鞘氨醇激酶-1的乙酰化修饰及在糖尿病防治中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鞘氨醇激酶1(Sphingosine Kinase1)SPK1是鞘磷脂代谢中的关键酶,参与了多种细胞生命活动。对SPK1的蛋白序列进行分析发现,其N-端含有一个保守的GKGK结构域,该结构域出现在多种发生乙酰化修饰的蛋白序列中,是一个公认的乙酰化修饰结构域,其中的K是发生乙酰化修饰的位点。据此,推断SPK1可能发生乙酰化修饰。首先,将Flag-SPK1转染到HEK293细胞,用Flag-M2珠子将SPK1沉淀下来,用抗ace-Lys抗体杂交,检测到乙酰化的SPK1。其次,沉淀产物与p300及乙酰CoA共同孵育后用抗ace-Lys抗体杂交,结果显示p300能增强SPK1的乙酰化。以上结果说明SPK1是一个乙酰化修饰蛋白,可被p300乙酰化。将SPK1蛋白GKGK结构域中的两个K均突变为R或Q,并转染HEK293细胞,经G418筛选后获得稳定表达野生型W-SPK1及突变体R-SPK1、Q-SPK1蛋白的细胞系。我们发现稳定表达W-SPK1的细胞检测到SPK1蛋白的乙酰化,而R-SPK1没有检测到乙酰化,揭示SPK1乙酰化发生在其GK结构域的K上。
     SPK1蛋白的这种翻译后修饰可能是其蛋白功能的一种重要的调控方式。实验结果表明,SPK1乙酰化修饰后其稳定性增强;将GKGK结构域中的两个K突变为R或Q,封闭了SPK1的泛素化修饰,避免了被蛋白酶体降解。细胞形态上,稳定表达Q-SPK1的细胞与表达W-SPK1及R-SPK1的细胞相比体积变大,但细胞生长速度变慢;流式分析细胞周期发现,稳定表达Q-SPK1的细胞处于S期的细胞明显增多,G2期的则减少,表明Q-SPK1阻断细胞由S期向G2/M期的进程。综上,SPK1乙酰化在调控细胞生长、大小及细胞周期中有重要作用。
     在体外实验基础上,以自发性2型糖尿病KK/Ay小鼠为动物模型,灌胃给予携带野生型及突变体spk1基因的减毒沙门氏菌,在动物整体水平评价SPK1乙酰化修饰对糖尿病动物血糖的调节作用。结果显示,口服携带Q-SPK1质粒的减毒沙门氏菌可以降低2型糖尿病小鼠KK/Ay的血糖,改善2型糖尿病小鼠的葡糖糖耐受能力。SPK1治疗3周后,Q-SPK1治疗组小鼠的体重明显减轻。Q-SPK1对2型糖尿病并发的多种脏器损伤如肝脏、胰腺等有较明显的保护作用。
     另外,采用糖尿病大鼠皮肤损伤模型,研究SPK1对糖尿病性皮肤溃疡的治疗作用。实验结果显示,SPK1对糖尿病皮肤损伤具有明显的促愈合作用。
Sphingosine kinase1(SPK1) is a key enzyme in sphingolipid metabolism. Weanalyzed the amino acid sequences of SPK1and found that SPK1contained aconserved GK motif that is found in many acetylated proteins, suggesting that SPK1may be acetylated under certain conditions. We determined frstly whether SPK1might be acetylated in vivo. Flag-tagged SPK1(Flag-SPK1) was transfected intoHEK293cells and then cell lysates were immunoprecipitated with Flag M2beads.The immunoprecipitation (IP) products were subjected to Western blot analysis.Acetylated SPK1was detected. For in vitro acetylation assay, the IP products wereincubated with or without p300acetyltransferase in the presence of acetyl-CoA.Incubation with p300acetyltransferase resulted in an increased amount of acetylatedSPK1. Therefore, SPK1could be acetylated both in vivo and in vitro. Next wedetermined whether the two lysine residues in the GK motif of SPK1were acetylated.To do so, the two K in the GK motif of SPK1were mutated either to R or Q, whichwe termed as R-SPK1or Q-SPK1. SPK1acetylation was found only in W-SPK1, butnot in R-SPK1, suggesting that SPK1is acetylated at one or t wo lysines in itsconserved GK motif.
