    21. Quintero PA, et al. Matrix Metalloproteinase-8 inactivates macrophage inflammatory protein-la to reduce acute lung inflammation and injury in mice. J Immunol 2010;184;1575-1588.
    22. Jung K, et al. Matrix Metalloproteinase-8 and tissue inhibitor of metalloproteinase-1 in serum do not reflect the analytes circulating in blood. Arterioscler Thromb Vasc Biol 2008,28:el5-el6.
    23. Hanaoka E, et al. Overexpression of DAN Causes a Growth Suppression in p53-Deficient SAOS-2 Cells. Biochemical and Biophysical Research Communications 2000;278:20-26.
    24. Xiong M, Yao JP, Wu ZK, Liao B, Liang YJ, Zhang X, et al. Fibrosis of pulmonary vascular remodeling in carotid artery-jugular vein shunt pulmonary artery hypertension model of rats. Eur J Cardiothoracic Surg 2012;41(1):162-166.
    25. Li XH, Jin HF, Bin G, Wang L, Tang C, Du J. Endogenous hydrogen sulfide regulates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Exp Biol Med 2009; 234(5):504-512.
    26. Fullerton DA, Mitchell MB, Jone DN, Maki A, Mcintyre RC Jr. Pulmonary vasomotor dysfunction is produced with chronically high pulmonary blood flow. J Thorac Cardiovasc Surg 1996; 111 (1):190-197.
    27. Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S, et al. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 2012;33(8):1017-26.
    28. Wang W, Liu R, Cao G, Zhang F, Zhang Y, Zhang Z, et al. A reliable rabbit model for hyperkinetic pulmonary hypertension. J Thorac Cardiovasc Surg 2010;140(2):395-399.
    29. Reddy VM, Meyrick B, Wong J, Khoor A, Liddicoat JR, Hanley FL, et al. In utero placement of aortapulmonary shunts. A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation 1995;92(3):606-613.
    30. Gorenflo M, Herpel E, Ullmann MV, Rohlig K, Demirakca S, Klimpel H, et al. Pulmonary vascular changes in piglets with increased pulmonary blood flow and pressure. Virchow Arch 2007;450(6):643-52.
    1. Bai Y, Sun L, Hu S, Wei Y. Combination therapy in pulmonary arterial hypertension: a meta-analysis. Cardiology 2011;120(3):157-165.
    2. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43(12 Suppl S):13S-24S.
    3. Voelkel NF, Tuder RM, Weir EK. Pathophysio logy of primary pulmonary hypertension. In:Rubin L, Rich S, eds. Primary pulmonary hypertension. New York: MarcelDekker,1997:83-129.
    4. Xiong M, Yao JP, Wu ZK, Liao B, Liang YJ, Zhang X, et al. Fibrosis of pulmonary vascular remodeling in carotid artery-jugular vein shunt pulmonary artery hypertension model of rats. Eur J Cardiothoracic Surg 2012;41(1):162-166.
    5. Li XH, Jin HF, Bin G, Wang L, Tang C, Du J. Endogenous hydrogen sulfide regulates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Exp Biol Med 2009; 234(5):504-512.
    6. Fullerton DA, Mitchell MB, Jone DN, Maki A, Mcintyre RC Jr. Pulmonary vasomotor dysfunction is produced with chronically high pulmonary blood flow. J Thorac Cardiovasc Surg 1996;111 (1):190-197.
    7. Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S, et al. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 2012;33(8):1017-26.
    8. Wang W, Liu R, Cao G, Zhang F, Zhang Y, Zhang Z, et al. A reliable rabbit model for hyperkinetic pulmonary hypertension. J Thorac Cardiovasc Surg 2010;140(2):395-399.
    9. Reddy VM, Meyrick B, Wong J, Khoor A, Liddicoat JR, Hanley FL, et al. In utero placement of aortapulmonary shunts. A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation 1995;92(3):606-613.
