基于HJ卫星混合像元分解的水稻生长监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物长势实时无损监测及生产力准确预测,有利于提高作物栽培中因苗管理的精确性。遥感的空间性、实时性可提高作物生长监测与预测能力,本文基于HJ卫星数据,以江苏省如皋市为研究区,研究了基于混合像元分解的水稻信息提取及定量遥感反演方法。具体内容与结果如下:
     为了解决中低分辨率遥感影像混合像元问题以提高水稻种植信息的提取精度,本文提出了两种适合于多光谱遥感的混合像元分解方法:一是基于图像分块的混合像元分解方法;二是分层多端元混合像元分解方法。第一种方法结合影像空间特征与光谱信息提取端元,即将遥感图像先分块,然后在地物相对简单的各个“小图像”上提取端元,从而弥补端元漏选及错选的缺陷,并实现了增加端元数目进而提高了解混精度;第二种方法是基于层次分类与多端元混合像元分解相结合的水稻面积信息提取方法(Stratified multiple endmember spectral mixture analysis, SMESMA)。层次分类有效降低了地物复杂度,而多端元混合像元分解通过对每一类地物选取多个端元光谱参与解混,克服了“同物异谱”造成的光谱变异问题,两者结合可较大程度提高分类精度。结果显示,第一种方法分类精度为83.65%,kappa系数为0.82;第二种方法(SMESMA)分类精度达到85.78%,kappa系数为0.85,较第一种分类方法略高,将提取的种植面积与如皋市统计局数据相比较,精度超过85%。将两种方法与常规的像元级分类方法(MLC)的精度进行了比较,结果显示本文提出的两种亚像元分类方法精度更高,表明本文提出的方法是适合基于中低分辨率多光谱遥感进行作物分类和面积提取的有效方法。
     基于水稻信息提取后,利用“纯净”水稻光谱参数与实测水稻叶片氮含量及氮积累建立相关关系,通过统计筛选出与水稻叶片氮素相关性最高的植被指数。结果表明,差值植被指数DVI(4,3)和比值植被指数RVI(4,2)分别与叶片氮含量和氮积累量关系最显著,决定系数分别达到0.74和0.80。此外,基于2010年多时相HJ卫星数据,利用Savitzky-Golay滤波方法有效去除云、异常值及数据缺失的影响,得到较高质量的时序HJ-NDVI和HJ-EVI数据。在此基础上分生育期分别建立了水稻LAI与NDVI和EVI的关系,同时构建了水稻单产与LAI的关系,结果显示,开花时期为水稻最佳估产时相,HJ-NDVI与LAI及LAI与产量关系最好,从而构建了基于“EVI-LAI-水稻单产”的水稻估产模型。通过不同年份试验检验,表明本文所构建的叶片氮素营养监测模型和水稻单产估算模型精度较高,可用于大面积水稻生长状况及产量的监测预测。
Real-time and non-destructive monitoring of crop growth and accurate grain yield and qualities predicting could improve traditional crop cultivation and real-time forecasting techniques, and it's also very important for developments of food security and sustainable agriculture. The ability of monitoring and predicting crop growth has been improved significantly with the spatial and real-time remote sensing images. In this study, the main research are methods of extracting area information based on pixel un-mixing and of quantitative remote sensing reversed based on HJ remote sensing images in Rugao county, Jiangsu. Following are the detail results:
     To resolve the serious pixel mixing problem of coarse spatial resolution sensors, and improve the cultivation area extraction accuracy of paddy rice, two pixel un-mixing methods were proposed, which were fit for multispectral remote sensed images:Pixel un-mixing based on Image blocking (IBPU) and the stratified multiple endmember spectral mixture analysis (SMESMA). For the first one both spatial feature and spectral information was combined, and the endmember was selected from the "blocked images" containing more simple landscape, which could avoid mistakes of endmember selection caused by deficiency of spectral bands and spectral information of multispectral images, and improve the accuracy of pixel un-mixing. For the later one, the complexity of landscape will be mitigated using stratified classification method, and MESMA represent an alternative approach, in which the number and types of endmembers vary in a per-pixel basis, and overcome the spectral variations within classes. The accuracy of classification was improved significantly by combining these two methods. The result showed that SMESMA had the best classification accuracy of 85.78% and kappa coefficient of 0.85, than the IBPU of 83.65% and 0.82, and both of the two method based on pixel outperformed maximum likelihood classification (MLC). Over all, SMESMA is a mechanism method with higher accuracy, which can solve the "same object with different spectra" phenomenon, IBPU can not solve the it, but has advantages such as simple and high operation efficiency. The results of our study indicated that the two proposed methods were useful and fit for paddy cultivation area extracting with coarse spatial resolution images.