     This post-translational protein modification of SPK1may be an importantregulation of protein function.Our result showed that acetylation increases SPK1stability. When the two K in the GK motif of SPK1were mutated to R or Q, theubiquitination of SPK1was blocked, which prevented its degradation. These resultsindicated that the processes of acetylation and ubiquitination that involve SPK1compete for the same sites on the two lysine residues in the SPK1GK motif and thatacetylation stabilizes the SPK1protein by block its ubiquitination. Then weinvestigated the effects of SPK1acetyaltion on cell function. The Q-SPK1stablyexpressed cells show a signifcantly larger size when compared with the parentalHEK293cells and with the W-SPK1and R-SPK1stably expressed cells. However,the growth rate of these cells was reduced dramatically. Flow cytometry revealed thatthe proportion of cells in S-phase was increased and the proportion of G2-/M-phasecells was reduced markedly in Q-SPK1stably expressed cells, in comparison to the other cells. Thisfnding indicated that SPK1acetyaltion plays important roles in cellgrowth, cell size and cell cycle progression.
     Furthermore, we investigated the effects of SPK1in spontaneous KK/Ay type2diabetic mice model using an attenuated salmonella-mediated gene transger approach.It was demonstrated that Q-SPK1could markedly improve blood glucose level andglucose tolerance. Besides, Q-SPK1also lightened body weight and protected againsthepatic and pancreatic organ injury.
     Also, we investigated the roles of SPK1in skin injury in streptozotocin(STZ)-induced diabetic rat model using plasmid pcDNA3-Flag-SPK1. The resultsshowed that SPK1promoted wound.
     In conclusion, ourfndings indicated that acetylation regulates SPK1proteinstability, and controls cell growth and cell-cycle progression. And acetylated SPK1can improve blood glucose of type2diabetic mice. And SPK1could significantlyimprove diabetes caused skin damage.
引文
[1]. Hubbert C, Guardiola A, Shao R, et al. HDAC6is a microtubule-associateddeacetylase. Nature.2002;417(6887):455-458.
    [2]. Xu A W, Kaelin C B, Takeda K, et al. PI3K integrates the action of insulin andleptin on hypothalamic neurons. J Clin Invest.2005;115(4):951-958.
    [3]. Zhao H, Przybylska M, Wu I H, et al. Inhibiting glycosphingolipid synthesisameliorates hepatic steatosis in obese mice. Hepatology.2009;50(1):85-93.
    [4]. Bijl N, Sokolovic M, Vrins C, et al. Modulation of glycosphingolipid metabolismsignificantly improves hepatic insulin sensitivity and reverses hepatic steatosis inmice. Hepatology.2009;50(5):1431-1441.
    [5]. van Eijk M, Aten J, Bijl N, et al. Reducing glycosphingolipid content in adiposetissue of obese mice restores insulin sensitivity, adipogenesis and reducesinflammation. PLoS One.2009;4(3):e4723.
    [6].Wang L, Xing X P, Holmes A, et al. Activation of the sphingosine kinase-signalingpathway by high glucose mediates the proinflammatory phenotype of endothelialcells. Circ Res.2005;97(9):891-899.
    [7]. Rapizzi E, Taddei M L, Fiaschi T, et al. Sphingosine1-phosphate increasesglucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci.2009;66(19):3207-3218.
    [8]. Yang G, Badeanlou L, Bielawski J, et al. Central role of ceramide biosynthesis inbody weight regulation, energy metabolism, and the metabolic syndrome. Am JPhysiol Endocrinol Metab.2009;297(1):E211-224.
    [9]. Ruzzin J, Wagman A S Jensen J. Glucocorticoid-induced insulin resistance inskeletal muscles: defects in insulin signalling and the effects of a sel ectiveglycogen synthase kinase-3inhibitor. Diabetologia.2005;48(10):2119-2130.
    [10]. Smal J De Meyts P. Sphingosine, an inhibitor of protein kinase C, suppresses theinsulin-like effects of growth hormone in rat adipocytes. Proc Natl Acad Sci U S A.1989;86(12):4705-4709.
    [11].Murray D K, Hill M E Nelson D H. Inhibitory action of sphingosine, sphinganineand dexamethasone on glucose uptake: studies with hydrogen peroxide andphorbol ester. Life Sci.1990;46(25):1843-1849.
    [12]. Arnold R S Newton A C. Inhibition of the insulin receptor tyrosine kinase bysphingosine. Biochemistry.1991;30(31):7747-7754.
    [13]. Shimizu H, Okajima F, Kimura T, et al. Sphingosine1-phosphate stimulatesinsulin secretion in HIT-T15c ells and mouse islets. Endocr J.2000;47(3):261-269.
    [14]. Hait N C, Allegood J, Maceyka M, et al. Regulation of histone acetylation in thenucleus by sphingosine-1-phosphate. Science.2009;325(5945):1254-1257.
