不同下垫面类型动力学粗糙度与热力学粗糙度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地气相互作用是气候系统的重要组成部分,也是地球系统和全球气候变化研究的基础。深入研究地气相互作用,更合理、恰当地描述关键地表参数(空气动力学粗糙度、热力学粗糙度),能够改进区域能量平衡的估算,并提高陆面模式和遥感模型模拟结果的准确性。本项研究利用馆陶站、阿柔站和北京325米气象塔自动气象站和涡动相关仪的观测资料,估算了其空气动力学粗糙度和热力学粗糙度,分析了其时空变化特征,并将估算值与相应参数化方案进行了比较。主要研究结论为:
     (1)通过分析比较,确定Yang et al(2003)方法为空气动力学粗糙度的最优算法,其计算结果能准确地反映出农田和草地两种下垫面空气动力学粗糙度的季节性变化特征。农田下垫面的空气动力学粗糙度随风向变化明显,草地下垫面的空气动力学粗糙度随风向变化不明显。空气动力学粗糙度季节性变化与植被高度呈显著线性关系,与叶面积指数呈抛物线关系。通过将不同参数化方案的计算结果与估算值进行比较,发现每种方案在不同下垫面都有一定的局限性,不同参数化方案的表现并不完全一致。对于农田、草地下垫面而言,计算结果与估算值较为接近的参数化方案分别为M_z0m4、M_z0m1。
     (2)各种下垫面的kB-1值的日变化具有一定的频率分布规律。除玉米下垫面、玉米和裸地混合下垫面之外,其余下垫面的kB"1均呈现抛物线型日变化,与地气温差密切相关。均匀植被下垫面kB-1值的变化呈正态分布,用均值、中值的kB-1计算感热通量的估算误差在2%左右,因此可以将该类下垫面的kB-1赋予一个常数进行研究。而在其他下垫面,kB-1都是一个难以确定的变化量,需另外建立适合的kB-1参数化模型。通过对7种参数化方案的感热通量计算值与观测值之间的比较发现,裸地下垫面的计算结果与观测值最为接近的参数化方案是M_1989a、M_1998方案;混合地表下垫面的计算结果与观测值最为接近的参数化方案是M_1958、M_1963、M_2007b方案。M_1982方案、M_2002方案存在局限性,不适合本项研究中的下垫面。
     (3)北京城市下垫面的空气动力学粗糙度具有明显的方向性,在盛行风向90°~180°范围内计算出的z0m值达到1.78m;热力学粗糙度有明显的变化范围且具有一定的频率分布规律。城市下垫面的z0m值和kB-1的统计值明显高于郊区下垫面(农田和草地)下垫面。
The land-atmosphere interaction is not only an important part of the climate system, but also the foundation of studying the earth system and global climate change. It provides a more reliable basis for the improvement of regional energy balance estimate and atmospheric numerical model, in-depth understanding of land-atmosphere interaction by describing the key land surface parameters (z0m, z0h) more reasonably and more aptly. In this paper, based on the data of Eddy Covariance (EC) system and Automatic Weather Station (AWS) collected at Guantao, A'Rou sites in2010and Beijing325m tower in2007, the value of z0m and zoh are estimated. And then the characteristics of spatial and temporal change are analyzed with these estimation values, which are compared with the ones modeling by different parameterization schemes. The result shows that
     (1) Yang et al.(2003) is the best method of all estimation ones chose here and its calculation results reveals seasonal variation of z0m in both crop and grass surfaces accurately. Contrast to A'Rou site, the directional characteristics of z0m is obvious in Guantao site. The value of aerodynamic roughness length changes with wind direction due to the morphological character difference of the roughness elements within corresponding source areas on various wind direction. In addition, the z0m is essentially related to characteristics of the roughness elements, which showing a linear relationship with the vegetation height and a parabolic relationship with Leaf Area Index (LAI). Meanwhile, different parameterization method has its own limitations on various land types, in which the results using M_zom4and M_zoml is most close to the estimation ones at Guantao and A'Rou sites, respectively.