     Based on the extracting information of paddy rice, the relationships between measured leaf nitrogen content (LNC), leaf nitrogen accumulation (LNA) and "pure" spectral indices of rice were analyzed. For LNC models, DVI(4,2)(differential vegetation index) was the best index with determination coefficient (R2) of 0.74. And for the LNA, RVI(4,2)(ratio vegetation index) was the best index with R2 of 0.80. In addition, the Savitzky-Golay filter was used to remove noise or unusual values such as cloud vapor et al in the HJ images. and then the relationships between time-series HJ-NDVI(normalized difference vegetation index), HJ-EVI(enhanced vegetation index) data and leaf area index (LAI) were analyzed, meanwhile, the relationship between rice yield and LAI was analyzed too, finally, the optimum phase was selected and the rice yield prediction model was constructed base on "EVI-LAI-rice yield".
     The inspection result with different years showed that this construction of leaf nitrogen nutrient monitoring model and rice yield prediction model is feasible and reliable, which are fit for widespread application.
引文
[1]曹卫星.农业信息学[M].中国农业出版社,2004.
    [2]王人潮,黄敬峰.水稻遥感估产[M].中国农业出版社,2002.
    [3]李卫国,李秉柏,石春林.基于模型和遥感的水稻长势监测研究进展[J].农业信息科学,2006,22(9):457-460.
    [4]杨晓华,黄敬峰.概率神经网络的水稻种植面积遥感信息提取研究[J].浙江大学学报,2007,33(6);691-698.
    [5]刘小平,黎夏,何晋强,等.基于蚁群智能的遥感影像分类新方法[J].遥感学报,2008,2:253-262.
    [6]梅安新.遥感导论[M].高等教育出版社,2001.
    [7]黄敬峰,Yaghi A,王人潮.利用GIS与TM资料集成技术估算龙游县早稻面积(英文)[J].农业工程学报,2001,17(1):159-162.
    [8]柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563.
    [9]黄飞,周军,卢晓东.基于马氏距离的一维距离像识别算法仿真[J].计算机仿真,2010,(3):31-34+84.
    [10]刘旭升,李锋,昝国胜,等.基于GIS和神经网络的森林植被分类(英文)[J].遥感学报,2007,(5):710-717.
    [11]骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55.
    [12]Dennison P E, Halligan K Q, Roberts DA. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper[J]. Remote Sensing of Environment,2004,93(3):359-367.
    [13]都金康,黄永胜,冯学智,等.SPOT卫星影像的水体提取方法及分类研究[J].遥感学报,2001,(03):214-219.
    [14]Aviad B, Roy G. Classification by clustering decision tree-like classifier based on adjusted clusters[J]. Expert Systems with Applications,2011,38(7):8220-8228.
    [15]Goel P K, Prasher S O, Patel R M, et al. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn[J]. Computers and Electronics in Agriculture,2003,39(2):67-93.
    [16]刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005, 9(4):405-412.
    [17]Hanson M, DubayahR C, ClassificationTrees D S. An Alternative to Traditional Land Cover Classifers[J]. Remote Sensin,1996,9(17):1075-1081.
    [18]陈亮,张友静,陈波.结合多尺度纹理的高分辨率遥感影像决策树分类[J].地理与地理信息科学,2007,23(4):18-21.
    [19]Muchoney D, Borak J, Borak H C. Application of the MODIS Global Supervised Classification to Vegetation and Land Cover Mapping of Central America[J]. Remote Sensing,2000, (21): 1115-1138.
    [20]Joy S, Reich R, Reynolds R. A Non-parametric Supervised Classification of Vegetation Types on the Kaibab National Forest using decision trees[J]. Remote Sensing,2003,9(24):1835-1852.
    [21]郑长春,王秀珍,黄敬峰.多时相MODIS影像的浙江省水稻种植面积信息提取方法研究.浙江大学学报(农业与生命科学版)[J],2009,(1):21-29.
    [22]赵英时.2003,遥感应用分析原理与方法[M].北京:科学出版社.
    [23]李素,李文正,周建军,等.遥感影像混合像元分解中的端元选择方法综述[J].地理与地理信息科学,2007,23(5):35-42.
    [24]Lu D, Weng Q. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA[J]. Remote Sensing of Environment,2006,104(2):157-167.