    [15]. Hwang C S, Shemorry A Varshavsky A. N-terminal acetylation of cellularproteins creates specific degradation signals. Science.2010;327(5968):973-977.
    [16]. Panigrahi G B Rao A R. Study of the genotoxicity of the total aqueous extract ofbetel nut and its tannin. Carcinogenesis.1986;7(1):37-39.
    [17]. Mischerikow N Heck A J. Targeted large-scale analysis of protein acetylation.Proteomics.2011;11(4):571-589.
    [18]. Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by proteinlysine acetylation. Science.2010;327(5968):1000-1004.
    [19]. Lee J L, Wang M J Chen J Y. Acetylation and activation of STAT3mediated bynuclear translocation of CD44. J Cell Biol.2009;185(6):949-957.
    [20].Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets proteincomplexes and co-regulates major cellular functions. Science.2009;325(5942):834-840.
    [21]. Kleff S, Andrulis E D, Anderson C W, et al. Identification of a gene encoding ayeast histone H4acetyltransferase. J Biol Chem.1995;270(42):24674-24677.
    [22]. Roth S Y, Denu J M Allis C D. Histone acetyltransferases. Annu Rev Biochem.2001;70(81-120.
    [23].Waterborg J H. Dynamics of histone acetylation in vivo. A function foracetylation turnover? Biochem Cell Biol.2002;80(3):363-378.
    [24]. Lee K K Workman J L. Histone acetyltransferase complexes: one size doesn't fitall. Nat Rev Mol Cell Biol.2007;8(4):284-295.
    [25]. Bannister AJ, Miska E A, Gorlich D, et al. Acetylation of importin-alpha nuclearimport factors by CBP/p300. Curr Biol.2000;10(8):467-470.
    [26].Chan H M La Thangue N B. p300/CBP proteins: HATs for transcriptional bridgesand scaffolds. J Cell Sci.2001;114(Pt13):2363-2373.
    [27]. Taunton J, Hassig C A Schreiber S L. A mammalian histone deacetylase relatedto the yeast transcriptional regulator Rpd3p. Science.1996;272(5260):408-411.
    [28]. Blander G Guarente L. The Sir2family of protein deacetylases. Annu RevBiochem.2004;73(417-435.
    [29]. Yang X J Seto E. The Rpd3/Hda1family of lysine deacetylases: from bacteriaand yeast to mice and men. Nat Rev Mol Cell Biol.2008;9(3):206-218.
    [30].Spange S, Wagner T, Heinzel T, et al. Acetylation of non-histone proteinsmodulates cellular signalling at multiple levels. Int J Biochem Cell Biol.2009;41(1):185-198.
    [31]. Michan S Sinclair D. Sirtuins in mammals: insights into their biological function.Biochem J.2007;404(1):1-13.
    [32]. Schwer B Verdin E. Conserved metabolic regulatory functions of sirtuins. CellMetab.2008;7(2):104-112.
    [33]. Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1by calorierestriction. Genes Dev.2008;22(13):1753-1757.
    [34]. Brunet A, Sweeney L B, Sturgill J F, et al. Stress-dependent regulation of FOXOtranscription factors by the SIRT1deacetylase. Science.2004;303(5666):2011-2015.
    [35]. Rodgers J T, Lerin C, Haas W, et al. Nutrient control of glucose homeostasisthrough a complex of PGC-1alpha and SIRT1. Nature.2005;434(7029):113-118.
    [36]. Li X, Zhang S, Blander G, et al. SIRT1deacetylates and positively regulates thenuclear receptor LXR. Mol Cell.2007;28(1):91-106.
    [37]. Sun C, Zhang F, Ge X, et al. SIRT1improves insulin sensitivity underinsulin-resistant conditions by r epressing PTP1B. Cell Metab.2007;6(4):307-319.
    [38]. Qiao L Shao J. SIRT1regulates adiponectin gene expression throughFoxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem.2006;281(52):39915-39924.
    [39]. Feige J N Auwerx J. Transcriptional coregulators in the control of energyhomeostasis. Trends Cell Biol.2007;17(6):292-301.
    [40]. Baur J A, Pearson K J, Price N L, et al. Resveratrol improves health and survivalof mice on a high-calorie diet. Nature.2006;444(7117):337-342.
    [41]. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improvesmitochondrial function and protects against metabolic disease by activatingSIRT1and PGC-1alpha. Cell.2006;127(6):1109-1122.
    [42]. Milne J C, Lambert P D, Schenk S, et al. Small molecule activators of SIRT1astherapeutics for the treatment of type2di abetes. Nature.2007;450(7170):712-716.
