氮、硫改性纳米二氧化钛光催化降解有机废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多相半导体光催化技术逐渐受到人们的重视。在这些催化剂中,TiO_2由于其氧化能力强、无毒并且稳定而被证明是适于在环境治理当中进行广泛使用。然而,由于TiO_2的带隙较宽(带隙能3.2eV),因此它只能吸收紫外光,如果能将该催化剂的吸收波段拓展到可见光区将大大提高催化效率。
     本论文以钛酸四丁酯为钛源、胱氨酸为掺杂物,采用溶胶-凝胶法制备了N、S改性TiO_2光催化剂。对所制备催化剂采用了X-射线衍射、X射线光电子能谱、傅立叶变换红外光谱、表面光电压谱、漫反射光谱等多种测试手段进行表征。在红外光谱中发现了S=O(989 cm-1,1047 cm-1,1137 cm-1,1237 cm-1)及N-H(1401cm-1)峰的存在,与之相应的XPS谱表明N峰和S峰分别出现在399.8eV和401.8eV、168.8eV,分别归属于O-Ti-N、Ti-N-O、SO42-。DRS结果显示,所制备的N、S改性光催化剂在紫外和可见光区均有强吸收,吸收边向长波方向发生红移。
     研究了紫外及可见光下,所制备的N、S改性TiO_2光催化降解10mg/L罗丹明B的效能。在紫外光下,反应1h,罗丹明B的去除率达到81%。在380nm~630nm和470nm~800nm的可见光照射下,罗丹明B的去除率分别达到77%和75%。
     以PTFE为粘合剂制备了催化剂复合膜。制备复合膜最佳原料质量比4:1(N、S改性TiO_2:PTFE),最佳负载量为37.5mg/cm2,所制复合膜在紫外光及可见光下具有与N、S改性TiO_2粉体催化剂相似的催化性能,光催化能力并未因固定化而降低。
In recent years, heterogeneous semiconductor photocatalysis gradually becomes a popular technique. Among of them, titanium dioxide (TiO_2) has been proved to be the most suitable photocatalyst for widespread environmental applications because of its strong oxidizing power, non-toxicity and long-term stability. However, the photocatalysis widespread technological use with TiO_2 is impaired by its wide band gap (3.2eV), which requires ultraviolet irradiation for photocatalytic activation. If the photocatalytically active region is expanded to the visible light region, sunlight or rays from artificial sources can be used more efficiently.
     In this work, N、S-comodified TiO_2 powders were prepared with tetrabutyl titanate and L-cystine via sol-gel method at room temperature. The as-prepared TiO_2 powders were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), surface photovoltage spectroscopy (SPS), UV–Vis diffuse reflectance spectra (DRS), infra-red spectrometry (IR). From IR spectrum, S=O peaks (about 989cm-1, 1047cm-1, 1137cm-1, 1237cm-1) and N-H peak (1401cm-1) were observed.
     Corresponding to IR results, nitrogen (399.8eV, 401.8 eV) and sulfur (168.8ev) were found in XPS spectrum, which can attribute to O-Ti-N, Ti-N-O and SO42-, respectively. The results of DRS showed that the as-prepared TiO_2 powders exhibited a stronger absorption in the UV-Vis light region and an obvious red shift of absorption edge due to N、S-codoping.
     The photocatalytic activity was evaluated for the photocatalytic oxidation of Rhodamine B under UV light and daylight irradiation, respectively. The photocatalytic activity of the as-prepared N, S-co-doped TiO_2 powders in the ultraviolet light was kept (81%, 1h). Simultaneously, its photocatalytic activity (380nm~630nm, 77%, 1h; 470nm~800nm, 75%, 1h) in the visible light.