    [25]Tompkins S, Mustard J F, Pieters C M, et al. Optimization of endmembers for spectral mixture analysis[J]. Remote Sensing of Environment,1997,59(3):472-489.
    [26]Elmore A J, Mustard J F, Manning S J, et al. Quantifying vegetation change in semiarid environments:Precision and accuracy of spectral mixture analysis and the Normalized Difference Vegetation Index[J]. Remote Sensing of Environment,2000,73(1):87-102.
    [27]Roberts D A, Gardner M, Church R, et al. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models[J]. Remote Sensing of Environment,1998, 65(3):267-279.
    [28]Radeloff V C, Mladenoff D J, Boyce M S. Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis:Separating Effects from Determinants [J]. Remote Sensing of Environment,1999,69(2):156-169.
    [29]Sabol D E, Adams J B, Smith M O. Quantitative subpixel spectral detection of targets in multispectral images[J]. Journal of Geophysical Research,1992,97(E2):2659-2672.
    [30]Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:comparative anatomy for cities[J]. International Journal of Remote Sensing,1995,16(12):2165-2185.
    [31]Phinn S, Stanford M, Scarth P, et al. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques[J]. International Journal of Remote Sensing,2002,23(20):4131-4153.
    [32]Hung M C, Ridd M K. A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules[J]. Photogrammetric Engineering and Remote Sensing,2002.68(11):1173-1180.
    [33]Rashed T, Weeks J R, Roberts D, et al. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models[J]. Photogrammetric Engineering and Remote Sensing,2003,69(9):1011-1020.
    [34]Small C. Estimation of urban vegetation abundance by spectral mixture analysis[J]. International Journal of Remote Sensing,2001,22(7):1305-1334.
    [35]Stefanov W L, Ramsey M S, Christensen P R. Monitoring urban land cover change:An expert system approach to land cover classification of semiarid to arid urban centers[J]. Remote Sensing of Environment,2001,77(2):173-185.
    [36]Wu C S, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment,2003,84(4):493-505.
    [37]陈水森,柳钦火,陈良富,等.粮食作物播种面积遥感监测研究进展[J].农业工程学报,2005,21(6):166-171.
    [38]Powell R L, Roberts D A, Dennison P E, et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:Manaus, Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267.
    [39]Franke J, Roberts D A, Halligan K, et al. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments[J]. Remote Sensing of Environment,2009,113(8):1712-1723.
    [40]Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[C]. Fifth Annual JPL Airborne Earth Science Workshop. Pasadena, CA,1995.
    [41]Bateson A, Curtiss B. A method for manual endmember selection and spectral unmixing[J]. Remote Sensing of Environment,1996,55(3):229-243.
    [42]Dennison P E. Roberts D A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE[J]. Remote Sensing of Environment,2003,87(2-3): 123-135.
    [43]Winter M E. N-FINDR:an algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]. Proceeding SPIE.1999,3753,266.
    [44]Neville R A, Staenz K, Szeredi T, et al. Automatic endmember extraction from hyperspectral data for mineral exploration[C]. International Airborne Remote Sensing Conference and Exhibition, 4th/21st Canadian Symposium on Remote Sensing, Ottawa, Canada.1999,891-897.
    [45]耿修瑞,赵永超,刘素红,等.高维叉积的矩阵计算以及在高光谱图像端元自动提取中的应用[J].中国科学:信息科学,2010,40(4):646-652.
    [46]Bowles J, Palmadesso P J, Antoniades J A, et al. Use of filter vectors in hyperspectral data analysis[C]. Proceeding SPE.1995,2553,148.
    [47]Plaza A, Martinez P, Perez R, et al. Spatial/spectral endmember extraction by multidimensional morphological operations [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(9): 2025-2041.
    [48]Rogge D M, Rivard B, Zhang J, et al. Integration of spatial-spectral information for the improved extraction of endmembers[J]. Remote Sensing of Environment,2007,110(3):287-303.
    [49]Robert D A, Smith M O, Adams J B. Green vegetation,nonphotosynthetic vegetation, and soils in AVIRIS data[J]. Remote Sensing of Environment,1993,44:255-269.
    [50]Adams J B, Smith M O, Gillespie A R. Simple Models For Complex Natural Surfaces:A Strategy For The Hyperspectral Era Of Remote Sensing[C]. IGARSS'89.12th Canadian Symposium on Remote Sensing.1989.
    [51]Adams J B, Smith M O. Spectral mixing modeling:A new analysis of rock and soil types at the Viking Lander I site[J]. Journal of Geophysical Research-Atmospheres,1986,91:8089-8112.