    [43]. Glickman M H Ciechanover A. The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction. Physiol Rev.2002;82(2):373-428.
    [44]. Pickart C M. Mechanisms underlying ubiquitination. Annu Rev Biochem.2001;70(503-533.
    [45]. Pickart C M. Back to the future with ubiquitin. Cell.2004;116(2):181-190.
    [46].Handley-Gearhart P M, Stephen A G, Trausch-Azar J S, et al. Humanubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmicsubpopulations using epitope-tagged cDNA constructs. J Biol Chem.1994;269(52):33171-33178.
    [47]. Handley-Gearhart P M, Trausch-Azar J S, Ciechanover A, et al. Rescue of thecomplex temperature-sensitive phenotype of Chinese hamster ovary E36ts20cells by expression of the human ubiquitin-activating enzyme cDNA. Biochem J.1994;304(Pt3)(1015-1020.
    [48]. Shang F, Deng G, Obin M, et al. Ubiquitin-activating enzyme (E1) isoforms inlens epithelial cells: origin of translation, E2specificity and cellular localizationdetermined with novel site-specific antibodies. Exp Eye Res.2001;73(6):827-836.
    [49]. Jin J, Li X, Gygi S P, et al. Dual E1activation systems for ubiquitindifferentially regulate E2enzyme charging. Nature.2007;447(7148):1135-1138.
    [50]. Michelle C, Vourc'h P, Mignon L, et al. What was the set of ubiquitin andubiquitin-like conjugating enzymes in the eukaryote common ancestor? J MolEvol.2009;68(6):616-628.
    [51]. Pickart C M Eddins M J. Ubiquitin: structures, functions, mechanisms. BiochimBiophysActa.2004;1695(1-3):55-72.
    [52].Deshaies R J Joazeiro C A. RING domain E3ubiquitin ligases. Annu RevBiochem.2009;78(399-434.
    [53].Kohama T, Olivera A, Edsall L, et al. Molecular cloning and functionalcharacterization of murine sphingosine kinase. J Biol Chem.1998;273(37):23722-23728.
    [54].Gkantiragas I, Brugger B, Stuven E, et al. Sphingomyelin-enrichedmicrodomains at the Golgi complex. Mol Biol Cell.2001;12(6):1819-1833.
    [55]. French K J, Schrecengost R S, Lee B D, et al. Discovery and evaluation ofinhibitors of human sphingosine kinase. Cancer Res.2003;63(18):5962-5969.
    [56].Maceyka M, Payne S G, Milstien S, et al. Sphingosine kinase,sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta.2002;1585(2-3):193-201.
    [57]. Labesse G, Douguet D, Assairi L, et al. Diacylglyceride kinases, sphingosinekinases and NAD kinases: distant relatives of6-phosphofructokinases. TrendsBiochem Sci.2002;27(6):273-275.
    [58]. Liu H, Chakravarty D, Maceyka M, et al. Sphingosine kinases: a novel family oflipid kinases. Prog NucleicAcid Res Mol Biol.2002;71(493-511.
    [59]. Liu H, Sugiura M, Nava V E, et al. Molecular cloning and functionalcharacterization of a novel mammalian sphingosine kinase type2isoform. J BiolChem.2000;275(26):19513-19520.
    [60]. Lanterman M M Saba J D. Characterization of sphingosine kinase (SK) activityin Saccharomyces cerevisiae and isolation of SK-deficient mutants. Biochem J.1998;332(Pt2)(525-531.
    [61]. Nagiec M M, Skrzypek M, Nagiec E E, et al. The LCB4(YOR171c) and LCB5(YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases.J Biol Chem.1998;273(31):19437-19442.
    [62]. Wang S, Banno Y Nozawa Y. Two forms of membrane-bound sphingosinekinase in Tetrahymena and activity changes during growth and the cell cycle. JEukaryot Microbiol.2002;49(4):305-311.
    [63]. Nishiura H, Tamura K, Morimoto Y, et al. Characterization of sphingolipidlong-chain base kinase in Arabidopsis thaliana. Biochem Soc Trans.2000;28(6):747-748.
    [64]. Melendez A J, Carlos-Dias E, Gosink M, et al. Human sphingosine kinase:molecular cloning, functional characterization and tissue distribution. Gene.2000;251(1):19-26.
    [65]. Pitson S M, D'Andrea R J, Vandeleur L, et al. Human sphingosine kinase:purification, molecular cloning and characterization of the native andrecombinant enzymes. Biochem J.2000;350Pt2(429-441.
