驻波热声发动机振荡机理的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的热功转换装置,热声发动机无运动部件且采用惰性气体作为工质,具有结构简单、环境友好等优点。热声发动机采用热能驱动,能够利用工业废热和太阳能等低品位热源,在天然气液化、电子器件冷却、气体分离等领域具有广泛的应用前景,近年来受到国内外研究者的广泛关注。深入理解热声发动机的振荡机理,对于降低热声发动机的起振温度和提高发动机的热声转换效率具有重要的意义。由于热声振荡现象中涉及复杂的交变流动与传热以及非线性声学等难题,热声振荡机理一直没有得到完整、准确解释。本文针对驻波热声发动机的振荡机理开展了理论和实验研究工作,主要包括:
     1.基于热声网络理论的驻波热声发动机频域模拟。为了更好地理解热声振荡机理,本文采用热声网络理论在频域内研究了驻波热声发动机的起振条件。从线性热声理论的控制微分方程出发,推导出存在温度梯度的板叠传输矩阵的表达式。根据热声网络理论,实现了对驻波热声发动机起振条件的预测。计算结果与Arnott的实验结果基本吻合。起振频率的最大偏差小于1.4%,起振温差的最大偏差约为17.9%,证明了该模型可用来计算起振频率和起振温差。计算了自行设计的驻波热声发动机在不同谐振管长度下的起振温差和频率随充气压力变化。起振温差的计算结果在定性上与实验相吻合,起振频率的计算值与实验结果之间的偏差为2.3-4.9%。对该台驻波热声发动机而言,最低起振温差下的板叠间距约为热渗透深度的2.6倍。该计算结果对驻波热声发动机中板叠间距的选择具有一定的参考意义。
     2.基于热力学分析法的驻波热声发动机起振特性时域模拟。为了实现对热声发动机振荡过程时域模拟,本文通过将驻波热声发动机各部件进行比拟转化,对各部件进行热力学和动力学分析,建立了驻波热声发动机时域模型。在热声发动机的时域模拟中,交变流动下阻力项和换热项的计算公式是不可或缺的。然而,由于实验数据不足,以前的热声发动机模型大多采用稳定流公式进行计算。本模型中提出了一种基于线性热声理论的计算方法,为交变流动数值模拟中的阻力项和换热项的计算提供了参考。本文对不同谐振管长度和充气压力下的起振温差进行了计算。计算结果表明最佳的板叠间距应为气体热渗透深度的2.6-2.7倍,对于热声发动机的设计和性能改进有一定的指导意义。计算的起振温差变化趋势与实验结果相符合,谐振管长度越长,则起振温差和起振频率与实验结果的偏差越小。3.1m长谐振管条件下计算的起振温差与实验结果的平均偏差为4.5%,最大偏差为15.2%。相应条件下起振频率偏差为3.9%。
     3.驻波热声发动机的二维计算流体力学(CFD)模拟。为了深入了解起振过程中各物理量在驻波热声发动机内部各位置的分布和变化,本文采用商业CFD软件FLUENT对自行设计的驻波热声发动机进行了数值模拟,建立了二维中心对称的CFD模型。针对热声发动机中各部件尺度差别较大的问题,提出用非正则网格划分技术对模型进行了分区域网格划分,显著减少了模型中的网格数量,提高了计算效率。在定加热温度和定加热量两种条件下实现了驻波热声发动机压力增长过程的模拟和分析,并首次通过CFD方法研究了板叠温度分布对热声发动机性能的影响。结果表明板叠中部温度较高的情况下,其起振温差较低且饱和压力振幅较高,对于降低热声发动机的起振温度和提高热声发动机效率具有一定的指导意义。
     4.驻波热声发动机起振和消振特性的实验研究。为了更加深入地理解热声发动机的起振特性,本文在自行设计的热声发动机实验台上进行了起振温度测量、加热过程中的频率转换、起振消振过程的红外观察等实验。通过对不同谐振管长度和不同充气压力下的起振温度和起振频率进行测量,分别对前述的基于热声网络理论和基于热力学分析法的数值模拟结果进行了验证和对比。对驻波热声发动机的频率转换特性进行了研究,首次提出用品质因子的数值作为热声发动机频率转换的判据。品质因子的计算结果与实验结果符合较好,初步证明了这种方法在判断热声发动机的频率转换时的可行性。采用红外热像仪对驻波热声发动机的板叠进行温度观测,获得了起消振过程中板叠温度分布的红外图像,并对板叠的轴向温度分布和径向温度分布进行了定量分析。通过分析不同板叠安装角度下的板叠温度分布,发现自然对流会使起振前板叠的径向温度分布不均匀,且温度分布的不均匀程度主要受充气压力的影响。系统起振后,自然对流造成的径向温度分布不均匀逐渐消失。
As a novel heat-work conversion device, the thermoacoustic engine has advantages of simple structure and environmental friendliness because it has no moving parts and uses inert working gas. The engine due to utilizing industrial waste heat and solar energe becomes more and more attractive to the field of natural gas liquefaction, electronic cooling, and gas separation etc. in recent years. The study on oscillation mechanism of a thermoacoustic engine is of importance for lowering the onset temperature and improving the thermal efficiency of the engine. Because of the complex oscillation flow and heat exchange, and the nonlinear acoustics involved in the thermoacoustic effects, the oscillation mechanism of thermoacoustic effects has not be fully understood. The following theoretical and experimental studies are carried out to reveal the oscillation mechanism of a standing wave thermoacoustic engine:
     1. Simulation of a standing wave thermoacoustic engine in frequency domain based on thermoacoustic network theory. The onset conditions of a standing wave thermoacoustic engine are studied in frequency domain based on thermoacoustic network theory for further understanding of the oscillation mechanism of thermoacoustic effects. Using the control differential equations of linear thermoacoustic theory, the transfer arrays of the stack with temperature gradient are derived. Based on thermoacoustic network theory, a standing wave thermoacoustic engine is simulated. The calculation results agree well with previous experiments by Arnott, which validate the model for calculating onset frequencies and temperatures. The maximum deviation for frequency is less than1.4%, while for onset temperature difference is about17.9%. The onset