    [52]Dennison P E, Roberts D A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE[J]. Remote Sensing of Environment,2003,87(2-3): 123-135.
    [53]Hu B, Miller J R, Chen J M, et al. Retrieval of the canopy leaf area index in the BOREAS flux tower sites using linear spectral mixture analysis[J]. Remote Sensing of Environment,2004,89(2): 176-188.
    [54]Asis A M, Omasa K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(4):309-324.
    [55]李素,李文正,周建军,等.ETM+影像亚像元级城市土地覆盖组分丰度提取——以南京市为例[J].地理与地理信息科学,2008,24(2):17-22.
    [56]武永利,王云峰,张建新,等.应用线性混合模型遥感监测冬小麦种植面积[J].农业工程学报,2009,25(2):136-140.
    [57]Kameyams S, Yamagata Y, Naksmura F. Development of WTI and Turbidity Estimation Model Using SMA:Application to Kushiro Mire, Eastern Hokkaido, Japan[J]. Remote Sensing of Environment,2001,77:1-9.
    [58]Weng Q, Lu D, Schubring J. Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies[J]. Remote Sensing of Environment,2004,89:467-483.
    [59]Ray T W, Murray B C. Nonlinear spectral mixing in desert vegetation[J]. Remote Sensing of Environment,1996,55(1):59-64.
    [60]Ichoku C, Karnieli A. A review of mixture modeling techniques for sub-pixel land cover estimation[J]. Remote Sensing Reviews,1996,13:161-186.
    [61]Marsh S E, Switzer P, Kowalik W S, et al. Resolving the percentage of component terrains within single resolution elements[J]. Photogrammetric Engineering and Remote Sensing,1980,46(8): 1079-1086.
    [62]Atkinson P M, Cutler M E J, Lewis H. Mapping sub-pixel proportional land cover with AVHRR imagery[J]. International Journal of Remote Sensing,1997,18(4):917-935.
    [63]吴柯,张良培,李平湘.一种端元变化的神经网络混合像元分解方法[J].遥感学报,2007,(1):20-26.
    [64]Verbeiren S, Eerens H, Piccard I. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium[J]. International Journal of Applied Earth Observation and Geo-information,2008,10:486-497.
    [65]Margaret E. Andrew, Susan L. Ustin. The role of environmental context in mapping invasive plants with hyerspectral image data[J]. Remote Sensing, Environment,2008,112:4301-4317.
    [66]Eckmann T C, Roberts D A, Still CJ. Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS[J]. Remote Sensing of Environment,2008,112(10): 3773-3783.
    [67]Bateson C A, Asner G P, Wessman C A. Endmember bundles:A new approach to incorporating endmember variability into spectral mixture analysis [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):1083-1094.
    [68]Chen Y, Su W, Li J, et al. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas[J]. Advances in Space Research,2009,43(7): 1101-1110.
    [69]Bhaskaran S, Paramananda S, Ramnarayan M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data[J]. Applied Geography,2010,30(4): 650-665.
    [70]Tansey K, Chambers I, Anstee A, et al. Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas[J]. Applied Geography,2009,29(2):145-157.
    [71]Balaguer A, Ruiz L A, Hermosilla T, et al. Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification[J]. Computers & Geosciences,2010,36(2):231-240.
    [72]Gamanya R, Maeyer P D, Dapper M D. Object-oriented change detection for the city of Harare, Zimbabwe[J]. Expert Systems with Applications,2009,36(1):571-588.
    [73]Mathieu R, Freeman C, Aryal J. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery [J]. Landscape and Urban Planning,2007, 81(3):179-192.
    [74]严泰来,王鹏新.遥感技术与农业应用[M].中国农业大学出版社,2008.
    [75]王纪华,赵春江,黄文江等.农业定量遥感基础与应用[M].科学出版社,2008.
    [76]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003,3:58-62
    [77]陈新芳,陈镜明,安树明等.不同大气校正方法对森林叶面积指数遥感估算影响的比较.生态学杂志,2006,25(7):769-773.
    [78]李开丽,蒋建军,茅荣正.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    [79]骆知萌,田庆久,惠凤鸣.用遥感技术计算森林叶面积指数——以江西省兴国县为例[J].南京大学学报,2005,41(3):253-258.
    [80]姚延娟,陈良富,柳钦火,等.基于波谱知识库的MODIS叶面积指数反演及验证.遥感学报,2006,10(6):869-878.
    [81]蔡博峰,绍霞.基于PROSPECT+SAIL模型的遥感叶面积指数反演[J].国土资源遥感,2007,2:39-43.