    [66]. Taha T A, Hannun Y AObeid L M. Sphingosine kinase: biochemical and cellularregulation and role in disease. J Biochem Mol Biol.2006;39(2):113-131.
    [67]. Johnson K R, Becker K P, Facchinetti M M, et al. PKC-dependent activation ofsphingosine kinase1and translocation to the plasma membrane. Extracellularrelease of sphingosine-1-phosphate induced by phorbol12-myristate13-acetate(PMA). J Biol Chem.2002;277(38):35257-35262.
    [68]. Igarashi N, Okada T, Hayashi S, et al. Sphingosine kinase2is a nuclear proteinand inhibits DNAsynthesis. J Biol Chem.2003;278(47):46832-46839.
    [69]. Spiegel S Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid.Nat Rev Mol Cell Biol.2003;4(5):397-407.
    [70].Billich A, Bornancin F, Devay P, et al. Phosphorylation of theimmunomodulatory drug FTY720by sphingosine kinases. J Biol Chem.2003;278(48):47408-47415.
    [71]. Banno Y, Kato M, Hara A, et al. Evidence for the presence of multiple forms ofSph kinase in human platelets. Biochem J.1998;335(Pt2)(301-304.
    [72]. Gijsbers S, Van der Hoeven G Van Veldhoven P P. Subcellular study ofsphingoid base phosphorylation in rat tissues: evidence for multiple sphingosinekinases. Biochim BiophysActa.2001;1532(1-2):37-50.
    [73]. Pitson S M, Moretti P A, Zebol J R, et al. Activation of sphingosine kinase1byERK1/2-mediated phosphorylation. EMBO J.2003;22(20):5491-5500.
    [74]. Xia P, Wang L, Moretti P A, et al. Sphingosine kinase interacts with TRAF2anddissects tumor necrosis factor-alpha signaling. J Biol Chem.2002;277(10):7996-8003.
    [75]. Sugiura M, Kono K, Liu H, et al. Ceramide kinase, a novel lipid kinase.Molecular cloning and functional characterization. J Biol Chem.2002;277(26):23294-23300.
    [76]. Yokota S, Taniguchi Y, Kihara A, et al. Asp177in C4domain of mousesphingosine kinase1a is important for the sphingosine recognition. FEBS Lett.2004;578(1-2):106-110.
    [77]. Pitson S M, Moretti P A, Zebol J R, et al. The nucleotide-binding site of humansphingosine kinase1. J Biol Chem.2002;277(51):49545-49553.
    [78]. Inagaki Y, Li P Y, Wada A, et al. Identification of functional nuclear exportsequences in human sphingosine kinase1. Biochem Biophys Res Commun.2003;311(1):168-173.
    [79]. Olivera A, Rosenthal J Spiegel S. Effect of acidic phospholipids on sphingosinekinase. J Cell Biochem.1996;60(4):529-537.
    [80]. Meyer zu Heringdorf D, Lass H, Alemany R, et al. Sphingosine kinase-mediatedCa2+signalling by G-protein-coupled receptors. EMBO J.1998;17(10):2830-2837.
    [81]. van Koppen C J, Meyer zu Heringdorf D, Alemany R, et al. Sphingosinekinase-mediated calcium signaling by muscarinic acetylcholine receptors. LifeSci.2001;68(22-23):2535-2540.
    [82]. Misasi R, Sorice M, Di Marzio L, et al. Prosaposin treatment induces PC12entry in the S phase of the cell cycle and prevents apoptosis: activation of ERKsand sphingosine kinase. FASEB J.2001;15(2):467-474.
    [83]. Young K W, Bootman M D, Channing D R, et al. Lysophosphatidic acid-inducedCa2+mobilization requires intracellular sphingosine1-phosphate production.Potential involvement of endogenous EDG-4receptors. J Biol Chem.2000;275(49):38532-38539.
    [84]. Alemany R, Meyer zu Heringdorf D, van Koppen C J, et al. Formyl peptidereceptor signaling in HL-60cells through sphingosine kinase. J Biol Chem.1999;274(7):3994-3999.
    [85]. Meyer zu Heringdorf D, Lass H, Kuchar I, et al. Stimulation of intracellularsphingosine-1-phosphate production by G-protein-coupledsphingosine-1-phosphate receptors. Eur J Pharmacol.2001;414(2-3):145-154.
    [86]. Olivera A Spiegel S. Sphingosine-1-phosphate as s econd messenger in cellproliferation induced by P DGF and FCS mitogens. Nature.1993;365(6446):557-560.