temperature differences and frequencies of a self-designed standing wave thermoacoustic engine are calculated for different resonator lengths and charge pressures. The calculated onset temperature differences agree well with the experimental results qualitatively. The deviations between the calculated onset frequencies and the experimental results are2.3-4.9%. For the self-designed standing wave thermoacoustic engine in this thesis, the stack spacing is about2.7times the thermal penetration depth to reach the lowest onset temperature difference. The simulation results are constructive for optimizing the stack spacing in the standing wave thermoacoustic engine.
     2. Simulation of the onset characteristics in a standing wave thermoacoustic engine in time domain based on thermodynamic analysis. In order to simulate the oscillation process of a standing wave thermoacoustic engine in time domain, a simplified physical model for the standing wave thermoacoustic engine is developed by means of converting the components analogously. The governing differential equations are deduced based on the thermodynamic and fluid dynamic analysis of the various components. The transient frictional coefficients and heat transfer coefficients, which are indispensable for the simulation in time domain, are insufficient in literatures, so most of the previous simulations have to use the formulas for steady flow. In this study, a new method based on linear thermoacoustic theory is proposed, which provides an alternative solution for calculating the pressure drop and heat transfer terms in oscillation flow. The effects of charge pressure on onset temperature with different resonator lengths are obtained. The calculated onset temperatures are in good agreement with the experiments in tendency. The results show that a longer resonator leads to smaller deviations of onset temperatures and frequencies because the effects of the compliance are less remarkable for the longer resonator. When the resonator length is3.1m, the average deviation between calculated onset temperature differences and experiments is4.5%, while the maximum deviation is15.2%. And the frequencies are about3.9%deviating from the experimental results in the same condition. The calculations indicated that the optimal stack spacing was about2.6-2.7times the thermal penetration depth, which is of significant importance for the design and optimization of the standing wave thermoacoustic engine.
     3. Two-dimensional Computational Fluid Dynamics (CFD) simulation of a standing wave thermoacoustic engine. A self-designed standing wave thermoacoustic engine is numerically simulated using the commercial CFD program FLUENT to understand the distributions and variations of each parameters during onset process. A two-dimension axial symmetric model is developed. Considering the dimension magnitude differences for different parts in the standing wave thermoacoustic engine, the non-conformal grid technology is introduced in the model to decrease the mesh number and improve the calculation efficiency. The pressure evolution processes under the conditions of constant heating temperature and constant heating power are obtained and analyzed, respectively. The effects of temperature distribution in the stack on the performance of the thermoacoustic engine are investigated by using of CFD program. Results show that a higher middle temperature in the stack leads to a lower onset temperature and a higher saturated pressure amplitude, which is of significance for lowering the onset temperature and improving the performance of the thermoacoustic engine.
