磷酸钙盐/Al_2O_3-金属生物复合材料体系的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于可同时具备良好的生物相容性与优异的机械力学性能,磷酸钙盐/金属复合材料被认为是最有希望应用于硬组织修复与替换的体系之一。目前所开发的技术,如等离子喷涂、离子束辅助沉积和溶胶-凝胶等,已证明很难在金属表面构造持久可靠的磷酸钙盐生物陶瓷涂层。而包括电结晶、电泳沉积、电镀共沉积和阳极氧化等在内的电化学涂层制备技术,由于工艺简单、可在表面形貌复杂的基体上制备均一复合生物涂层,在硬组织材料领域具有很高的应用价值。
     本文以高纯Ti表面物理气相沉积(PVD)Al膜的Al-Ti为基体材料,采用阳极氧化-水热处理复合制备技术制备磷酸钙盐-Al_2O_3/Al-Ti生物复合材料体系;另外,采用先阳极氧化,再分别用NaH_2PO_4和Ca(OH)_2溶液浸渍处理,最后于模拟体液(SBF)中诱导沉积的多步法成功构造了钙磷陶瓷-Al_2O_3/Al复合材料体系。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)、X射线电子能谱(EDAX)、X射线衍射(XRD)表征了阳极氧化前后铝膜和钙磷生物陶瓷涂层的微观形貌、元素构成以及晶相成分。研究结果表明:
     (1)采用物理气相沉积法在Ti片表面制备了厚度为1~5μm的纯铝膜。铝膜厚度与偏转电压、沉积时间、Al靶电流以及基底材料的导电性能等PVD处理参数相关;其中,沉积时间和Al靶电流对铝膜厚度的影响最为明显;铝膜表面粗糙度则受制于Ti片抛光程度以及铝膜厚度。
     (2)采用阳极氧化及水热处理复合技术,成功研制出了具有纳米、纤维管状结构特征的块状磷酸钙盐-Al_2O_3/Al-Ti生物复合材料新体系。将Al-Ti基底在以乙酸钙和β-甘油磷酸钠为主要组分的电解质中阳极氧化,合成了含有Ca、P元素的多孔氧化铝膜,膜孔大小介于10~50nrn之间,呈疏散排布;氧化程度较高的多孔氧化铝膜宜在30~60V电压下制备。上述阳极氧化膜经水热处理,得到了内部致密、外部疏松,由长150~250nm,宽100nm的酸性磷酸钙和三斜磷酸钙块状晶体构成的生物陶瓷涂层。
     块状晶体以212℃,2.0MPa条件下水热生长8h为宜;在去离子水中性环境中,此陶瓷涂层晶体的形核与长大速率相当。
     (3)提高电解质中钙源与磷源浓度,制成了含有更多Ca、P元素,针孔孔径在30~80nm间的多孔氧化铝膜。将此阳极氧化铝膜在稀磷酸水溶液(1:800)中212℃,2.0MPa条件水热处理8h,构造了由直径为7~30nm、长度为200~650m并相互交连成网状的磷酸钙盐(水合CaHPO_4(brushite)与CaHPO_4(monetite))
    
    针状晶体构成的陶瓷涂层,该钙磷涂层具有一定的仿生结构特征。
     浓度差、电势差分别是Ca、P元素进入多孔氧化铝膜的主要推动力,且Ca、
    P元素可能分别以Cao、[P 04]基团的形式进入多孔氧化铝膜,写出了相关的化
    学反应方程式。进一步证明了酸性介质是针状钙磷陶瓷晶体生长的必要条件。
     (4)AI片在磷酸溶液中进行恒直流阳极氧化经历了致密阻挡层的快速形成、
    多孔层的初步生长以及多孔层孔洞的进一步发展三个连续阶段。获得了孔径在
    50-15Onln之间的大孔洞。而Al片在碱性的磷酸钠介质中恒电压处理时发生了过
    氧化行为,形成了在直径150一Zoonm的大坑(或称之为浅洞)底部分布着直径
    为30礴Onln的大量细孔的多孔氧化铝膜。
     经预浸渍加仿生矿化沉积多步处理,上述多孔膜表面均能诱导沉积钙磷陶瓷
    涂层,这归因于多孔氧化铝能够吸附磷酸钙盐晶体生长所需的P04H:活性基团;
    且过氧化多孔氧化铝膜吸附PO4HZ基团的能力要比常规多孔氧化铝膜强。目前对
    钙磷陶瓷/金属体系的交流阻抗谱研究预示了仿生沉积钙磷陶瓷/A 1203复合涂层
    极有希望用于制作硬组织领域用生物传感器。
Calcium phosphate/metal composite, which may simultaneously achieve good biocompatibility and good mechanical properties, is expected as one of the most suitable systems for hard tissue repair and replacement. It is reported that calcium phosphate bioceramic coatings on metals with reliable and long-life performances cannot be easily obtained by using some developed technologies, such as plasma spray, ion beam assistant deposition, thermal spray deposition, and sol-gel method. Due to their simple preparation arts and the ability of obtaining uniform composite biocoatings on substrates, the electrochemical methods, which include electrocrystallization, electrophoretic deposition, electro-codeposition, and anodization, are considered to be useful for the application as artificial implant materials.