    10. Gorenflo M, Herpel E, Ullmann MV, Rohlig K, Demirakca S, Klimpel H, et al. Pulmonary vascular changes in piglets with increased pulmonary blood flow and pressure. Virchow Arch 2007;450(6):643-52.
    11. Sun P, Liu WL. Method for measuring pulmonary artery pressure by right cardiac catheter in rats. Acta Academiae Medicinae Sinicae 1984;6(6):465-467.
    12. Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease:a description of six grade of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 1958;18(4):533-547.
    13. Rabinovitch M, Haworth SG, Castaneda AR, Nadas AS, Reid LM. Lung biopsy in congenital heart disease:a morphometric approach to vascular disease. Circulation. 1978;58:1107-1122.
    14. Wagenvoort CA. Open lung biopsies in congenital heart disease for evaluation of pulmonary vascular disease. Predictive value with regard to corrective operability. Histopathology 1985; 9:417-36.
    15. Wagenvoort CA, Wagenvoort N, Draulans-Noe Y. Reversibility of plexogenic pulmonary arteriopathy following banding of the pulmonary artery. J Thorac Cardiovasc Surg 1984;87:876-86.
    16. Oka M, Fagan KA, Jones PL, McMurtry IF. Therapeutic potential of rhoa/rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 2008;155(4):444-454.
    17. Tenmark KR, McMurtry IF. Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension:a time for reappraisal? Circ Res 2005;97(2):95-98.
    18. McLoughlin P, McMurtry I. Counterpoint:chronic hypoxia-induced pulmonary hypertension does not lead to loss of pulmonary vasculature. J Appl Physiol 2007;103(4):1451-1453; discussion 1453-1454.
    19. Rabinovitch M, Chesler N, Molthen RC. Point:Counterpoint:chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. J Appl Physiol 2007;103(4):1449-1451.
    20. Itoh T, Nagaya N, Fujii T, Iwase T, Nakanishi N, Hamada K, et al. A combination of oral sildenafil and beraprost ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med 2004;169(1):34-38.
    21. Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, et al. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J Clin Invest 2000; 105(11):1555-1562.
    22. Bauer NR, Moore TM, McMurtry IF. Rodent models of PAH:Are we there yet? Am J Physiol Lung Cell Mol Physiol 2007;293(2):L580-582.
    23. Voelkel NF, Tuder RM. Hypoxia-induced pulmonary vascular remodeling:A model for what human disease? J Clin Invest 2000;106(6):733-738.
    24. Zaiman A, Fijalkowska I, Hassoun PM, Tuder RM. One hundred years of research in the pathogenesis of pulmonary hypertension. Am J Respir Cell Mol Biol 2005;33(5):425-431.
    1. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet 2003;361:1533-44.
    2. Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV, Wheeler L, Phillips Iii JA, Newman J, Williams D, Galie N, Manes A, McNeil K, Yacoub M, Mikhail G, Rogers P, Corris P, Humbert M, Donnai D, Martensson G, Tranebjaerg L, Loyd JE, Trembath RC, Nichols WC. Bmpr2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 2001;68:92-102.
    3. Morty RE, Nejman B, Kwapiszewska G, Hecker M, Zakrzewicz A, Kouri FM, Peters DM, Dumitrascu R, Seeger W, Knaus P, Schermuly RT, Eickelberg O. Dysregulated bone morphogenetic protein signaling in monocrotaline-induced pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2007;27:1072-1078.
    4. Takahashi K, Kogaki S, Matsushita T, Nasuno S, Kurotobi S, Ozono K. Hypoxia induces alteration of bone morphogenetic protein receptor signaling in pulmonary artery endothelial cell. Pediatr Res 2007;61:392-397.
    5. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim D-K, Morrell NW. Altered bone morphogenetic protein and transforming growth factor-{beta} signaling in rat models of puhnonary hypertension:Potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circ 2009; 119:566-576.
    6. Enomoto H, Ozaki T, Takahashi E, Nomura N, Tabata S, Takahashi H, Ohnuma N, Tanabe M, Iwai J, Yoshida H, Matsunaga T, Sakiyama S. Identification of human DAN gene, mapping to the putative neuroblastoma tumor suppressor locus. Oncogene 1994;9:2785-2791.