    [82]Jacquemoud S, Baret F, Andrieu B, et al. Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT+SALL Models on Sugar Beet Canopy Reflectance Data, Application to TM and AVIRIS [J]. Remote Sensing of Environment,1995,52(3):163-172.
    [83]Soudani K, Francois C, le Maire G, et al. Comparative analysis of IKONOS, SPOT, and ETM+data for leaf area index estimation in temperate coniferous and deciduous forest stands[J]. Remote Sensing of Environment,2006,102(1-2):161-175.
    [84]Filella D, Pen-uelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[J]. Remote Sensing,1994,15(7):1459-1470.
    [85]薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报,2006,32(3):430-435.
    [86]田永超,朱艳,姚霞,等.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [87]袁杰,王登伟,黄春艳,等.基于高光谱数据的棉花叶绿素密度定量提取研究[J].干旱地区农业研究,2007,25(3):89-93.
    [88]黄敬峰,杨忠恩,王人潮,等.基于GIS的水稻遥感估产模型研究[J].遥感技术与应用,2002,17(3):125-128.
    [89]徐新刚,王纪华,黄文江,等.基于权重最优组合多时相遥感的作物估产[J].农业工程学报,2009,25(9):137-142.
    [90]Dalezios N R, Domenikiotis C, Loukas A, et al. Cotton yield estimation based on NOAA/NVHRR produced NDVI[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,26(3):247-251.
    [91]唐延林,黄敬峰,王人潮,等.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171
    [92]彭代亮.基于统计与MODIS数据的水稻遥感估产方法研究[D].浙江大学,2009.
    [93]Boschetti M. Agro-ecological modelling for monitoring rice productions:contribution of field experiment and multi-temporal EO data[C]. Proceedings of SPIE,2005.
    [94]任建强,陈仲新,周清波,等.基于时序归一化植被指数的冬小麦收获指数空间信息提取[J].农业工程学报,2010:160-167.
    [95]李卫国,王纪华,赵春江,等.基于TM影像的冬小麦苗期长势与植株氮素遥感监测研究[J].遥感应用,2007,2:12-19.
    [96]Moriondo M, Maselli F, Bindi M. A simple model of regional wheat yield based on NDVI data[J]. European Journal of Agronomy,2007,26(3):266-274.
    [97]刘良云,靳志伟,王纪华,等.光谱法预测烟叶中的烟碱、钾和氮素[J].烟草科技,2005,6:26-29.
    [98]薛利红,曹卫星,罗卫红,等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004,28(1):47-52.
    [99]田永超,朱艳,曹卫星,等.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累[J].中国农业科学,2004,37(6):808-813.
    [100]李映雪,朱艳,田永超,等.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系[J].中国农业科学,2005,38(7):1332-1338.
    [1]焦险峰,杨邦杰,裴志远.基于分层抽样的中国水稻种植面积遥感调查方法研究[J].农业工程学报,2006,22(5):105-110.
    [2]钟仕全,莫建飞,陈燕丽,等.基于HJ-1B卫星遥感数据的水稻识别技术研究[J].遥感技术与应用,2010,25(114):464-468.
    [3]Analytical Spectral Devices(ASD). Inc. FieldSpec Pro User's guide,2002.
    [4]宋瑜,宋晓东,江洪,等.基于定量遥感反演的内陆水体藻类监测[J].光谱学与光谱分析,2010,30(4):1075-1079.
    [5]Cropscan. Data logger controller, user's guide and technical reference. CROPSCAN Inc, Rochester, MN,2000.
    [6]Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[C]. In:Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Michigan:Ann Arbor.1972,2:1357-1381.
    [7]Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing,1977,43(12):1541-1552.
    [8]Rouse J W, Haas R H, Schell J A. Monitoring the vernal advancement of retrogradation of natural vegetation[C]. NASA/GSFC, Type 3, Final Report. Greenbelt, MD, USA,1974,1-371.
    [9]Justice C O, Vermote E, Townshend J R G, et al. The moderate resolution imaging spectroradiometer (MODIS):land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing.1998,36(4):1228-1250.
    [10]Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment.2002,80:76-87.
    [1]陈水森,柳钦火,陈良富,等.粮食作物播种面积遥感监测研究进展[J].农业工程学报,2005,21(6):166-171.
    [2]Pradhan S. Crop area estimation using GIS, remote sensing and area frame sampling[J]. International Journal of Applied Earth Observation and Geoinformation,2001,3(1):86-92.
    [3]Potgieter A B, Apan A, Hammer G, et al. Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(4):380-387.