     (2) The values of kB-1have a obvious range on different underlying surface, which has a diurnal variation and also a good correlation with surface-air temperature difference, except maize and maize/bare soil surface. On uniform vegetation, the change of kB-1exhibits a normal distribution pattern. The sensible heat flux error is about2%with a median or mean value of kB-1, so that kB-1can set at a fixed value on this surface. On others, kB-1is a changing value and need model modeling. Comparing sensible heat flux using seven parameterization schemes with the observed values, results of M_1989a and M_1998are most close to the observe value on bare soil while on mixed terrain surface, M_1958, M_1963and M_2007b are the best ones compared with observe value. M_1982and M_2002both have limitation on all surfaces.
     (3) On Beijing city underlying surface, z0m has obvious directivity,1.78m in the prevailing wind direction from90degree to180degree. kB-1has obvious variation range, and has a certain pattern of frequency distribution. Comparing with underlying surface of suburb (farmland and grassland), statistical values of kB-1is significantly higher.
引文
[1]刘罡,蒋维楣,罗云峰.非均匀下垫面边界层研究现状与展望[J].地球科学进展,2005,20(2):223-230.
    [2]Pao Richardson H F. Fluid Mechanics [M] New York.1967.
    [3]D.H.McIntosh. Meteorologieal Glossary[M].London.1963:8,217.
    [4]Garratt J R. The atmospheric boundary layer[M]. Cambridge University Press,1992:87.
    [5]Waters R, Allen R, Bastiaanssen W, et al. Surface energy balance algorithms for land, Idaho implementation, advanced training and users manual[M]. Version 1,2002.
    [6]刘和平,刘树华,朱廷曜,等.森林冠层空气动力学参数的确定[J].北京大学学报(自然科学版),1997,33(4):522-528.
    [7]徐祥德,周明煜,陈家宣,等.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学(D辑:地球科学),2001,31(5):428-441.
    [8]赵晓松,关德新,吴家兵,等.长白山阔叶红松林的零平面位移和粗糙度[J].生态学杂志,2004,23(5):84-88,115.
    [9]张文煜,白庆梅,张秀珍,等.渤海南岸空气动力学粗糙度和动量通量特征[J].兰州大学学报(自然科学版),2008,44(4):62-65.
    [10]张杰,黄建平,张强.稀疏植被区空气动力学粗糙度特征及遥感反演[J].生态学报,2010,30(11):2819-2827.
    [11]Owen P R and Thomson W R. Heat transfer across rough surfaces[J]. Journal of Fluid Mechanics,1963,15:321-334.
    [12]Chamberlain A C. Transport of gases to and from grass and grass-like surfaces[M]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1966,290:236-265.
    [13]Brutsaert W. Evaporation into the Atmosphere[M]. D. Reidel Publishing Company, Dordrecht,1982:121-127.
    [14]Thom A S. Momentum, mass and heat exchange of plant communities[M]. In:J. L. Monteith(Editor). Vegetation and the Atmosphere, Principles. Academic Press, New York,1975,1:57-109.
    [15]Garratt J R and Hicks B B. Momentum, Heat and Water Vapor Transfer to and from Natural and Artificial Surfaces[J]. Quarterly Journal of the Royal Meteorological Society, 1973,99:680-687.
    [16]Verhoef W, De Bruin H A R, van den Hurk, et al. Some practical notes on the parameter for sparse vegetation[J]. Journal of Applied Meteorology,1997,36: 560-572.
    [17]Yang K, Koike T, Ishikawa H, et al. Turbulent flux transfer over bare soil surfaces: Characteristics and parameterization[J]. J Appl Meteorol Clim,2008,40:276-290.