    7. Ozaki T, Sakiyama S. Molecular cloning and characterization of a cDNA showing negative regulation in v-src-transformed 3Y1 rat fibroblasts. Proc Natl Acad Sci 1993;90:2593-2597.
    8. Ozaki Toshinori, Nakamura Y, Enomoto H, Hirose M, Sakiyama S. Overexpression of DAN gene product in normal rat fibroblasts causes a retardation of the entry into the S phase. Cancer Res 1995;55:895-900.
    9. Taisic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2011;1:295-317.
    10. Meng, LK, Liu XY, Zheng Z, Li J, Meng J, Wei YJ, Hu SS. Original rat model of high kinetic unilateral pulmonary hypertension surgically induced by combined surgery. J Thorac Cardiovasc Surg 2013;-:1-7
    11. Sun P, Liu WL. Method for measuring pulmonary artery pressure by right cardiac catheter in rats. Acta Academiae Medicinae Sinicae 1984;6(6):465-467.
    12. Fadel E, Michel RP, Eddahibi S, Bernatchez R, Mazmanian GM, Baudet B, Dartevelle P, Herve P. Regression of postobsructive vasculopathy after revascularization of chronically obstructed pulmonary artery. J Thorac Cardiovasc Surg 2004;127(4):1009-17.
    13. Reddy VM,Meyrick B,Wong J, Khoor A, Liddicoat JR, Hanley FL, et al. In utero placement of aortopulmonary shunts:a model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circ 1995;92:606-13.
    14. Gabbiani G, Schmid E, Winter S, Chaponnier C, De Chastonay C, Vandekerckhove J, Weber K, Franke W. Vascular smooth muscle cells differ from other smooth muscle cells:Predominance of vimentin filaments and a specific-type actin. Proc Natl Acad Sci 1981;78:298-300.
    15. Galis ZS, Johnson C, Godin D, Magid R, Shipley JM, Senior RM, Ivan E. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 2002; 91:852-859.
    16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ. Recommendations for chamber quantification:a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr.2005;18(12):1440-63.
    17. Takatsuki S, Nakayama T, Jone PN, Wagner BD, Naoi K, Ivy DD, Saji T. Tissue Doppler imaging predicts adverse outcome in children with idiopathic pulmonary arterial hypertension. J Pediatr 2012;161:1126-31.
    18. Howard LS, Grapsa J, Dawson D, Bellamy M, Chambers JB, Masani ND, Nihoyannopoulos P, Gibbs JSR. Echocardiographic assessment of pulmonary hypertension:standard operating procedure. Eur Respir Rev 2012;21(125):239-248.
    19. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. Echocardiographic determination of mean pulmonary artery pressure. Am J Cardiol 2003;92:1373-1376.
    20. Yang J, Li X, Al-Lamki RS, Southwood M, Zhao J, Lever AM, Grimminger F, Schermuly RT, Morrell NW. Smad-dependent and smad-independent induction of idl by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Cir Res 2010;107(2):252-262.
    21. Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, Olschewshi H, Elliott CG, Glissmeyer E, Carlquist J, Kim M, Torbicki A, Fijalkowska A, Szewcyk G, Parma J, Abramowicz MJ, Galie N, Morisaki H, Kyotani S, Nakanishi N, Morisaki T, Humbert M, Simonneau G, Sitbon O, Soubrier F, Coulet F, Morrell NW, Trembath RC. Mutations of the TGF-βtype Ⅱ receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 2006;27(2):121-132.
    22. Atkinson C, Stewart S, Upton PD, et al. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type Ⅱ bone morphogenetic protein receptor. Circ 2002;105:1672-8.
    23. Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease: a description of six grade of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circ 1958;18(4):533-547.
    24. Rabinovitch M, Haworth SG, Castaneda AR, Nadas AS, Reid LM. Lung biopsy in congenital heart disease:a morphometric approach to vascular disease. Circ 1978;58:1107-1122.