     4. Experimental investigation on oscillation characteristics of a standing wave thermoacoustic engine. The onset temperature, the frequency transition characteristics, and the infrared observation on the onset and damping process are experimental investigated on the self-designed standing wave thermoacoustic engine to obtain further understanding on the oscillation characteristics. The onset temperatures and frequencies for different charge pressures and resonator lengths were measured and compared with the above simulation models based on the thermoacoustic network theory and thermodynamic analysis. The frequency transition characteristics were experimentally studied in the standing wave thermoacoustic engine. The magnitude of quality factor is first proposed to be the criterion for frequency transition. Calculations of quality factor agree well with the experiments, which indicate the feasibility of using the quality factor as the criterion of frequency transition in the engine. To study the energy flow in the stack, the stack of the self-designed standing wave thermoacoustic engine was observed using an infrared camera. The axial and radial temperature distributions during the onset and damping processes are quantitatively analyzed. The uneven temperature distribution in radial direction of the stack due to the natural convection is first observed after analyzing the infrared images for different installation angles of the stack. The results indicate that the temperature unevenness in axial direction mainly depends on the charge pressure, and the uneven temperature distribution due to natural convection will gradually disappear after the onset.
引文
1.中国科学院能源战略研究组,中国至2050年能源科技发展路线图.2009:科学出版社.
    2. Backhaus, S., Swift, G.W., A thermoacoustic Stirling heat engine. Nature,1999, 399:335-338.
    3. Arman, B., Wollan, J.J., Swift, G.W., Backhaus, S. Thermoacoustic natural gas liquefiers and recent developments. Cryogenics and Refrigeration proceeding of ICCR'2003.2003, International Academic Publishers:123-127.
    4. Luo, E.C., Wu, Z.H., Dai, W., Li, S.F., et al., A 100 W-class traveling-wave thermoacoustic electricity generator. Chinese Science Bulletin,2008,53(9): 1453-1456.
    5. Swift, G.W., Spoor, P.S., Thermal diffusion and mixture separation in the acoustic boundary layer. Journal of the Acoustical Society of America,1999, 106(4):1794-1800.
    6. Spoor, P.S., Swift, G.W., Thermoacoustic separation of a He-Ar mixture. Physical Review Letters,2000,85(8):1646-1649.
    7. Hiller, R.A., Swift, G.W., Condensation in a steady-flow thermoacoustic refrigerator. Journal of the Acoustical Society of America,2000,108(4): 1521-1527.
    8. Nie, L.M., Xing, D., Yang, D.W., Zeng, L.M., A novel and fast method of detecting foreign body in biological tissue using microwave-induced thermoacoustic tomography-art. no.65342V. Fifth International Conference on Photonics and Imaging in Biology and Medicine, Pts 1 and 2,2007,6534: V5342-V5342.
    9. Nie, L.M., Xing, D., Yang, D.W., Zeng, L.M., et al., Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array. Applied Physics Letters,2007,90(17):174109.
    10. Putnam, A.A., Dennis, W.K., A Study of Burner Oscillations of the Organ-Pipe Type. Trans ASME,1953,75(1):15-28.
    11. Swift, G.W., Thermoacoustic engines. Journal of the Acoustical Society of America,1988,84:1145-1180.
    12. Feldman, K.T., Review of Literature on Sondhauss Thermoacoustic Phenomena. Journal of Sound and Vibration,1968,7(1):71-82.
    13. Feldman, K.T., Review of Literature on Rijke Thermoacoustic Phenomena. Journal of Sound and Vibration,1968,7(1):83-89.
    14. Kiechhoff, G, Ueber den Einfluss der Warmeleitung in einem gas aufdie Schallbewegung. Ann Phys(Leipzig),1868,79:1.
    15. Rayleigh, L., The theory of sound.1896, UK:Dover Publications.
    16. Taconis, K.W., Beenakker, J.J.M., Nier, A.O., Aldrich, L.T., Measurements Concerning the Vapor-Liquid Equilibrium of Solutions of He-3 in He-4 Below 2.19-Degrees-K. Physical Review,1949,75(12):1966.