    In this study, pure Al thin film was PVD-deposited on medical titanium to form Al-Ti substrate. Al-Ti substrate was then applied to the hybrid technique of anodization and hydrothermal treatment to fabricate nanometric calcium phosphate/Al2O3 porous biocomposite coating on Al-Ti substrate. In addition, calcium phosphate/Al2O3-Al composite was prepared via a multi-step method, that is Al-Ti substrates with Al as the surface layer were anodized firstly, and then were subsequently immersed in NaH2PO4 and Ca(OH)2 solutions, respectively, followed by a biomimetic process conducted in a simulated body fluid (SBF). Techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX), and X-ray diffraction (XRD), were employed to study the microstructures and compositions of Al thin film, porous alumina films (PAFs) and calcium phosphate/Al2O3 biocomposite coatings. The results are indicated as bellows:
    (1) Pure Al films, thickness 1-5 n m, were deposited on Ti after PVD process. The thickness of Al films was correlated with bias voltage, deposition time, Al target current, and the substrates' conductivity. The deposition time and Al target current had strong effects on Al film thickness than other factors. The roughness of Al film mainly depended on the topography of Ti discs and the thickness of Al films.
    (2) The hybrid technique of anodization and hydrothermal treatment has led to the successful fabrication of calcium phosphate-Al2O3/Al-Ti biocomposite. During the
    
    
    
    anodization of Al-Ti substrates in electrolytes containing calcium acetate (CA) and beta -Glycerol phosphate disodium(beta -GP), the elements Ca and P were incorporated into the PAFs layer with columnar pores in the rage of 10~50nm. Additionally, cell voltages between 30V and 60V are the optimal voltage for getting high anodization degree PAFs. It is also found that after hydrothermal treatment, acidic calcium phosphate (Ca4H2(P3O10)2) and monetite formed bioceramic coatings with a specific compact-bottom and loose-top structure.
    It seems that 8h is a suitable growth time of as-prepared cloddy crystals, and that the nucleation rate of this kind of ceramic coating crystals is close to their growth rate in deionized water.
    (3) By increasing the concentrations of Ca and P sources in the anodization electrolyte, PAFs containing much more Ca and P elements were synthesized. After hydrothermally treated at 212癈 and 2.0MPa in a diluted phosphorous acid (1 I 800) for 8h, bioceramic coatings consisted of needle-like brushite and monetite were prepared. And the needle-like crystals cross-linked together resulted in the formation of biomimetic coatings with specific microstructures.
    It is also found that concentration gradient and potential difference are the main driving forces for the incorporation of Ca and P into PAFs layer. It seems that Ca and P existed in PAFs were in the forms of CaO and [PO4] groups, and some related chemical reactions were proposed. Further on, it is demonstrated that the acidic media is essential for the growth of needle-like calcium phosphate crystals.
    (4) During galvanostatic anodized in phosphorous acid, several processes happened on Al thin films: the form
引文
[1] www.nwu.edu.cn
    [2] 李爱民,孙康宁,尹衍升等.生物材料的发展、应用、评价与展望[J].山东大学学报(工学版),2002,32(3):287~293.
    [3] 姚康德,成国祥,沈锋等.组织工程用材料与系统[J].功能材料,1999,30(1):1~3.
    [4] ISO 10993-1992 International Standard: Biological evaluation of medical devices.
    [5] 国家标准GB/T 16886.1—1997医疗器械生物学评价.第一部分:试验选择指南[M].北京:中国标准出版社,1997.