    [4]焦险峰,杨邦杰,裴志远.基于分层抽样的中国水稻种植面积遥感调查方法研究[J].农业工程学报,2006,22(5):105-110.
    [5]Powell R L, Roberts D A, Dennison P E, et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:Manaus, Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267.
    [6]武永利,王云峰,张建新,等.应用线性混合模型遥感监测冬小麦种植面积[J].农业工程学报,2009,25(2):136-140.
    [7]顾晓鹤,韩立建,张锦水,等.基于相似性分析的中低分辨率复合水稻种植面积测量法[J].中国农业科学,2008,41(4):978-985.
    [8]Bateson A, Curtiss B. A method for manual endmember selection and spectral unmixing[J]. Remote Sensing of Environment,1996,55(3):229-243.
    [9]李素,李文正,周建军,等.遥感影像混合像元分解中的端元选择方法综述[J].地理与地理信息科学,2007,23(5):35-42.
    [10]Verbeiren S, Eerens H, Piccard I, et al. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium[J]. International Journal of Applied Earth Observation and Geoinformation,2008,10(4):486-497.
    [11]刘勇,岳文泽.基于图像融合与混合像元分解的城市植被盖度提取[J].生态学报,2010,30(1):93-99.
    [12]Somers B, Verbesselt J, Ampe E M, et al. Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globules Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data[J]. International Journal of Applied Earth Observation and Geoinformation, 2010,12(4):270-277.
    [13]Song C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment:How to incorporate endmember variability? [J]. Remote Sensing of Environment,2005,95(2):248-263.
    [14]唐世浩,朱启疆,李小文,等.高光谱与多角度数据联合进行混合像元分解研究[J].遥感学报,2003,7(3):182-189.
    [15]Kuemmerle T, Damm A, Hostert P. A method to detect and correct single-band missing pixels in Landsat TM and ETM+data[J]. Computers & Geosciences,2008,34(5):445-455.
    [16]Van de Voorde T, De Roeck T, Canters F. A comparison of two spectral mixture modelling approaches for impervious surface mapping in urban areas[J]. International Journal of Remote Sensing,2009,30(18):4785-4806.
    [17]李素,李文正,周建军,等.ETM+影像亚像元级城市土地覆盖组分丰度提取——以南京市为例[J].地理与地理信息科学,2008,24(2):17-22.
    [18]李霞,王飞,徐德斌,等.基于混合像元分解提取大豆种植面积的应用探讨[J].农业工程学报,2008,24(1):213-217.
    [19]Gertner G, Wang G, Anderson A B, et al. Combining stratification and up-scaling method-block cokriging with remote sensing imagery for sampling and mapping an erosion cover factor[J]. Ecological Informatics,2007,2(4):373-386.
    [20]Franke J, Roberts D A, Halligan K, et al. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments[J]. Remote Sensing of Environment,2009,113(8):1712-1723.
    [21]Roberts D A, Gardner M, Church R, et al. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models[J]. Remote Sensing of Environment,1998, 65(3):267-279.
    [22]陈水森.基于波谱库的作物纯像元识别与种植面积遥感估算[J].北京:中国科学院研究生院,2005.
    [23]Rogge D M, Rivard B, Zhang J, et al. Integration of spatial-spectral information for the improved extraction of endmembers[J]. Remote Sensing of Environment,2007,110(3):287-303.
    [24]Silvan-Cardenas J L, Wang L. Retrieval of subpixel Tamarix canopy cover from Landsat data along the Forgotten river using linear and nonlinear spectral mixture models[J]. Remote Sensing of Environment,2010,114(8):1777-1790.
    [25]Lu D, Moran E, Batistella M. Linear mixture model applied to Amazonian vegetation classification[J]. Remote Sensing of Environment,2003,87(4):456-469.
    [26]http://www.imagetekinfo.com. ENVI二次开发指南.北京:航天星图科技有限公司,2006.
    [27]Roberts D A, Dennison P E, Gardner M, et al. Evaluation of the potential of Hyperion danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,06(41):1297-1310.
    [28]Dennison P E, Roberts D A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE[J]. Remote Sensing of Environment,2003,87(2-3): 123-135.
    [29]Dennison P E, Halligan K Q, Roberts D A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper[J]. Remote Sensing of Environment,2004,93(3):359-367.
    [30]耿修瑞.高光谱遥感图像目标探测与分类技术研究[D].北京:中国科学院研究生院,2005.
    [31]王桥,吴传庆,厉青.环境一号卫星及其在环境监测中的应用[J].遥感学报,2010,14(1):104-121.