    [87]. Edsall L C, Pirianov G G Spiegel S. Involvement of sphingosine1-phosphate innerve growth factor-mediated neuronal survival and differentiation. J Neurosci.1997;17(18):6952-6960.
    [88]. Meyer zu Heringdorf D, Lass H, Kuchar I, et al. Role of sphingosine kinase inCa(2+) signalling by e pidermal growth factor receptor. FEBS Lett.1999;461(3):217-222.
    [89]. Melendez A, Floto R A, Gillooly D J, et al. FcgammaRI coupling tophospholipase D initiates sphingosine kinase-mediated calcium mobilization andvesicular trafficking. J Biol Chem.1998;273(16):9393-9402.
    [90]. Chuang F Y, Sassaroli M Unkeless J C. Convergence of Fc gamma receptor IIAand Fc gamma receptor IIIB signaling pathways in human neutrophils. JImmunol.2000;164(1):350-360.
    [91]. Kleuser B, Cuvillier O Spiegel S.1Alpha,25-dihydroxyvitamin D3inhibitsprogrammed cell death in HL-60cells by activation of sphingosine kinase.Cancer Res.1998;58(9):1817-1824.
    [92]. Xia P, Gamble J R, Rye K A, et al. Tumor necrosis factor-alpha induces adhesionmolecule expression through the sphingosine kinase pathway. Proc Natl Acad SciU SA.1998;95(24):14196-14201.
    [93]. Stahelin R V, Hwang J H, Kim J H, et al. The mechanism of membrane targetingof human sphingosine kinase1. J Biol Chem.2005;280(52):43030-43038.
    [94]. Pettus B J, Bielawski J, Porcelli A M, et al. The sphingosine kinase1/sphingosine-1-phosphate pathway mediates COX-2induction and PGE2production in response to TNF-alpha. FASEB J.2003;17(11):1411-1421.
    [95]. Alvarez S E, Milstien S Spiegel S. Autocrine and paracrine roles ofsphingosine-1-phosphate. Trends Endocrinol Metab.2007;18(8):300-307.
    [96]. Hammad S M, Crellin H G, Wu B X, et al. Dual and distinct roles forsphingosine kinase1and sphingosine1phosphate in the response toinflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat.2008;85(3-4):107-114.
    [97]. Nayak D, Huo Y, Kwang W X, et al. Sphingosine kinase1regulates theexpression of proinflammatory cytokines and nitric oxide in activated microglia.Neuroscience.2010;166(1):132-144.
    [98]. Melendez A J Ibrahim F B. Antisense knockdown of sphingosine kinase1inhuman macrophages inhibits C5a receptor-dependent signal transduction, Ca2+signals, enzyme release, cytokine production, and chemotaxis. J Immunol.2004;173(3):1596-1603.
    [99]. Ibrahim F B, Pang S J Melendez A J. Anaphylatoxin signaling in humanneutrophils. A key role for sphingosine kinase. J Biol Chem.2004;279(43):44802-44811.
    [100]. Michaud J, Kohno M, Proia R L, et al. Normal acute and chronic inflammatoryresponses in sphingosine kinase1knoc kout mice. FEBS Lett.2006;580(19):4607-4612.
    [101]. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med.1999;340(2):115-126.
    [102]. Cybulsky M I Gimbrone M A, Jr. Endothelial expression of a mononuclearleukocyte adhesion molecule during atherogenesis. Science.1991;251(4995):788-791.
    [103]. Poston R N, Haskard D O, Coucher J R, et al. Expression of intercellularadhesion molecule-1in atherosclerotic plaques. Am J Pathol.1992;140(3):665-673.
    [104]. van der Wal A C, Das P K, Tigges A J, et al. Macrophage differentiation inatherosclerosis. An in situ immunohistochemical analysis in humans. Am JPathol.1992;141(1):161-168.
    [105]. O'Brien K D, McDonald T O, Chait A, et al. Neovascular expression ofE-selectin, intercellular adhesion molecule-1, and vascular cell adhesionmolecule-1in human atherosclerosis and their relation to intimal leukocytecontent. Circulation.1996;93(4):672-682.
    [106]. Jang Y, Lincoff A M, Plow E F, et al. Cell adhesion molecules in coronaryartery disease. JAm Coll Cardiol.1994;24(7):1591-1601.
    [107]. Hwang S J, Ballantyne C M, Sharrett A R, et al. Circulating adhesionmolecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis andincident coronary heart disease cases: the Atherosclerosis Risk In Communities(ARIC) study. Circulation.1997;96(12):4219-4225.