    [18]Kustas W P, Choudhury B J, Moran M S, et al. Determination of sensible heat flux over sparse canopy using thermal infrared data[J]. Agricultural and Forest Meteorology, 1989a,44:197-216.
    [19]Stewart J B, Kustas W P, Humes K S, et al. Sensible heat flux-radiometric surface temperature relationship for eight semi-arid areas[J]. Journal of Applied Meteorology, 1994,33:1110-1117.
    [20]Troufleou D, Lhomme J P, Monteny B, et al. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of the parameter[J]. Journal of Hydrology,1997,188-189:815-838.
    [21]贾立,王介民,胡泽勇,等.干旱区热力学粗糙度特征及对感热通量估算的影响[J].高原气象,2000,19(4):495-503.
    [22]Grimmond C S B, King T S, Roth M, et al. Aerodynamic roughness of urban areas derived from wind observations[J]. Boundary-Layer Meteorology,1998,89:1-24.
    [23]Stears C R. Determining surface roughness and displacement height[J]. Boundary-Layer Meteor.,1970,1:102-110.
    [24]De Bruin H A R and Moore C J. Zero-plane displacement and roughness length for tall vegetation derived from a simple mass conservation hypothesis[J]. Boundary-Layer Meteorology,1985,31:39-49.
    [25]Lo, A.K. On the determination of zero-plane displacement and roughness length for flow over forest canopies[J]. Boundary-Layer Meteorology,1990,51:255-268.
    [26]Grimmond C S Band Oke T R. Aerodynamic properties of urban areas derived from analysis of surface form[J]. Journal of Applied Meteorology,1999,38(9):1262-1292.
    [27]周艳莲,孙晓敏,朱治林,等.几种典型地表粗糙度计算方法的比较研究[J].地理研究,2007,26(5):887-896.
    [28]陈家宜,王介民,光田宁.一种确定地表粗糙度的独立方法[J].大气科学,1993,17(1):21-26.
    [29]高志球,卞林根,逯昌贵,等.城市下垫面空气动力学参数的估算[J].应用气象学报,2002,13(S1):26-33.
    [30]胡张保,俞炳丰.城市下垫面空气动力学参数确定方法综述[J].气象与环境学报,2008,24(5):55-60.
    [31]Martano P. Estimation of surface roughness length and displacement height from single-level sonic anemometer data[J]. Journal of Applied Meteorology,2000,39: 708-715.
    [32]尚伦宇,吕世华,张宇,等.青藏高原东部土壤冻融过程中地表粗糙度的确定[J].高原气象,2010,29(1):17-22.
    [33]贾立,王介民,MassimoMenenti卫星遥感结合地面资料对区域表面动量粗糙度的估算[J].大气科学,1999,23(5):632-642.
    [34]茅宇豪,刘树华,李婧.不同下垫面空气动力学参数的研究[J].气象学报,2006,64(3):325-334.
    [35]何奇瑾,周广胜,周莉,等.盘锦芦苇湿地空气动力学参数动态特征及其影响因素分析[J].气象与环境学报,2007,23(4):7-12.
    [36]LU Li, LIU shaomin, XU Ziwei, et al. The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces[J]. Advances in Atmospheric Sciences,2009,26(1):180-190.
    [37]胡文超,张文煜,张宇,等.河西走廊下垫面粗糙度实测值与模拟值的差异性分析[J].高原气象,2010,29(1):51-55.
    [38]吕萍,董治宝.戈壁风蚀面与植被覆盖面地表性质粗糙度长度的确定[J].中国沙漠,2004,33(3):279-285.
    [39]Garratt J R. The atmospheric boundary layer[M]. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge,UK,1992:316.
    [40]Azevedo P V and Verma S B. Aerodynamic characteristics of grain sorghum[J]. Agricultural and Forestry Meteorology,1986,38:193-204.