    [32]熊文成,魏斌,孙中平,等.基于环境一号卫星B星CCD与红处相机融合的澳洲火灾监测[J].遥感技术与应用,2010,25(2):178-182.
    [33]朱利,姚延娟,吴传庆,等.基于环境一号卫星的内陆水体水质多光谱遥感监测[J].地理与地理信息科学,2010,26(2):81-84.
    [34]欧文浩,苏伟,薛文振,等.基于HJ-1卫星影像的三大农作物估产最佳时相选择[J].农业工程学报,2010,(11):176-182+385.
    [35]Lu D, Weng Q. Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+imagery[J]. Photogrammetric Engineering & Remote Sensing,2004,9(70):1053-1062.
    [36]Lu D, Weng Q. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA[J]. Remote Sensing of Environment,2006,104(2):157-167.
    [1]周冬琴.基于冠层反射光谱的水稻氮素营养与籽粒品质监测[D].南京农业大学,2007.
    [2]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003:73-80.
    [3]曾建敏,崔克辉,黄见良.水稻生理化特性对氮肥的反应及与氮利用效率的关系[J].土壤通报,2009,40(1):100-104.
    [4]张浩,姚旭国,张小斌,等.区域水稻穗期叶片氮素的遥感估测初探[J].核农学报,2009:364-368.
    [5]de Asis A M. Omasa K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62:309-324.
    [6]Oza S R, Panigrahy S, Parihar J S. Concurrent use of active and passive microwave remote sensing data for monitoring of rice crop[J]. International Journal of Applied Earth Observation and Geoinformation,2008,10:296-304.
    [7]Ryu C, Suguri M, Umeda M. Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing[J]. Biosystems Engineering,2009,104: 465-475.
    [8]Feng W, Yao X, Zhu Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat[J]. European Journal of Agronomy,2008,28:394-404.
    [9]Zhu Y, Yao X, Tian Y, et al. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice[J]. International Journal of Applied Earth Observation and Geoinformation,2008,10:1-10.
    [10]田永超,朱艳,姚霞,等.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007:1454-1463.
    [11]朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报,2006:3463-3469.
    [12]姚霞,田永超,刘小军,等.不同算法红边位置监测小麦冠层氮素营养指标的比较[J].中国农业科学,2010:2661-2667.
    [13]薛利红,曹卫星,罗卫红,等.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003:807-812.
    [14]姚霞,朱艳,冯伟,等.监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数[J].光谱学与光谱分析,2009:2191-2195.
    [15]Tian Y C, Yao X, Yang J, et al. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance[J]. Field Crops Research,2011,120:299-310.
    [16]易秋香.不同遥感水平水稻氮素信息提取研究[D].浙江大学,2008.
    [17]鞠昌华,田永超,朱洪芬,等.基于LISS4数据的小麦氮素营养状况反演研究[J].农业工程学报,2008:150-154.
    [18]马建文,韩秀珍,哈斯巴干,等.东亚飞蝗灾害的遥感监测实验[J].国土资源遥感,2003:51-55.
    [19]王桥,吴传庆,厉青.环境一号卫星及其在环境监测中的应用[J].遥感学报,2010,v.14:104-121.
    [20]朱利,姚延娟,吴传庆,等.基于环境一号卫星的内陆水体水质多光谱遥感监测[J].地理与地理信息科学,2010,v.26:81-84+113.
    [21]王丽霞,卢雁,石磊.“环境一号”卫星在轨测试与应用能力分析[J].环境保护与循环经济,2009,29(164):48-51.
    [22]钟仕全,莫建飞,陈燕丽,等.基于HJ-1B卫星遥感数据的水稻识别技术研究[J].遥感技术与应用,2010,25(114):464-468.
    [23]欧文浩,苏伟,薛文振,等.基于HJ-1卫星影像的三大农作物估产最佳时相选择[J].农业工程学报,2010:176-182+385.
    [24]龙飞,赵英时.多角度NOAA卫星数据地面BRDF反射率的大气校正[J].遥感学报,2002:173-178.
    [25]刘其悦.基于环境星数据可见光、近红外波段的大气校正方法研究[D].河南理工大学,2010.
    [1]王人潮,黄敬峰.水稻遥感估产[M].中国农业出版社,2002.
    [2]任建强,陈仲新,周清波,等.基于叶面积指数反演的区域冬小麦单产遥感估测[J].应用生态学报,2010:2883-2888.