    17. Feldman, K.T., Carter, R.L., A Study of Heat Driven Pressure Oscillations in a Gas. Journal of Heat Transfer,1970,92(3):536.
    18. Rott, N., Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z Angew Math Phys,1969,20:230-240.
    19. Rott, N., Thermal driven acoustic oscillations, Part Ⅱ:Stability limit for helium. Z Angew Math Phys,1973,24:54-58.
    20. Rott, N., Thermal driven acoustic oscillation, Part ⅢSecond order heat flux. Z Angew Math Phys,1975,26:43-49.
    21. Rott, N., Thermoacoustics. Journal of Applied Mechanics,1980,20:135-175.
    22. Ceperley, P.H., A pistonless Stirling engine-traveling wave heat engine. Journal of the Acoustical Society of America,1979,66(5):1508-1513.
    23. Olson, J.R., Swift, G.W., Similitude in Thermoacoustics. Journal of the Acoustical Society of America,1994,95(3):1405-1412.
    24. Swift, G.W., Streaming in thermoacoustic engines and refrigerators. Nonlinear Acoustics at the Turn of the Millennium,2000,524:105-114.
    25. Swift, G.W., Thermoacoustic:A unifying perspective for some engines and refrigerators. Fifth draft ed.2001:Los Alamous National Laboratory.
    26. Ward, W.C., Swift, G.W., Design Environment for Low-Amplitude Thermoacoustic Engines. Journal of the Acoustical Society of America,1994, 95(6):3671-3672.
    27. Swift, G.W., Analysis and Performance of a Large Thermoacoustic Engine. Journal of the Acoustical Society of America,1992,92(3):1551-1563.
    28. Radebaugh, R., A review of pulse tube refrigeration. Advanced Cryogenics Engineering,1990,35(B):1191.
    29. Wollan, J.J., Swift, G.W. Development of a Thermoacoustic natural gas liquefier. AIChE New Orleans Meeting.2002.
    30. Xiao, J.H., Thermoacoustic heat transportation and energy transformation Part Ⅰ:formulation of the problem. Cryogenics,1995,35(1):15-19.
    31. Xiao, J.H., Thermoacoustic heat transportation and energy transformation Part Ⅱ:isothermal wall thermoacoustic effects. Cryogenics,1995,35(1):21-26.
    32. Xiao, J.H., Thermoacoustic heat transportation and energy transformation Part Ⅲ:adiabatic wall thermoacoustic effects. Cryogenics,1995,35(1):27-29.
    33. Guo, F.Z. On the theory of cyclic flow cryogenic regenerator. India:Proc. of INCONCTYO.1985:227.
    34. Guo, F.Z., Chou, Y.M., Lee, S.Z., Flow charcateristics of a cycle flow regenerator. Cryogenics,1987,27:152.
    35. Chen, G.B., Jin, T., Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover. Cryogenics,1999, 39(10):843-846.
    36.邱利民,孙大明,张武,陈国邦等,大型多功能热声发动机的研制及初步实验第一部分热声发动机的研制.低温工程.2003,(2):1-7.
    37.邱利民,张武,孙大明,甘智华等,大型多功能热声发动机的研制及初步实验--第二部分:热声发动机的初步实验.低温工程.2003,(3):1-6.
    38. Qiu, L.M., Sun, D.M., Yan, W.L., Chen, P., et al., Investigation on a thermoacoustically driven pulse tube cooler working at 80 K. Cryogenics,2005, 45(5):380-385.
    39.谭永翔,邱利民,孙大明,郑金鹏,斯特林热声发动机的直流研究.低温工程,2006,(3):16-20.
    40. Sun, D.M., Qiu, L.M., Wang, B., Xiao, Y., Transmission characteristics of acoustic amplifier in thermoacoustic engine. Energy Conversion and Management,2008,49(5):913-918.
    41.戴巍,罗二仓,胡剑英,张泳等,改进型驻波热声发动机的实验研究.工程热物理学报,2005,26(3):376-378.
    42.伍继浩,张晓青,李青,禹智斌等,行波热声斯特林热机起振模态的实验研究.低温工程,2002,(6):42-56.