    [41]Mathias A D, Kustas W P, Gay L W, et al. Aerodynamic parameters for a sparsely roughened surface composed of small cotton plants and ridged soil[J]. Remote Sensing of Environment,1990,32:143-153.
    [42]Hatfield J L. Aerodynamic properties of partial canopies[J]. Agricultural and Forestry Meteorology,1989,46:15-22.
    [43]Lettau H. Note on aerodynamic roughness-parameter estimation on the basis of roughness element description[J]. J. Appl. Meteorol.,1969,8(5):828-832.
    [44]Raupach M R. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index[J]. Bound.-Lay. Meteorol., 1994,71(1-2):211-216.
    [45]MacDonald et al. An improved method for the estimation of surface roughness of obstacle arrays[J]. Atmos. Environ.,1998,32(11):1857-1864.
    [46]J. Colin and R. Faivre. Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China[J]. Hydrology and Earth System Sciences Discussions,2010,7:3397-3421.
    [47]Zhang R, Wang J, Zhu C, et al. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image[J]. Science in China, Ser. D,2004,12:1134-1146.
    [48]马耀明,塚本修,王介民,等.青藏高原草甸下垫面上的动力学和热力学参数分析[J].自然科学进展,2001,11(8):824-828.
    [49]Ma Y, Tsukamoto O, Wang J, et al. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau[J]. Progress in Natural Science,2002,12(1):36-40.
    [50]Jia L. Modeling heat exchanges at the land-atmosphere interface using multi-angular thermal infrared measurements[M]. Wageningen University,2004, ISBN 90-8504-041-8: 199.
    [51]Sheppard P A. Transfer across the earth's surface and through the air above[J]. Quarterly Journal of Royal Meteorological Society,1958,84:205-224.
    [52]Thom A S. Momentum, mass, and heat exchange of vegetation[J]. Quart, J. Roy. Meteor. Soc.,1972,98:124-134.
    [53]Brutsaert W H. Evaporation into Atmosphere[M]. Dordrecht in Hollard:Reidel D Pablishing Company,1982:121-127.
    [54]Zeng X and Dickinson R E. Effect of surface sublayer on surface skin temperature and fluxes[J]. Journal of Climate,1998,11:537-550.
    [55]Meelis Molder, A.L. Dependence of factor on roughness Reynolds number for barley and pasture. Agricultural and Forest Meteorology,2001,106(2001).
    [56]Kanda M, M Kanega, T Kawai, et al. Roughness lengths for momentum and heat derived from outdoor urban scale models[J]. J. Appl. Meteor. Climatol.,2007,46: 1067-1079.
    [57]Yang K, Koike T and Yang D. Surface flux parameterization in the Tibetan Plateau[J]. Boundary-layer Meteorology,2003,116:245-262.
    [58]Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6:85-99.
    [59]张宏异,陈家宜.非单一水平均匀下垫面空气动力学参数的确定[J].应用气象学报,1997(03).
    [60]Voogt J A and Grammond C S B. Modeling Surface Sensible Heat Flux Using Surface Radiative Temperatures in a Simple Urban Area[J]. American Meteorological Society, 2000:1679-1699.
    [61]Brutsaert W and M Sugita. Sensible heat transfer parameterization for surface with anisothermal dense vegetation[J]. J. Atmos. Sci.,1996,53:209-216.
    [62]白洁,刘绍民,丁晓萍.海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J].地球科学进展,2010,25(11):1187-1198.
    [63]刘雅妮,辛晓洲,柳钦火,等.基于多尺度遥感数据估算地表通量的方法及其验证分析[J].地球科学进展,2010,25(11):1261-1272.
    [64]徐阳阳,刘树华,胡非,等.北京城市化发展对大气边界层特性的影响[J].大气科学,2009,33(4):859-867.
    [65]徐自为,刘绍民,宫丽娟.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展,2008,23(4):357-370.
    [66]Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-Layer Meteorology,1977,11:355-361.