    [108]. Ridker P M, Hennekens C H, Roitman-Johnson B, et al. Plasma concentrationof soluble intercellular adhesion molecule1a nd risks of future myocardialinfarction in apparently healthy men. Lancet.1998;351(9096):88-92.
    [109]. Johnson R C, Chapman S M, Dong Z M, et al. Absence of P-selectin delaysfatty streak formation in mice. J Clin Invest.1997;99(5):1037-1043.
    [110]. Nageh M F, Sandberg E T, Marotti K R, et al. Deficiency of inflammatory celladhesion molecules protects against atherosclerosis in mice. ArteriosclerThromb Vasc Biol.1997;17(8):1517-1520.
    [111]. Auge N, Nikolova-Karakashian M, Carpentier S, et al. Role of sphingosine1-phosphate in the mitogenesis induced by oxidized low density lipoprotein insmooth muscle cells via activation of sphingomyelinase, ceramidase, andsphingosine kinase. J Biol Chem.1999;274(31):21533-21538.
    [112]. Xu C B, Zhang Y, Stenman E, et al. D-erythro-N,N-dimethylsphingosineinhibits bFGF-induced proliferation of cerebral, aortic and coronary smoothmuscle cells.Atherosclerosis.2002;164(2):237-243.
    [113]. Xia P, Vadas M A, Rye K A, et al. High density lipoproteins (HDL) interruptthe sphingosine kinase signaling pathway. A possible mechanism for protectionagainst atherosclerosis by HDL. J Biol Chem.1999;274(46):33143-33147.
    [114]. Limaye V, Li X, Hahn C, et al. Sphingosine kinase-1enhances endothelial cellsurvival through a PECAM-1-dependent activation of PI-3K/Akt and regulationof Bcl-2family members. Blood.2005;105(8):3169-3177.
    [115]. Mizugishi K, Yamashita T, Olivera A, et al. Essential role for sphingosinekinases in neural and vascular development. Mol Cell Biol.2005;25(24):11113-11121.
    [116]. Nava V E, Cuvillier O, Edsall L C, et al. Sphingosine enhances apoptosis ofradiation-resistant prostate cancer cells. Cancer Res.2000;60(16):4468-4474.
    [117]. Nava V E, Hobson J P, Murthy S, et al. Sphingosine kinase type1promotesestrogen-dependent tumorigenesis of breast cancer MCF-7cells. Exp Cell Res.2002;281(1):115-127.
    [118]. Bektas M, Jolly P S, Muller C, et al. Sphingosine kinase activity counteractsceramide-mediated cell death in human melanoma cells: role of Bcl-2expression. Oncogene.2005;24(1):178-187.
    [119]. Kawamori T, Osta W, Johnson K R, et al. Sphingosine kinase1is up-regulatedin colon carcinogenesis. FASEB J.2006;20(2):386-388.
    [120]. Hla T. Physiological and pathological actions of sphingosine1-phosphate.Semin Cell Dev Biol.2004;15(5):513-520.
    [121]. Schaphorst K L, Chiang E, Jacobs K N, et al. Role of sphingosine-1phosphatein the enhancement of endothelial barrier integrity by platelet-released products.Am J Physiol Lung Cell Mol Physiol.2003;285(1):L258-267.
    [122]. Paik J H, Skoura A, Chae S S, et al. Sphingosine1-phosphate receptorregulation of N-cadherin mediates vascular stabilization. Genes Dev.2004;18(19):2392-2403.
    [123]. Chae S S, Paik J H, Furneaux H, et al. Requirement for sphingosine1-phosphate receptor-1in tumor angiogenesis demonstrated by in vivo RNAinterference. J Clin Invest.2004;114(8):1082-1089.
    [124]. Katsuma S, Hada Y, Ueda T, et al. Signalling mechanisms in sphingosine1-phosphate-promoted mesangial cell proliferation. Genes Cells.2002;7(12):1217-1230.
    [125]. Katsuma S, Hada Y, Shiojima S, et al. Transcriptional profiling of geneexpression patterns during sphingosine1-phosphate-induced mesangial cellproliferation. Biochem Biophys Res Commun.2003;300(2):577-584.
    [126]. Geoffroy K, Troncy L, Wiernsperger N, et al. Glomerular proliferation duringearly stages of diabetic nephropathy is associated with local increase ofsphingosine-1-phosphate levels. FEBS Lett.2005;579(5):1249-1254.
    [127]. Fujimoto H, Higuchi M, Koike M, et al. A possible overestimation of the effectof acetylation on lysine residues in KQ mutant analysis. J Comput Chem.2012;33(3):239-246.