    25. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009;54(suppl):S43-54.
    26. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009;179:615-621.
    27. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-Ⅱ gene. Am J Hum Genet 2000;67:737-744.
    28. International PPH Consortium, Lane KB,Machado RD, PauciuloMW, Thomson JR, Phillips JA Ⅲ, Loyd JE, Nichols WC, Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 2000;26:81-84.
    29. Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC, Nichols WC. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-Ⅱ, a receptor member of the TGF-beta family. J Med Genet 2000; 37:741-745.
    30. Roberts KE, McEIroy JJ, Wong WPK, Yen E, Widlitz A, Barst RJ, Knowles JA and Morse JH. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 2004;24:271-374.
    31. Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54(Suppl 1):S20-S31.
    32. Atkinson C, Stewart S, Upton PD,Machado R, Thomson JR, Trembath RC, Morrell NW. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type Ⅱ bone morphogenetic protein receptor. Circ 2002; 105: 1672-1678.
    33. Stanley E, Biben C, Kotecha S, Fabri L, Tajbakhsh S, Wang C-C, Hatzistavrou T, Roberts B, Drinkwater C, Lah M, Buckingham M, Hilton D, Nash A, Mohun T, Harvey RP. DAN is a secreted glycoprotein related to Xenopus Cerberus. Mech Develop 1998;77:173-184.
    34. Nakamura Y, Ozaki T, Ichimiya S, Nakagawara A, Sakiyama S. Ectopic expression of DAN enhances the retinoic acid-induced neuronal differentiation in human neuroblastoma cell lines. Biochem Biophys Res Commun 1998;243(3):722-726.
    35. Hanaoka E, Ozaki T, Nakamura Y, Moriya H, Nakagawara A, Sakiyama S. Overexpression of DAN causes a growth suppression in p53-deficient SAOS-2 cells. Biochem Biophys Res Commun 2000;278(1):20-26.
    36. Shinbo J, Ozaki T, Nakagawa T, Watanabe K, Nakamura Y, Yamazaki M et al. p73-dependent expression of DAN during cisplatin-induced cell death and osteoblast differentiation. Biochem Biophys Res Commun.2002;295(2):501-507.
    37. Ozaki T, Nakamura Y, Enomoto H, Hirose M, Sakiyama S. Overexpression of DAN gene product in normal rat fibroblasts causes a retardation of the entry into the S phase. Cancer Res 1995;55:895-900
    38. Enomoto H, Ozaki T, Takahashi E, Nomura N, Tabata S, Takahashi H, Ohnuma N, Tanabe M, Iwai J, Yoshida H, Matsunaga T, Sakiyama S. Identification of human DAN gene. Mapping to the putative neuroblastoma tumor suppressor locus. Oncogene 1994;9:2785-2791
    39. Hung WT, Wu FJ, Wang CJ, Luo CW. DAN (NBL1) specifically antagonizes BMP2 and BMP4 and modulates the actions of GDF9, BMP2 and BMP4 in the rat ovary. Biol Reprod.2012;86(5):158,1-9.
    40. Kim AS, Pleasure SJ. Expression of the BMP antagonist Dan during murine forebrain development. Brain Res Dev BrainRes.2003;145(1):159-162.
    1. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet 2003;361:1533-1544.
    2. Galie N, Rubin L:Pulmonary arterial hypertension:epidemiology, pathobiology, assessment and therapy. J Am Coll Cardiol 2004; 43:S1-S90.
    3. Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV, Wheeler L, Phillips Iii JA, Newman J, Williams D, Galie N, Manes A, McNeil K, Yacoub M, Mikhail G, Rogers P, Corris P, Humbert M, Donnai D, Martensson G, Tranebjaerg L, Loyd JE, Trembath RC, Nichols WC. Bmpr2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 2001;68:92-102.