    [6] 刘洪刚,程国安.生物材料的研究与展望[J].自然杂志,1998,20(6):330~334.
    [7] Langer R., Vacanti J. P. Tissue engineering[J]. Science, 1993, 260: 920~926.
    [8] Peppas N A R. New challenges in biomaterials[J]. Science, 1994, 263: 1715.
    [9] Halperin W P. Quantum size effects in metal partical[J]. Rev. Mod. Phys., 1986, 58(3): 532~539.
    [10] Lo H, Ponticiello M S, Leong K W. Fabrication of controlled release biodegradable foams by phase separation[J]. Tissue Engineering, 1995, 1: 15~28.
    [11] R. R. Kumar, M. Wangb. Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system[J]. Materials Letters, 2002, 55(3): 133-137.
    [12] 任卫,曹献英,冯凌云等.纳米羟基磷灰石合成及表面改性的途径和方法[J].硅酸盐通报,2002,1:38~43.
    [13] 邹翰.21世纪我国生物材料科学展望[J].物理,1997,26(5):264~267.
    [14] 俞耀庭,王连永,王深琪.生物医学材料发展状况与对策[R].科学时报,2002.
    [15] 曾绍先.医用生物陶瓷及临床应用[J].化学进展,1997,9(1):90~98.
    [16] Vallet-Regi, Maria. Ceramics for medical applications. J. Chem. Soc. Dalton Trans., 2001, 2: 97~108.
    [17] Hench L L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc., 1991, 74: 1487~1510.
    [18] 陆峰.人体植入金属腐蚀与防护研究的进展[J].材料保护,1995,28(6):21~22.
    [19] E. Charrierea, S. Terrazzoni, C. Pittet, et al. Mechanical characterization of
    
    brushite and hydroxyapatite cements. Biomaterials, 2001, 22(21): 2937~2945.
    [20] 袭迎祥,王迎军.羟基磷灰石生物陶瓷涂层的制备方法[J].材料开发与应用,1999,14(6):41~44.
    [21] Yang C Y, Wang B C, Wu J D, et al. The influences of plasma spraying parameters on the characteristics of hydroxyapatite coating: a quantitative study[J]. J Mater Sci., 1995, (6): 249~257.
    [22] 张建民,冯祖德,林昌健,等.电化学方法制备磷酸钙生物陶瓷镀层[J].中国陶瓷,1998,34(5):38~40.
    [23] Klassen. Cold process for hydroxyapatite coatings[P]. USP, 5458863(1995).
    [24] Miguel Manso, Carmen Jimenez. Electrodeposition of hydroxyapatite coatings in basic conditions[J]. Biomaterials, 2000, (21): 1755~1761.
    [25] M. Shirkhanzadeh. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes[J]. J Mater Sci: Mater in Med., 1995, (6): 90~93.
    [26] Riley. Modified brushite surface coating, process therefore, and low temperature conversion to hydroxyapatite[P]. USP, 6045683(2000).
    [27] S. K. Yen, C. M. Lin. Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium[J]. Mater. Chem. and Phy., 2003, 77(1): 70~76.
    [28] M. Shirkhanzadeh. Bioactive calcium phosphate coatings prepared by electrodeposition[J]. J Mater Sci Lett., 1991, (10): 1415~1417.
    [29] A. S. POSNER. The mineral of bone[J]. Clin Orthop Relat Res., 1985, 200: 87~89.
    [30] M. Shirkhanzadeh. Method for depositing bioactive coatings on conductive substrates[P]. USP, 650189(1991).
    [31] Roy D M, Eysel W, Dinger D. Hydrothermal synthesis of various carbonate containing calcium hydroxyapatite[J]. Mater Res Bull., 1974, (9): 35~40.
    [32] Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions[J]. J Dent. Apparatus and Materials, 1972, 13(27): 170~176.
    [33] Maybee, et al. Chromium alloy electrodeposition and surface fixation of calcium phosphate ceramics[P]. USP, 5338433(1994).
    [34] Teller, et al. Method for the electrodeposition of hydroxyapatite layers[P]. USP 5759376(1998)
    [35] 黄立业,憨勇,徐可为.电结晶法制备羟基磷灰石生物涂层的研究[J].材料
    
    科学与工程,1996,15(3):55~57.