    [67]Foken T, Gockede M, Mauder M, et al. Post-field data quality control//Lee X, Massman M, Law B(eds.) Handbook of micrometeorology. A guide for surface flux measurement and analysis. KluwerAcademic, Boston,2004:181-208.
    [68]Taylor GI. The spectrum of turbulence[M]. Proc.Roy.Soc.London,1938, A164:476-490.
    [69]Willis G E and Deardorff J W. On the use of Taylor's translation hypothesis for diffusion in the mixed layer[J]. Quart.J.R.Meteorol.Soc.,1976,102:817-822.
    [70]Kentaro Takagi, Akira Miyata, Yoshinobu Harazonol, et al. An alternative approach to determining zero-plane displacement, and its application to a lotus paddy field[J]. Agricultural and Forest Meteorology,2003,115:173-181.
    [71]甄晓杰,盘锦芦苇湿地参数化方案研究[D].2009,中国气象科学研究院.
    [72]Matthias Mauder, Claudia Liebethal, Mathias Gockede, et al. Processing and quality control of flux data during LITFASS-2003[J]. Boundary-Layer Meteorology,2006,121: 67-88.
    [73]Yutaka Izumiand Morton L B. Wind speeds as measured by cup and sonic anemometers and influenced by tower structure[J]. Journal of Applied Meteorology,1970,12: 851-856.
    [74]Guo X, Yang K, Zhao L, et al. Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier[J]. Boundary-Layer Meteorology,2011: 1-26.
    [75]周艳莲,孙晓敏,朱治林,等.几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响[J].中国科学.D辑:地球科学,2006,36(S1):244-254.
    [76]Brutsaert W A. Evaporation into the Atmosphere[M]. Dordrecht in Holland, D. Reidel Publishing Company,1982:113-121.
    [77]Monteith J L. Principles of environmental physics[M].1973(Arnold, London).
    [78]Zeng X and Wang A. Consistent parameterization of roughness length and displacement height for sparse and dense canopies in land models[J]. Journal of Hydrometeorology, 2007,8:730-737.
    [79]Bastiaanssen W G M and Bandara K M P S. Evaporative depletion assessments for irrigated watersheds in Sri Lanka[J]. Irrigation Science,2001,21(1):1-15.
    [80]Teixeira A H D C, Bastiaanssen W G M, Ahmad M D, et al. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil Part A:Calibration and validation[J]. Agricultural and Forest Meteorology,2009,149(3-4):462-476.
    [81]Tian X, Li Z Y, C van der Tol, et al. Estimating zero-plane displacement height and aerodynamic roughness length using synthesis of LiDAR and SPOT-5 data[J]. Remote Sensing of Environment,2011,115:2330-2341.
    [82]Kormann R and Meixner F. An Analytical Footprint Model For Non-Neutral Stratification[J]. Boundary-Layer Meteorology,2001,99(2):207-224.
    [83]宫丽娟,刘绍民,双喜,等.涡动相关仪和大孔径闪烁仪观测通量的空间代表性[J].高原气象,2009,28(2):246-257.
    [84]Javis P G, James G B and Landsberg J J. Coniferous forests. In:Vegetation and Atmosphere[M] (J. L. Monteith. Ed.). Academic Press, New York 1976:171-240.
    [85]Moran M S, Kustas W P, Vidal A, et al. Use of ground-based remotely sensed data for surface energy balance evaluation of a semi-arid rangeland[J]. Water Resour. Res.,1994, 30:1339-1349.
    [86]郭建侠,华北玉米下垫面湍流输送特征及参数化方案比较研究[D].2006,南京信息工程大学:南京.
    [87]贾立,王介民,.绿洲-沙漠复合地表条件下的局地和有效粗糙度[J].气象学报,1999(03):346-357.
    [88]Sun J. Diurnal Variations of Thermal Roughness Height over a Grassland[J]. Boundary-Layer Meteorol,1999,92:404-427.