    4. Morty RE, Nejman B, Kwapiszewska G, Hecker M, Zakrzewicz A, Kouri FM, Peters DM, Dumitrascu R, Seeger W, Knaus P, Schermuly RT, Eickelberg O. Dysregulated bone morphogenetic protein signaling in monocrotaline-induced pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2007;27:1072-1078.
    5. Takahashi K, Kogaki S, Matsushita T, Nasuno S, Kurotobi S, Ozono K. Hypoxia induces alteration of bone morphogenetic protein receptor signaling in pulmonary artery endothelial cell. Pediatr Res 2007;61:392-397.
    6. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim D-K, Morrell NW. Altered bone morphogenetic protein and transforming growth factor-{beta} signaling in rat models of pulmonary hypertension:Potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circ 2009; 119:566-576.
    7. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-Ⅱ gene. Am J Hum Genet 2000;67:737-744.
    8. International PPH Consortium, Lane KB,Machado RD, PauciuloMW, Thomson JR, Phillips JA Ⅲ, Loyd JE, Nichols WC, Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 2000;26:81-84.
    9. Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC, Nichols WC. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 2000; 37:741-745.
    10. Roberts KE, McEIroy JJ, Wong WPK, Yen E, Widlitz A, Barst RJ, Knowles JA and Morse JH. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 2004;24:271-374.
    11. Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54(Suppl 1):S20-S31.
    12. Atkinson C, Stewart S, Upton PD,Machado R, Thomson JR, Trembath RC, Morrell NW. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type Ⅱ bone morphogenetic protein receptor. Circ 2002; 105: 1672-1678.
    13. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M:Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13S-24S.
    14. Budhiraja R, Tuder RM, Hassoun PM:Endothelial dysfunction in pulmonary hypertension. Circulation 2004;109:159-165.
    15. Humbert M, Sitbon O, Simonneau G:Treatment of pulmonary arterial hypertension. N Engl J Med 2004; 351:1425-1436.
    16. Hoeper MM, Markevych I, Spiekerkoetter E, Welte T, Niedermeyer J: Goal-oriented treatment and combination therapy for pulmonary arterial hypertension. Eur Respir J 2005;26:858-863.
    17. Chou TF, Wu MS, Chien CT, Yu CC, Chen CF. Enhanced expression of nitric oxide synthase in the early stage after increase pulmonary blood flow in rats. Eur J Cardiothorac Surg 2002;21:331-336.
    18. Xiong M, Yao JP, Wu ZK, Liao B, Liang YJ, Zhang X, Wang ZP. Fibrosis of pulmonary vascular remodeling in carotid artery-jugular vein shunt pulmonary artery hypertension model of rats. Eur J Cardiothorac Surg 2012; 41(1):162-166.
    19. Zhao C, Wang L, Gao L, Xia W, Wang Z, Li F. Changes and distributions of prptides derived from proadrenomedullin in left-to-right shunt pulmonary hypertension of rats. Circ J 2008; 72:476-481.
    20. Jouannic JM, Roussin R, Hislop AA, Lanone S, Martinovic J, Boczkowski J, Dumez Y, Dinh-Xuan T. Systemic arteriovenous fistula leads to pulmonary artery remodeling and abnormal vasoreactivity in the fetal lamb. Am J Physiol Lung Cell Mol Physiol 2003;285:L701-L709.
    21. Benachi A, Jouannic JM, Barlier-Mur AM, Chailley-Heu B, Bourbon JR. Surfactant phospholipids and proteins are increased in fetal sheep with pulmonary hypertension secondary to fetal systemic arteriovenous fistula. Am J Physiol Lung Cell Mol Physiol 2005;288:L562-L568.
    22. Li X, Jin H, Bin G, Wang L, Tang C, Du J. Endogenous hydrogen sulfide regulates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Experimental Biology and Medicine 2009;234:504-512.
    23. Habre W, Albu G, Janosl Tibor Z, Fontao F, von Ungern-Sternberg BS, Beghetti M, Petak F. Prevention of bronchial hyperreactivity in a rat model of precapillary pulmonary hypertension. Respiratory Research 2011,12:58
    24. von Ungern-Sternberg BS, Harbre W, Regli A, Pache JC, Fontao F, Janosi TZ, Beghetti M, Petak F. Precapillary pulmonary hypertension leads to reversible bronchial hyperreactivity in rats. Experimental Lung Research 2010;36:129-139.