    43.刘迎文,何雅玲,沈超,黄竞,热声系统中振荡滞后特性的试验研究.工程热物理学报.2007,28(3):376-378.
    44. Yu, G.Y., Luo, E.C., Dai, W., Wu, Z.H., An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40. Cryogenics,2007,47(2):132-134.
    45. Hu, J.Y., Luo, E.C., Dai, W., Zhou, Y, A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature. Chinese Science Bulletin,2007,52(4):574-576.
    46. Hu, J.Y., Luo, E.C., Li, S.F., Yu, B., et al., Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler. Journal of Applied Physics,2008,103(10):104906-8.
    47.李山峰,吴张华,罗二仓,戴巍等,行波热声发动机驱动制冷机匹配研究.工程热物理学报,2009,30(11):1818-1820.
    48. Atchley, A.A., Standing wave analysis of a thermoacoustic prime mover below onset of self-oscillation. Journal of the Acoustical Society of America,1992,92: 2907-2914.
    49.邓晓辉,胡晓,回热器的热声网络模型.低温工程,1996,(2):6-13.
    50.张晓青,郭方中,热声热机的网络模型与仿真研究.低温工程.2000,(5):25-30.
    51.张晓青,热声热机系统的仿真与优化研究.2001,华中科技大学:武汉.
    52.陈熙,李青,李正宇,郭方中,热声热机网络模型演化与机理初探.低温工程,2004,(1):27-31.
    53.胡兴华,张晓青,王惠龄,舒水明,热声振荡器的二端口网络模型及起振条件.中国科学通报,2008,53(17):2109-2115.
    54. Hu, X.H., Zhang, X.Q., Wang, H.L., Shu, S.M., Two-port network model and startup criteria for thermoacoustic oscillators. Chinese Science Bulletin,2009, 54(2):335-343.
    55.凌虹,罗二仓,戴巍,胡剑英,自激振荡热声发动机的整机数值模拟研究.声学学报.2006,31(4):377-384.
    56.凌虹,罗二仓,吴剑峰,杨梅,et a1.,驻波型热声发动机的数值模拟.低温与超导.2003,31(2):11-14.
    57.胡剑英,罗二仓,凌虹,行波型热声发动机起振温差的研究.低温与超导,2004,32(2):64-67.
    58.胡剑英,罗二仓,凌虹,戴巍,热声斯特林发动机的频率计算.低温工程.2004,(6):20-23.
    59. de Waele, A.T.A.M., Basic treatment of onset conditions and transient effects in thermoacoustic Stirling engines. Journal of Sound and Vibration,2009,325(4-5): 974-988.
    60.李艳锋,邱利民,赖碧晕,楼平,驻波型热声发动机的动力学分析.低温与超导,2009,增刊:30-34.
    61. Sun, D.M., Qiu, L.M., Zhang, W., Yan, W.L., et al., Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude. Energy Conversion and Management,2005,46(2):281-291.
    62. Luo, E., Ling, H., Dai, W., Zhnag, Y, A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator. Chinese Science Bulletin, 2005,50(3):284-286.
    63. Cao, N., Olson, J.R., Swift, G.W., Chen, S., Energy flux density in a thermoacoustic couple. Journal of the Acoustical Society of America,1996, 99(6):3456-3464.
    64. Worlikar, A.S., Knio, O.M., Numerical simulation of a thermoacoustic refrigerator. Ⅰ:Unsteady adiabatic flow around the stack. Journal of Computational Physics,1996,127(2):424-451.
    65. Worlikar, A.S., Knio, O.M., Klein, R., Numerical simulation of a thermoacoustic refrigerator Ⅱ. Stratified flow around the stack. Journal of Computational Physics,1998,144(2):299-324.
    66. Worlikar, A.S., Knio, O.M., Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack. Numerical Heat Transfer Part a-Applications, 1999,35(1):49-65.
    67. Watanabe, M., Prosperetti, A., Yuan, H., A simplified model for linear and nonlinear processes in thermoacoustic prime movers.1. Model and linear theory. Journal of the Acoustical Society of America,1997,102(6):3484-3496.
    68. Yuan, H., Karpov, S., Prosperetti, A., A Simplified model for linear and nonlinear processes in thermoacoustic prime movers.2. Nonlinear oscillations. Journal of the Acoustical Society of America,1997,102(6):3497-3506.