    [128]. Iwasaki W, Tachiwana H, Kawaguchi K, et al. Comprehensive structuralanalysis of mutant nucleosomes containing lysine to glutamine (KQ)substitutions in the H3and H4histone-fold domains. Biochemistry.2011;50(36):7822-7832.
    [129]. Fu M, Rao M, Wang C, et al. Acetylation of androgen receptor enhancescoactivator binding and promotes prostate cancer cell growth. Mol Cell Biol.2003;23(23):8563-8575.
    [130]. Palermo R, Checquolo S, Giovenco A, et al. Acetylation controls Notch3stability and function in T-cell leukemia. Oncogene.2011;
    [131]. Rice J C Allis C D. Histone methylation versus histone acetylation: newinsights into epigenetic regulation. Curr Opin Cell Biol.2001;13(3):263-273.
    [132]. Li K, Wang R, Lozada E, et al. Acetylation of WRN protein regulates itsstability by inhibiting ubiquitination. PLoS One.2010;5(4):e10341.
    [133]. Giandomenico V, Simonsson M, Gronroos E, et al. Coactivator-dependentacetylation stabilizes members of the SREBP family of transcription factors.Mol Cell Biol.2003;23(7):2587-2599.
    [134]. Martinez-Balbas M A, Bauer U M, Nielsen S J, et al. Regulation of E2F1activity by acetylation. EMBO J.2000;19(4):662-671.
    [135]. Ge X, Jin Q, Zhang F, et al. PCAF acetylates {beta}-catenin and improves itsstability. Mol Biol Cell.2009;20(1):419-427.
    [136]. Goldberg A L. Protein degradation and protection against misfolded ordamaged proteins. Nature.2003;426(6968):895-899.
    [137]. Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease throughcellular self-digestion. Nature.2008;451(7182):1069-1075.
    [138]. Ciechanover A. Intracellular protein degradation from a vague idea through thelysosome and the ubiquitin-proteasome system and on to human diseases anddrug targeting: Nobel Lecture, December8,2004. Ann N Y Acad Sci.2007;1116(1-28.
    [139]. Ciechanover A. The ubiquitin proteolytic system and pathogenesis of humandiseases: a novel platform for mechanism-based drug targeting. Biochem SocTrans.2003;31(2):474-481.
    [140]. Shang F Taylor A. Function of the ubiquitin proteolytic pathway in the eye.Exp Eye Res.2004;78(1):1-14.
    [141]. Fang S Weissman A M. A field guide to ubiquitylation. Cell Mol Life Sci.2004;61(13):1546-1561.
    [142]. Gronroos E, Hellman U, Heldin C H, et al. Control of Smad7stability bycompetition between acetylation and ubiquitination. Mol Cell.2002;10(3):483-493.
    [143]. Taplick J, Kurtev V, Lagger G, et al. Histone H4acetylation duringinterleukin-2stimulation of mouse T cells. FEBS Lett.1998;436(3):349-352.
    [144]. Druesne N, Pagniez A, Mayeur C, et al. Diallyl disulfide (DADS) increaseshistone acetylation and p21(waf1/cip1) expression in human colon tumor celllines. Carcinogenesis.2004;25(7):1227-1236.
    [145]. Zhou Q, Dalgard C L, Wynder C, et al. Histone deacetylase inhibitors SAHAand sodium butyrate block G1-to-S cell cycle progression in neurosphereformation by adult subventricular cells. BMC Neurosci.2011;12(50.
    [146]. Kamitani H, Taniura S, Watanabe K, et al. Histone acetylation may suppresshuman glioma cell proliferation when p21WAF/Cip1and gelsolin are induced.Neuro Oncol.2002;4(2):95-101.
    [147]. Liu C J, Ha X Q, Jiang J J, et al. Keratinocyte growth factor (KGF) genetherapy mediated by an attenuated form of Salmonella typhimurium amelioratesradiation induced pulmonary injury in rats. J Radiat Res.2011;52(2):176-184.
    [148]. Shi H, Santander J, Brenneman K E, et al. Live recombinant Salmonella Typhivaccines constructed to investigate the role of rpoS in eliciting immunity to aheterologous antigen. PLoS One.2010;5(6):e11142.
    [149]. Powell D W, Mifflin R C, Valentich J D, et al. Myofibroblasts. I. Paracrine cellsimportant in health and disease.Am J Physiol.1999;277(1Pt1):C1-9.
    [150]. Badid C, Vincent M, Fouque D, et al. Myofibroblast: a prognostic marker andtarget cell in progressive renal disease. Ren Fail.2001;23(3-4):543-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700