    [89]Brutsaert W. Evaporation into the atmosphere:theory, history, and applications[M]. In: Environmental Fluid Mechanics. D. Reidel, Dordrecht,1982:299
    [90]Shaw R H and Pereira A R. Aerodynamic roughness of a plant canopy:a numerical experiment[J]. Agricultural Meteorology,1982,26:51-65.
    [91]Brutsaert W. Evaporation into the Atmosphere[M]. D. Reidel Publishing Company, Dordrecht,1982:352.
    [92]Garratt J R. The atmospheric boundary layer[M]. Combridge:Cambridge University Press,1992:89.
    [93]Sugita M and Brutsaert W. Regional surface fluxes from remotely sensed skin temperature and lower boundary measurement[J]. Water Resources Research,1990,26: 2937-2944.
    [94]Kohseik W, De Bruin H A R, The H, et al. Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements[J]. Boundary-Layer Meteorology,1993,63:213-230.
    [95]Blyth E M and Dolman A J. The roughness length for heat of sparse vegetation[J]. Journal of Applied Meteorology,1995,34:583-585.
    [96]Lomme J P, Troufleau D, Monteny B, et al. Sendible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the kB-1 parameter[J]. Journal of Hydrology,1997,188-189:839-854.
    [97]Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J]. J. Meteor. Soc.,2007b,85:229-242.
    [98]Paulson C A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer[J]. Journal of Applied Meteorology,1970,9: 857-861.
    [99]Webb E K. Profile relationships:the log-linear range and extension to strong stability[J]. Quarterly Journal of the Royal Meteorological Society,1970,96:67-90.
    [100]Businger J A, Wyngaard J C, Izumi Y, et al. Flux profile relationships in the atmospheric surface layer[J]. Journal of Atmospheric Sciences,1971,28:181-189.
    [101]Liu Shaomin, Lu L, Mao D, et al. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements[J]. Hydrol. Earth Syst. Sci.,2007,11: 769-783.
    [102]Xu Tongren, Liu Shaomin, Liang Shunlin, et al. Improveing predictions of water and heat fluxes by assimilating MODIS land surface temperature products into common land model[J]. Journal of Hydrometeorology,2011,12(2):227-244.
    [103]Garratt J R and Francey R J. Bulk Characteristics of Heat Transfer in the Unstable Baroclinic Atmospheric Boundary Layer[J]. Boundary-Layer Meteorology,1978,15: 399-421.
    [104]Su Z, Schmugge T, Kutas W P, et al. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere[J]. Journal of Applied Meteorology,2001,40:1933-1951.
    [105]Massman W J. A model study of kBH-1 for vegetated surfaces using "localized near-field" Lagrangian theory[J]. Journal of Hydrology,1999,223:27-43.
    [106]Choudhury B J and Monteith J L. A four-layer model for the heat budget of homogeneous land surfaces[J]. Quarterly Journal of Royal Meteorological Society,1988, 11:373-398.
    [107]孙继松,舒文军.北京城市热岛效应对冬夏季降水的影响研究[J].大气科学,2007,31(2):311-320.
    [108]刘辉志,洪钟祥.北京城市下垫面边界层湍流统计特征[J].大气科学,2002,26(2):241-248.
    [109]刘世俊.北京城市边界层中低空风切变研究[D].南京信息工程大学硕士学位论文,2005.
    [110]黄鹤,李英华,韩素芹,等.天津城市边界层湍流统计特征[J].高原气象,2011,30(6):1481-1487.
    [111]蒋维梅,陈燕.人为热对城市边界层结构影响研究[J].大气科学,2007,31(1):37-47.
    [112]王金星,卞林根,高志球,等.城市边界层湍流和下垫面空气动力学参数观测研究[J].气象科技,2002,30(2):65-79.
    [113]张强,吕世华.城市表面粗糙度长度的确定[J].高原气象,2003,22(1):24-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700