    69. Karpov, S., Prosperetti, A., Nonlinear saturation of the thermoacoustic instability. Journal of the Acoustical Society of America,2000,107(6):3130-3147.
    70. Karpov, S., Prosperetti, A., A nonlinear model of thermoacoustic devices. Journal of the Acoustical Society of America,2002,112(4):1431-1444.
    71. Hamilton, M.F., Ilinskii, Y.A., Zabolotskaya, E.A., Linear and nonlinear frequency shifts in acoustical resonators with varying cross sections. Journal of the Acoustical Society of America,2001,110:109-119.
    72. Hamilton, M.F., Ilinskii, Y.A., Zabolotskaya, E.A., Nonlinear two-dimensional model for thermoacoustic engines. Journal of the Acoustical Society of America, 2002,111(5):2076-2086.
    73. Y A. Ilinskii, Lipkens, B., Nonlinear standing waves in an acoustical resonator. Journal of the Acoustical Society of America,1998,104:1664-2674.
    74. Chun, Y.D., Kim, Y.H., Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes. Journal of the Acoustical Society of America, 2000,108:2767-2774.
    75. Gusev, V., Bailliet, H., Lotton, P., Bruneau, M., Asymptotic theory of nonlinear acoustic waves in a thermoacoustic prime-mover. Acustica,2000,86(1):25-38.
    76. Bauwens, L., Thermoacoustic:Transient regimes and singular temperature profiles. Physics of Fluids,1998,10:807-818.
    77. Bauwens, L., Oscillating flow of a heat conducting flid in a narrow tube. Journal of Fluid Mechanics,1999,324(135-161).
    78.韩飞,沙家正,Rijke管热声非线性不稳定性增长过程的研究.声学学报,1996,21(4):362-367.
    79.韩飞,岳国森,沙家正,Rijke热声振荡的非线性效应.声学学报,1997,22(3):249-254.
    80.罗二仓,刘浩,吴剑锋,回热器非线性热声动力学模型的研究.低温工程,2001,(5):1-7.
    81.徐珊姝,景晓东,孙晓峰,热声现象的一种非线性模型的研究.工程热物理学报,2005,26(3):413-416.
    82.李晓明,陈国邦,罗二仓,二阶非线性热声理论模型研究.低温与超导,2005,33(4):41-48.
    83. Nijeholt, J.A.L.A., Tijani, M.E.H., Spoelstra, S., Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics. Journal of the Acoustical Society of America,2005,118(4):2265-2270.
    84.余国瑶,罗二仓,胡剑英,戴巍等,热声斯特林发动机热动力学特性的CFD研究——第一部分:热声自激振荡演化过程.低温工程,2006,(4):5-9.
    85.余国瑶,罗二仓,戴巍,胡剑英等,热声斯特林发动机热动力学特性的CFD研究第二部分:热声转换特性及热声声流的研究.低温工程,2006,(5):11-16.
    86. Yu, G.Y., Luo, E.C., Dai, W., Hu, J.Y., Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics. Journal of Applied Physics,2007,102(7):74901.
    87.余国瑶,罗二仓,戴巍,胡剑英等,热声斯特林发动机的三维CFD数值模拟,中国工程热物理学会.2008:天津.
    88.余国瑶,罗二仓,戴巍,驻波热声发动机的CFD数值模拟,中国工程热物理学会.2008:天津.
    89. Yu, G.Y., Dai, W., Luo, E.C., CFD simulation of a 300 Hz thermoacoustic standing wave engine. Cryogenics,2010,50(9):615-622.
    90. Zink, F., Vipperman, J., Schaefer, L., CFD simulation of a thermoacoustic engine with coiled resonator. International Communications in Heat and Mass Transfer, 2010,37(3):226-229.
    91. Zink, F., Vipperman, J., Schaefer, L., CFD simulation of thermoacoustic cooling. International Journal of Heat and Mass Transfer,2010,53(19-20):3940-3946.
    92.汤珂,林小刚,张屿,金滔等,热声发动机系统的稳定性分析,中国工程热物理学会.2009:大连.
    93.刘旭,陈宇,张晓青,热声发动机的格子气模拟.计算物理,2004,21(6):501-504.