    25. Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in rats. Cardiovascular research 1989; 24(5):430-432.
    26. Lam CF, Peterson TE, Croatt AJ, Nath KA, Katusic ZS. Functional adaptation and remodeling of pulmonary artery in flow-induced pulmonary hypertension. Am J physiol Heart Circ Physiol 2005;289:H2334-H2341.
    27. Qi J, Du J, Tang X, Li J, Wei B, Tang C. The upregulation of endothelial nitric oxide synthase and urotensin-II is associated with pulmonary hypertension and vascular diseases in rats produced by aortocaval Shunting. Heart Vessels 2004;19:81-88.
    28. Du J, Yan H, Wei B, Li J, Qi J, Tang C. Effect of L-Arginine on collagen of high flow-induced pulmonary arterial remodeling. Circ J 2005;69:603-608.
    29. Li X, Du J, Shi L, Li J, Tang X, Qi J, Wei B, Jin H, Tang C. Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow rats. Circ J 2005; 69:1418-1424.
    30. Wang Y, Shi L, Du J, Tang C. Impact of L-arginine on hydrogen sulfidecystathionine-y-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochemical and Biophysical Research Communications 2006;345: 851-857.
    31. Dai ZK, Tan MS, Chai CY, Chen IJ, Jeng AY, Wu JR. Effects of increased pulmonary flow on the expression of endothelial nitric oxide synthase and endothelin-1 in the rat. Clinical Science 2002;103(Suppl.48):289S-293S.
    32. Ono M, Sawa Y, Matsumoto K, Nakamura T, Kaneda Y, Matsuda H. In vivo gene transfection with hepatocyte growth factor via the pulmonary artery induces angiogenesis in the rat lung. Circulation 2002;106:1264-9
    33. Ono M, Sawa Y, Fukushima N, Suhara H, Nakamura T, Yokoyama C, Tanabe T, Matsuda H. Gene transfer of hepatocyte growth factor with prostacyclin synthase in severe pulmonary hypertension of rats. Eur J Cardiothorac Surg 2004;26:1092-7.
    34. Yasuda S, Noguchi T, Gohda M, Arai T, Tsutsui N, Matsuda T, Nonogi H. Single low-dose administration of human recombinant hepatocyte growth factor attenuates intimal hyperplasia in a balloon-injured rabbit iliac artery model. Circulation 2000;101:2546-9.
    35. Ono M, Sawa Y, Mizuno S, Fukushima N, Ichikawa H, Bessho K, Nakamura T, Matsuda H. Hepatocyte growth factor suppresses vascular medial hyperplasia and matrix accumulation in advanced pulmonary hypertension of rats. Circulation 2004; 110:2896-902.
    36. Kiyohisa H, Naoyuki S, Yasuhiro T, Hirohito T, Kentarou S, Ryouzo K, Kou A, Hiroko K, Kenkichi M. Recombinant human hepatocyte growth factor improves monocrotaline-induced pulmonary hypertension. Circ J 2007;71:681.
    37. Doi K, Tabata Y, Marui A, Kushibiki T, Yanazume T, Hasegawa K, Ikeda T, Nishimura K, Komeda M. Hepatocyte growth factor (HGF) or basic fibroblast growth factor (bFGF) prevents progression of monocrotaline (MCT) induced pulmonary hypertension in rats. Jpn J Transplant 2003;38:297.
    38. Long X, Xiong S, Xiong W, Xu Y. Effect of intramuscular injection of hepatocyte growth factor plasmid DNA with electroporation on bleomycin-induced lung fibrosis in rats. Chin Med J Chin Med J (Engl) 2007;120:1432-7.
    39. Fullerton DA, Mitchell MB, Jones DN, et al. Pulmonary vasomotor dysfunction is produced with chronically high pulmonary blood flow. J Thorac Cardiovasc Surg 1996;111:190-197.