    [36] 黄立业,憨勇,徐可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究[J].硅酸盐学报,1998,26(1):87~91.
    [37] 黄立业,徐可为.纳米针状羟基磷灰石涂层的制备及性能的研究[J].硅酸盐学报,1999,27(3):351~356.
    [38] 付涛,李浩,徐可为.羟基磷灰石梯度涂层的制备及其结构特征[J].硅酸盐学报,1999,27(5):622~625.
    [39] YONG HAN, KE-WEI XU. Morphology and composition of hydroxyapatite coatings prepared by hydrothermal treatment on electrodeposited brushite coatings[J]. J Mater. Sci: Mater in Med., 1999, (10): 243~248.
    [40] LI-YE HUANG, KE-WEI XU, JIAN LU. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings[J]. J Mater. Sci: Mater in Med., 2000, (11): 667~673.
    [41] Yong Han, Tao Fu, Kewei Xu. Characterization and stability of hydroxyapatite coatings prepared by an electrodeposition and alkaline-treatment process[J]. J Biomed. Mater. Res., 2001, 54: 96~101.
    [42] 张建民,冯祖德,林昌健,等.电化学法制备活性陶瓷材料研究[J].高等学校化学学报,1997,18(6):961~962.
    [43] 刘榕芳,肖秀峰,陈古镛.钛/羟基磷灰石涂层的电沉积过程及其结构特征[J].福建师范大学学报(自然科学版),2001,17(1):45~49.
    [44] 张建民,杨长春,石秋芝,等.电泳沉积功能陶瓷涂层技术[J].中国陶瓷,2000,36(6):36~40.
    [45] 黄臻,江东亮,谭寿洪.羟基磷灰石水悬浮液电动特性研究[J].材料导报,2000,14(1):60~61.
    [46] 陈晓明,李世普,韩庆荣,等.在非水溶液体系中电泳沉积Ti6A14V/BG/HAP梯度涂层[J].硅酸盐学报,2001,29(6):565~568.
    [47] K. YAMASHITA, M. NAGAI, T. UMEGAKI. Fabrication of green films of singleand multi-component ceramic composites by electrophoretic deposition technique[J]. J Mater. Sci., 1997, 32: 6661~6664.
    [48] I. ZHITOMIRSKY, L.GALOR. Electrophoretic deposition of hydroxyapatite[J]. J Mater. Sci: Mater in Med., 1997, 8: 213~219.
    [49] Laubersheimer, Juergen. Manufacture of dental prosthetics by electrophoretic
    
    deposition of ceramic particals[P]. GER., DE10049971(2002).
    [50] Tabellion Jan, Clasen Rolf. Manufacturing of advanced ceramic components via electrophoretic deposition[J]. Key Engineering Materials, 2002, 206-213 (Pt. 1, Euro Ceramics): 397~400.
    [51] Stoch A, Brozek A, Kmita G, et al. Electrophoretic coating of hydroxyapatite on titanium implants[J]. J. Mol. Struct., 2001, 596: 191~200.
    [52] 白晓军,朱和祥,庄晓曼,等.Ni/羟基磷灰石生物活性复合镀层的研究[J].表面技术,1996,25(6):5~6.
    [53] 白晓军,金展鹏,黎樵燊,等.金属生物活性复合材料研究[J].功能材料,1999,30(3):335~336.
    [54] 刘海蓉,陈宗璋,白晓军.不锈钢基Ni-HAP生物材料的复合电镀研究[J].无机材料学报,1998,13(6):913~917.
    [55] 白晓军,刘海蓉,陈宗璋.电镀条件对不锈钢基Ni-HAP复合生物材料中HAP含量的影响[J].材料保护,1999,32(9):5~7.
    [56] Liping He, Hairong Liu, Dachuan Chen, Zongzhang Chen. Fabrication of Hap/Ni biomedical coatings using an electrocodeposition technique[J]. Surface and Coatings Technology, 2002, 160(2-3): 109~113.
    [57] Dasarathy H, Riley C, Cobel H D, et al. Hydroxyapatite/metal composite coatings formed by electrocodeposition[J]. J Biomed Mater Res., 1996, 31(1): 81~89.
    [58] H. Ishizawa, M. Ogino. Formation and characterization of anodic titanium oxide films containing Ca and P[J]. J Biomed Mater Res., 1995, 29: 65~72.