    94. Chen, Y, Liu, X., Zhang, X.Q., Yan, L., et al., Thermoacoustic simulation with lattice gas automata. Journal of Applied Physics,2004,95(8):4497-4499.
    95.张晓青,蒋华,胡兴华,柳玉林,热声振荡的格子气模拟.华中科技大学学报,2007,35(7):85-88.
    96.韦克,刘旭,陈宇,热声发动机的优化计算设计.应用声学,2008,27(2):113-117.
    97. Benavides, E.M., An analytical model of self-starting thermoacoustic engines. Journal of Applied Physics,2006,99(11):114905-7.
    98. Rivera-Alvarez, A., Chejne, F., Non-linear phenomena in thermoacoustic engines. Journal of Non-Equilibrium Thermodynamics,2004,29(3):209-220.
    99.刘继平,严俊杰,林万超,邢秦安等,Rijke管内热声振荡机理的一种新解释.西安交通大学学报.2001,35(3):221-224
    100.欧阳录春,邱利民,张武,孙大明等,热声系统起振机理的初步研究.低温工程,2002,(5):6-11.
    101.张晓青,李正宇,行波热声斯特林机种自激振荡的实验分析—利用相空间重构方法.低温工程,2003,131(1):39-42.
    102.李正宇,李青,吴锋,陈熙等,热声斯特林热机起振过程的动力学分析.低温工程,2004,(1):17-21.
    103. Atchley, A.A., Kuo, F.M., Stability curves for a thermoacoustic prime mover. Journal of the Acoustical Society of America,1994,95(3):1401-1404.
    104. Zhou, S.L., Matsubara, Y., Experimental research of thermoacoustic prime mover. Cryogenics,1998,38(8):813-822.
    105.禹智斌,李青,陈熙等,混合型热声发动机中两个模态的特性对比研究.低温工程,2004,(2):36-40.
    106. Yu, Z.B., Li, Q., Chen, X., Guo, F.Z., et al., Investigation on the oscillation modes in a thermoacoustic Stirling prime mover:mode stability and mode transition. Cryogenics,2003,43(12):687-691.
    107.金滔,陈国邦,热声振荡滞后回路.低温与超导.1999,27(3):28-32.
    108.金滔,陈国邦,热声系统起振消振行为的实验研究.低温工程,2000,(1):27-31.
    109.金滔,毛长松,汤珂,弹性膜位置对热声斯特林发动机起消振特性的影响.中国工程热物理年会,2007
    110.刘迎文,何雅玲,热声发动机起振过程系统温度时序特性.工程热物理学报,2008,29(07):1103-1106.
    111.刘迎文,何雅玲,热声发动机起振、消振过程的动态行为.工程热物理学报,2009,30(01):9-12
    112. Penelet, G, Gaviot, E., Gusev, V., Lotton, P., et al., Experimental investigation of transient nonlinear phenomena in an annular thermoacoustic prime-mover: observation of a double-threshold effect. Cryogenics,2002,42(9):527-532.
    113.李艳锋,邱利民,赖碧翚,楼平等,热声发动机起消振过程中压力比演化规律研究.低温与超导,2010,38(4):5-7.
    114.刘浩,罗二仓,凌虹,热自然对流对热声起振行为的研究.低温与超导,2002,30(1):41-44.
    115.沈超,何雅玲,卢杰,刘迎文,安装倾角对热声发动机性能影响的试验研究.热能动力工程,2008,23(4):421-424.
    116. Shen, C., He, Y.L., Li, Y.G., Ke, H.B., et al., Performance of solar powered thermoacoustic engine at different tilted angles. Applied Thermal Engineering, 2009,29(13):2745-2756.
    117.孙大明,邱利民,陈国邦,严伟林等,外加扰动对热声发动机起振特性的影响.太阳能学报.2004,25(6):832-837
    118. Qiu, L.M., Sun, D.M., Tan, Y.X., Yan, W.L., et al., Effect of pressure disturbance on onset processes in thermoacoustic engine. Energy Conversion and Management,2006,47(11-12):1383-1390.
    119. Ishino, T., Sakamoto, S., Nishiikawa, M., Watanabe, Y, Applying Diverging Tube for the Low-Temperature Drive in a Loop-Tube-Type Thermoacoustic System. Japanese Journal of Applied Physics,2009,48:07GM12.