    40. Jaffe RB, Orsmond GS, Veasy LG. Inadvertent ligation of the left pulmonary arteriy. Radiology 1986;161:355-357.
    41. Vitvitsky EV, Griffin JP, Collins MH, Spray TL, Gaynor JW. Increased pulmonary blood flow produces endothelial cell dysfunction in neonatal swine. Ann Thorac Surg 1998;66:1372-1377.
    42. Jungebluth P, Ostertag H, Macchiarini P. An experimental animal model of postobstructive pulmonary hypertension. Journal of Surgical Research 2008;147(1):75-78.
    43. Meng, LK, Liu XY, Zheng Z, Li J, Meng J, Wei YJ, Hu SS. Original rat model of high kinetic unilateral pulmonary hypertension surgically induced by combined surgery. J Thorac Cardiovasc Surg 2013;-:1-7.
    44. Wang W, Liu R, Cao G, Zhang F, Zhang Y, Zhang Z, Wu S. A reliable rabbit model for hyperkinetic pulmonary hypertension. J Thorac Cardiovasc Surg 2010;140:395-9
    45. Warnecke I, Bucherl ES. The experimental production of a persistent ductus arteriosus for testing catheter closure devices. Ann Thorac Suig 1985;39:441-444.
    46. Fike CD, Kaplowitz MR, Bousamra Ⅱ M. eNOS and prostanoid enzymes in lungs of newborn piglets with chronic aortopulmonary shunts. Am J Physiol Lung Cell Mol Physiol 2001;281:L475-L482.
    47. Mercier O, Sage E, de Perrot M, Tu L, Marcos E, Decante B, Baudet B, Herve P, Dartevelle P, Eddahibi S, Fadel E. Regression of flow-induced pulmonary arterial vascualopathy after flow correction in piglets. J Thorac Cardiovasc Surg 2009;137(6):1538-46.
    48. Mercier O, Sage E, Izziki M, Humbert M, Dartevelle P, Eddahibi S, Fadel E. Endothelin A receptor blockade improves regression of flow-induced pulmonary vasculopathy in piglets. J Thorac Cardiovasc Surg 2010;140:677-83.
    49. Reddy VM, Meyrick B, Wong J, Khoor A, Liddicoat JR, Hanley FL, Fineman JR. In utero placement of aortopulmonary shunts A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation. 1995;92:606-613.
    50. Ovadia B, Reinhartz O, Fitzgerald R, Bekker JM, Johengen MJ, Azakie A, Thelitz S, Black SM, Fineman JR. Alterations in ET-1, not nitric oxide, in 1-week-old lambs with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 2003;284:H480-H490.
    51. Sharma S, Kumar S, Sud N, Wiseman DA, Tian J, Rehmani I, Datar S, Peter 0, Fratz S, Venema RC, Fineman JR, Black SM. Alterations in lung arginine metabolism in lambs with pulmonary hypertension associated with increased pulmonary blood flow. Vascul Pharmacol.2009; 51(5-6):359-364.
    52. Mata-Greenwood E, Meyrick B, Steinhorn RH, Fineman JR, Black SM. Alterations in TGF-β1 expression in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2003;285:L209-L221.
    53. Black SM, Bekker JM, Mcmullan DM, Parry AJ, Ovadia B, Reinhartz O, Lakshminrushimha S, Mata-Greenwood E, Steinhorn RH, Fineman JR. Alterations in nitric oxide production in 8-week-old lambs with increased pulmonary blood flow. Pediatr Res 2002;52:233-244.
    54. Black SM, Mata-Greenwood E, Dettman RW, Ovadia B, Fitzgerald RK, Reinhartz O, Thelitz S, Steinhorn RH, Gerrets R, Hendricks-Munoz K, Ross GA, Bekker JM, Johengen MJ, Fineman JR. Emergence of smooth muscle cell endothelin B-mediated vasoconstriction in lambs with experimental congenital heart disease and increased pulmonary blood flow. Circulation 2003; 108:1646-1654.