    [59] H.Ishizawa, M. Ogino. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment[J]. J Biomed Mater Res., 1995, 29: 1071~1079.
    [60] 王家伟,程祥荣,王贻宁.纯钛阳极氧化及表面薄层羟基磷灰石形成技术的研究-Ⅱ.电解质及电压对氧化膜性能的影响[J].中国口腔种植学杂志,2001,6(3):101~103.
    [61] H. Ishizawa, M. Fujino, M. Ogino. Histomorphometric evaluation of thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment. Bioceramics[C], 1996, Vol.9. Proceedings of the 9th International Symposium on Ceramics in Medicine: 289~292.
    
    
    [62] 俞耀庭主编.生物医用材料[M].天津:天津大学出版社,2000.
    [63] Li-Ping He, Zhen-Jun Wu, Zong-Zhang Chen, Yiu-Wing Mai. Fabrication and characterization of nanometer apatite/Al_2O_3 composite coating on titanium using a hybrid technique of anodic oxidation and hydrothermal treatment[J]. Mater. Sci. and Eng. A.(Accepted)
    [64] Tao Fu, Ping Huang, Yong Han, Ke-wei Xu. Preparation of microarc oxidation layer containing hydroxyapatite crystals on Ti6Al4V by hydrothermal synthesis[J]. J. Mater. Sci. Lett., 2002, 21(3): 257~258.
    [65] 憨勇,徐可为.微弧氧化生成含钙磷氧化钛生物涂层的结构[J].无机材料学报,2001,16(5):951~956.
    [66] M. Fini, A. Cigada, G. Rondelli, et al. In vitro and in vivo behavior of Ca- and P-enriched anodized titanium[J]. Biomater., 1999, 20(17): 1587~1594.
    [67] X. Nie, A. Leyland, A. Mattews. Deposition of layered bioceramic hydroxyapatite/TiO_2/coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis[J]. Surface and coatings technology, 2000, 125(1-3): 407~414.
    [68] Brown, Paul W. Hydroxyapatite-Polymer Composites[J]. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144: 57~60.
    [69 李健,韦习成.物理气相沉积技术的新进展[J].材料保护,2000,33(1):91~95.
    [70] Hyun-Min KIM. Bioactive Ceramics: Challenges and Perspectives. J. Ceram. Soc. Jpn., 2001, 109(4): S49~S57.
    [71] Brown S R, Turner I G, Reiter H. Residual stress mearsurement in thermal sprayed hydroxyapatite coating[J]. J. Mater. Sci., 1994, 5: 756~759.
    [72] Yang C Y, Wang B C, Wu J D, et al. The influences of plasma spraying parameters on the characteristics of hydroxyapatite coating: a quantitative study[J]. J Mater. Sci., 1995, (6): 249-257.
    [73] S. Gautier, E. Champion, D. Bernache-Assollant. Toughning characterization in alumina platelet-hydroxyapatite matrix composites[J]. J Mater. Sci.: Mater. in Med., 1999, 10(9): 533~540.
    [74] J. Lausmma, B. Kasemo, H. Mattsson, et al. Multitechnique surface characterization of oxide films on electropolished and anodically oxidized titanium[J]. Appl. Surf. Sci., 1990, 45: 189~200.
    
    
    [75] M H Prado, D Silva, J.H.C Lima, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium[J]. Surface and coatings technology, 2001, 137(2-3): 270-276.
    [76] L. Yan, Yadong Li, Zhao-Xiang Deng, et al. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods[J]. Inter. J. Inorg. Mater., 2001, 3: 633~637.
    [77] S. Jinawath, D. Pongkao, W. Suchanek, et al. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate[J]. Inter. J. Inorg. Mater., 2001, 3: 997~1001.
    [78] 江昕,张勇,王友法.水热法制备羟基磷灰石针状单晶[J].中国有色金属学报,2002,12(S2):122~125.
    [79] Besim BEN-NISSAN, Giuseppe PEZZOTTI. Bioceramics: Processing Routes and Mechanical Evaluation[J]. J. Ceram. Soc. Jpn., 2002, 110(7): 601~608.
    [80] 高云霞,任继嘉,宁福元,编译.铝合金表面处理[M].北京:冶金工业出版社,1991.
    [81] 柯华,宁聪琴,贾德昌等.羟基磷灰石及钛作为骨替代材料的研究进展[J].有色金属,2001,53(4):8~14.