    120. Berson, A., Blanc-Benon, P., Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes. Journal of the Acoustical Society of America,2007,122(4):E1122-E1127.
    121. Berson, A., Michard, M., Blanc-Benon, P., Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry. Heat and Mass Transfer,2008,44(8):1015-1023.
    122. Smith, G.P., Raspet, R., Hiller, R., McDaniel, J., Evanescent modes and anomalous streaming in a thermoacoustic device. Applied Acoustics,2008,69(1): 23-30.
    123. Herman, C, Cetingul, M.P., Experimental Visualization of the Thermoacoustic Effect. Journal of Heat Transfer-Transactions of the Asme,2009,131(8):162.
    124. Wang, B., Qiu, L.M., Sun, D.M., et al., Visualization observation of onset and damping behaviors in a traveling-wave thermoacoustic engine by infrared imaging. International Journal of Heat and Mass Transfer, In Press.
    125. Arnott, W.P., Belcher, J.R., Raspet, R., Bass, H.E., Stability Analysis of a Helium-Filled Thermoacoustic Engine. Journal of the Acoustical Society of America,1994,96(1):370-375.
    126. Liang, J.T., Thermodynamic cycles in oscillating flow regenerators. Journal of Applied Physics,1997,82(9):4159-4165.
    127. Arnott, W.P., Bass, H.E., Raspet, R., General Formulation of Thermoacoustics for Stacks Having Arbitrarily Shaped Pore Cross-Sections. Journal of the Acoustical Society of America,1991,90(6):3228-3237.
    128. Raspet, R., Brewster, J., Bass, H.E., A new approximation method for thermoacoustic calculations. Journal of the Acoustical Society of America,1998, 103(5):2395-2402.
    129.涂虬,热声器件的寻优及其与热声热机系统的匹配[D].2003,华中科技大学:武汉.
    130.Peter, V, Neil, O., Advanced engineering mathematics.2003:Pacific Grove, CA: Thomson Brooks/Cole.
    131.陶文铨,数值传热学(第2版).2001,西安:西安交通大学出版社.
    132. FIUENT 6.3 user's guide.2006, Fluent Inc, Lebanon.
    133. Qiu, L.M., Wang, B., Sun, D.M., Liu, Y, et al., A thermoacoustic engine capable of utilizing multi-temperature heat sources. Energy Conversion and Management, 2009,50(12):3187-3192.
    134.金滔,陈国邦,热声压缩机的实验研究.低温与超导.1997,25(4):10-17.
    135.孙大明,邱利民,张武,可用于热声发动机的加热方式.低温与超导.2002,30(2):27-31.
    136.杨世铭,陶文铨,传热学.第三版.2005,北京:高等教育出版社.
    137. Swift, G.W., Keolian, R.M., Thermoacoustics in Pin-Array Stacks. Journal of the Acoustical Society of America,1993,94(2):941-943.
    138. Atchley, A.A., Hofler, T.J., Muzzerall, M.L., Kite, M.D., Acoustically generated temperature gradients in short plates. Journal of the Acoustical Society of America,1990,88:251-263.
    139.吕崇德,热工参数测量与处理:第二版.北京:清华大学出版社,2001.
    140.孙秀兰,李吉林,热电偶温度-毫伏对照表.北京:中国计量出版社,1988.
    141.寿琳,陈国邦,汤珂,裘圆等,热声系统跳频现象研究.低温工程.2007,(5):20-27.
    142.罗二仓,凌虹,刘浩,吴剑峰,回热器的热声直流模型及其应用研究.低温与超导,2001,29(4):36-40.
    143.孙大明,邱利民,王波,谭永翔,行波热声发动机中Gedeon直流定量研究.浙江大学学报(工学版),2007,41(6):985-989.
    144. Piccolo, A., Pistone, G, Computation of the time-averaged temperature fields and energy fluxes in a thermally isolated thermoacoustic stack at low acoustic Mach numbers. International Journal of Thermal Sciences,2007,46(3):235-244.
    145. Wang, B., Qiu, L.M., Sun, D.M., Wang, K., Infrared imaging as a means of characterizing temperature distributions of thermoacoustic regenerators, in Proceedings of Heat Powered Cycles.2009:TU Berlin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700