    55. Rendas A, Lennox S, Reid L. Aorta-pulmonary shunts in growing pigs. Functional and structional assessment of the changes in the pulmonary circulation. J Thorac Cardiovasc Surg 1979; 77:109-118.
    56. Wang ZP, Zeng YH, Sun PW, Tong CW, Zhang X. Rabbit model of highkinetic one-sided pulmonary hypertension induced by Pott's operation. Cardiovascular Surgery 2002;10:134-137(4).
    57. Bou samra ⅡM, Rossi R, Jacobs E, Parviz M, Bus ch C, Nelin LD, Haworth S, Dawson CA. Systemic lobar shunting induces advanced pulmonary vasculopathy. J Thorac Cardiovasc Surg 2000;120:88-98.
    58. Medhora M, Bousamra ⅡM, Zhu D, Somberg L, Jacobas ER. Upregulation of collagens detected by gene array in a model of flow-induced pulmonary vascular remodeling. Am J Physiol Heart Circ Physiol 2002;282:H414-H422.
    59. Corno AF, Tozzi P, Genton CY, von Segesser LK. Surgically induced unilateral pulmonary hypertension:time-related analysis of a new experimental model. European Journal of Cardio-thoracic Surgery 2003;23:513-517.
    60. Loukanov T, Geiger R, Agrawal R. Animal models related to congenital heart disease and clinical research in pulmonary hypertension. Cardiology 2010;116:18-25
    61. Gorenflo M, Herpel E, Ullmann MV, Rohlig K, Demirakca S, Klimpel H, Hagl S, Gebhard MM, Schnabel PA. Pulmonary vascular changes in piglets with increased pulmonary blood flow and pressure. Virchows Arch 2007; 450:643-652.
    62. Rondelet B, Kerbaul F, Motte S, van Beneden R, Remmelink M, Brimioulle S, McEntee K, Wauthy P, Salmon I, Ketelslegers JM, Naeije R. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation 2003;107:1329-1335.
    63. Rondelet B, Kerbaul F, Beneden RV, Hubloue I, Huez S, Fesler P, Remmelink M, Brimioulle S, Salmon I, Naeije R. Prevention of pulmonary vascular remodeling and of decreased BMPR-2 expression by losartan therapy in shunt-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2005;289:H2319-H2324.
    64. Rondelet B, Beneden RV, Kerbaul F, Fesler P, Mcentee K, Brimioulle S, Ketelslegers JM, Naeije R. Expression of the serotonin lb receptor in experimental pulmonary hypertension. Eur Respir J 2003; 22:408^412.
    65. Rondelet B, Kerbaul F, Van Beneden R, Motte S, Fesler P, Hubloue I, Remmelink M, Brimioulle S, Salmon I, Ketelslegers JM, Naeije R. Signaling molecules in overcirculation-induced pulmonary hypertension in piglets:effects of sildenafil therapy. Circulation 2004;110:2220-2225.
    66. Rondelet B, Kerbaul F, Vivian GF, Hubloue I, Huez S, Fesler P, Remmelink M, Brimiouille S, Salmon I, Naeije R. Sitaxsentan for the prevention of experimental shunt-induced pulmonary hypertension. Pediatr Res 2007;61:284-288.
    67. Rondelet B, Dewachter L, Kerbaul F, Dewachter C, Hubloue I, Fesler P, Franck S, Remmelink M, Brimioulle S, Naeije R. Sildenafil added to sitaxsentan in overcirculation-induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2010;299:H1118-H1123.
    68. Rondelet B, Dewachter C, Kerbaul F, Kang X, Fesler P, Brimioulle S, Naeije R, Dewachter L. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 2012;33(8):1017-1026.
    69. van Albada ME, Schoemaker RG, Kemna MS, Cromme-Dijkhuis AH, van Veghel R, Berger RMF. The role of increased pulmonary blood flow in pulmonary arterial hypertension. Eur Respir J 2005;26:487-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700