    [82] Keller F, Hunter M S, Robinson D L. Structural Features of Anodic Oxide Films On Aluminum[J]. J Electrochem Soc., 1953, (100): 411~419.
    [83] Charles A. Grubbs, Anodizing of Aluminum[M]. Houghton Metal Finishing, Alpharetta, Ga.: 480~496.
    [84] Thompson G E. Porous Anodic Alumina: Fabrication, Characterization and Applications[J]. Thin Solid Films, 1997, 297(1-2): 192~201.
    [85] Thompson G E, Furneaux R C, Wood G C. Neucleation and Growth on Porous Anodic Films on Aluminum[J]. Nature, 1978, 272(5652): 433~435.
    [86] K. V. Heber. Studies on Porous Al_2O_3 Growth—Ⅰ. Physical Model[J]. Electrochimica Acta., 1978, 23: 127~133.
    [87] K. V. Heber. Studies on Porous Al_2O_3 Growth—Ⅱ. Ionic Conduction[J]. Electrochimica Acta., 1978, 23: 135~139.
    [88] G. Patermarakis, K. Moussoutzanis. Electrochemical Kinetic Study on the Growth of Porous Anodic Oxide Films on Aluminum[J]. Electrochimica Acta., 1995, 40(6): 699~708.
    
    
    [89] Almawlawi D, Liu Z, Moskovits M. Nanowires Formed in Anodic Oxide Nanotemplates[J]. J Mater Res., 1994, 94: 1014~1018.
    [90] Charles R Martin. Nanomaterials: A membrane-based synthetic approach[J]. Science, 1994, 266: 1961~1966.
    [91] Dmitri Routkevitch, Terry Bigioni, Martin Moskovits et al. Electrochemical Fabrication of CdS Nanawire Arrays in Porous Anodic Aluminum Oxide Templates[J]. J Phys Chem., 1996, 100: 14037~14047.
    [92] M. Saito, M. Kirhara, T. Taniguchi. Micropolarizer nade of the anodized alumina film[J]. Appl. Phys. Lett., 1989, 55(7): 607~609.
    [93] D. Almawlawi, Z. Liu, M. Moskovits. Nanowires formed in anodic oxide nanotemplates[J]. J. Mater. Res., 1994, 94: 1014~1018.
    [94] Kotaro HATA, Naoshi OZAWA, Tadashi KOKUBO, et al. Bonelike Apatite Formation on various kinds of Ceramic and Metals[J]. J Ceram Soc Jpn., 2001, 109(5): 461~465.
    [95] Peixin ZHU, Yoshitake MASUDA, Kunihito KOUMOTO. A noval approach to fabricate hydroxyapatite coating on titanium substrate in an aqueous solution[J]. J Ceram. Soc. Jpn, 2001, 109(8): 676-680.
    [96] Masaki UCHIDA, Hyun-Min Kim, Tadashi KOKUBO, et al. Structural Dependence of Apatite Formation on Zirconia Gels in a Simulated Body Fluid[J]. J Ceram. Soc. Jpn, 2002, 110(8): 710~715.
    [97] E. Wieser, I. Tsyganov, W. Matz, et al. Modification of titanium by ion implantation of calcium and/or phosphorus[J]. Surface and coatings technology, 1999, 111(1): 103~109.
    [98] M. T. Pham, W. Watz, H. Reuther, et al. Ion beam sensitizing of titanium surfaces to hydroxyapatite formation[J]. Surface and coatings technology, 2000, 128-129: 313~319.
    [99] PAN J, THERRY D, LEYGRAF C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application[J]. Electrochim Acta, 1996, 41(7-8): 1143~1153.
    [100] 刘昌胜,沈卫,郑海燕.磷酸钙骨水泥水化过程的交流阻抗特性[J].硅酸盐学报,1998,26(4):437~442.
    [101] 张建民,杨长春,石秋芝等.交流阻抗谱研究钙磷陶瓷电沉积层的结构[J].
    
    硅酸盐学报,2003,31(2):127~132.
    [102] Kotaro HATA, Naoshi OZAWA, Tadashi KOKUBO. Mechanism of Apatite Formation on Single Crystal Silicon in an Aqueous Solution at Room Temperature[J]. J. Ceram. Soc. Japan, 2002, 110(11): 990~994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700