    [3]Prasad A K, Chai L, Singh R P, et al. Crop yield estimation model for Iowa using remote sensing and surface parameters[J]. International Journal of Applied Earth Observation and Geoinformation, 2006,8:26-33.
    [4]Wang Y P, Chang K W, Chen R K, et al. Large-area rice yield forecasting using satellite imageries[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12: 27-35.
    [5]程乾.MODIS数据提高水稻卫星遥感估产精度稳定性机理与方法研究[D],浙江大学,2005.
    [6]黄敬峰,杨忠恩,王人潮,等.基于GIS的水稻遥感估产模型研究[J].遥感技术与应用,2002,17(3):125-128.
    [7]Daleziosl N, Domenikiotis C, Loukas A, et al. Cotton yield estimation based on NOAA/AVHRR produced NDVI[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,26(3):247-251.
    [8]唐延林,黄敬峰,王人潮,等.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171.
    [9]Zhao D, Reddy K, Kakani V, et al. Canopy reflectance in cotton for growth assessment and lint yield prediction[J]. Europ. J. Agronomy,2007,26:335-344.
    [10]Moriondo M, Maselli F, Bindi M. A simple model of regional wheat yield based on NDVI data[J]. Europ. J. Agronomy,2007,26:266-274.
    [11]林文鹏,黄敬峰,胡小猛,等.基于MODIS温度植被角度指数的农作物估产模型研究[J].红外与毫米波学报,2010:476-480.
    [12]任建强,陈仲新,周清波,等.基于时序归一化植被指数的冬小麦收获指数空间信息提取[J].农业工程学报,2010:160-167.
    [13]薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,2005,9(1):100-105.
    [14]彭代亮,黄敬峰,王福民,等.基于空间分析与两维图论聚类的湖南水稻遥感估产分区[J].农业工程学报,2010:156-161.
    [15]欧文浩,苏伟,薛文振,等.基于HJ-1卫星影像的三大农作物估产最佳时相选择[J].农业工程 学报,2010:176-182+385.
    [16]Chen J, Jonsson P, Tamura M, et al.2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter [J]. Remote Sens Environ,91:332-344.
    [17]Deasy J O. Denoising of electron beam Monte Carlodose distributions using digital filtering techniques[J]. Phys Med Biol,2000,45(7):1765-1779.
    [18]Narasimhan RL, Chandra H. The application of remote sensing to agricultural statistics [J]. Indian J Agric Econ,2000,55:120-124.
    [19]郝成元,马春艳,朱宗泽.基于NOAA/AVHRR和Terra/MODIS数据的植被指数季节信息比较[J].地理与地理信息科学,2009:30-33.
    [20]姚延娟,陈良富,柳钦火,等.基于波谱知识库的MODIS叶面积指数反演及验证[J].遥感学报,2006,10(6):869-87.
    [1]朱利,姚延娟,吴传庆,等.基于环境一号卫星的内陆水体水质多光谱遥感监测[J].地理与地理信息科学,2010,26(2):81-84.
    [2]武永利,王云峰,张建新,等.应用线性混合模型遥感监测冬小麦种植面积[J].农业工程学报,2009,25(2):136-140.
    [3]李霞,王飞,徐德斌,等.基于混合像元分解提取大豆种植面积的应用探讨[J].农业工程学报,2008,24(1):213-217.
    [4]耿修瑞.高光谱遥感图像目标探测与分类技术研究[D].北京:中国科学院研究生院,2005.
    [5]李素,李文正,周建军,等.ETM+影像亚像元级城市土地覆盖组分丰度提取——以南京市为例[J].地理与地理信息科学,2008,24(2):17-22.
    [6]Gertner G, Wang G, Anderson A B, et al. Combining stratification and up-scaling method-block cokriging with remote sensing imagery for sampling and mapping an erosion cover factor[J]. Ecological Informatics,2007,2(4):373-386.
    [7]Busetto L, Meroni M, Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment,2008, 112:118-131.
    [8]Roberts D A, Dennison P E, Gardner M, et al. Evaluation of the potential of Hyperion for?re danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,06(41):1297-1310.
    [9]Roberts D A, Gardner M, Church R, et al. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models[J]. Remote Sensing of Environment,1998, 65(3):267-279.
    [10]Powell R L, Roberts D A, Dennison P E, et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:Manaus, Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267.
    [11]Franke J, Roberts D A, Halligan K, et al. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments[J]. Remote Sensing of Environment,2009,113(8):1712-1723.
    [12]Eckmann T C, Roberts D A, Still C J. Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS[J]. Remote Sensing of Environment,2008,112(10): 3773-3783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700