     The immobilized photocatalyst film were prepared with PTFE as adhesives. The optimal ratio of photocatalyst and PTFE was 4:1, and the optimal loading content was 37.5 mg/cm2 during the preparation of immobilized photocatalyst film. The photocatalytic activity of immobilized photocatalyst film was as strong as powder in suspension system whatever under UV or Vis, The photocatalytic activity of catalyst doesn’t decrease because of loading.
引文
[1] E. R. Carraway, A. J. Hoffman, M R. Hoffman, et al. Enviornmental Applications of Semiconductor Photocatalysis[J]. Environmental Science & Technology, 1994, 28(5): 786-793.
    [2]梁金生,金宗哲,王静.稀土/纳米TiO_2的表面电子结构[J].中国稀土学报,2002,20(1):74-76.
    [3] Ollis. D, Ei Akahi H. TiO_2 Photocatalytic Purification and Treatment of Water and Air[J]. Journal of Chemical Technology and Biotechnology, 1993, 43:713-726.
    [4] Campostrini R, Carturan G, Palmisano L Schiavello, et al. Sol-gel Derived Anatase TiO_2-Morphology and Photoactivity[J]. Materials Chemistry and Physis, 1994, 38(3):277-283.
    [5] Scopyan I, Wantanabe M. A Film-Type Photocatalyst Incorporating Highly Active TiO_2 Powder and Fluororesin Binder: Phototcatalytic Activity and Long-Term Stability[J]. Journal of Electroanalytical Chemistry,1996, 415 (1-2): 183-186.
    [6] Cristiana Di Valentin, Gianfranco Pacchioni, and Selloni A. Origin of the different photoactivity of N-doped anatase and rutile TiO_2[J]. Physical Review B, 2004, 70(8):116-119.
    [7] Vinodgop Al K, Darrel E, and Wynkoop. Enviornmental Photochemistry on Semiconductor Surface: Photosensitized Degradation of a Textile azo Dye, Acid Orange 7 on TiO_2 Particals using Visible Light[J]. Environmental Science & Technology, 1996, 30:1660-1666.
    [8] Roberto. Light-induced Charge Separation Across Ru(Ⅱ)-modified Nanocrystalline TiO_2 Interface with Phenothiazine Donors[J].Journal of Physical Chemistry B, 1997, 101:2591-2597.
    [9] Zakeeruddin S M. Molecular Engineering of Photosensitizers for NanocrystallineSolar Cells: Ssynthesis and Characterization of Ru Dye Based on Phosphonated Terpyridiness with Rutile Crystal Structure[J]. Inorganic chemistry, 1997, 36:5937-5946.
    [10] Wonyong Choi, Andreas Termin, and Michael R. Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. Journal of Physical Chemistry B, 1994, (98): 13669-13679.
    [11] Zhibo Zhang, Chen-Chi Wang. Role of Particle Size in Nanocrystalline TiO_2-Based Photocatalysts[J]. Journal of Physical Chemistry B, 1998, 102 (52): 10871-10878.
    [12] R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293(13):269-271.
    [13] T. Mokawa, R. Ashi, T. Ohwaki, et al. Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping[J]. The Japan Society of Applied Physics, 2001, 40(6A):L561-L563.
    [14] Hiroshi Irie, Yuka Watanabe. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-xNx Powders[J]. Journal of Physical Chemistry B, 2003, 107(23):5483-5486.
    [15] Torbjo rn Lindgren, M. Julius and M wabora. Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering[J]. Journal of Physical Chemistry B, 2003, 107:5709-5716.
    [16] Ryuhei Nakamura, Tomoaki Tanaka. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO_2 Film Electrodes[J]. Journal of Physical Chemistry B, 2004, 108:10617-10620.
    [17] T. Ihara, M. Miyoshi, Y. Iriyama, et al. Visible-Light-Active Titanium Oxide Photocatalyst realized by an Oxygen-Deficient Structure and by Nitrogen Doping[J]. Applied Catalysis B: Environmental, 2003, 42:403-409.
    [18] Zheshuai Lin, Alexander Orlov. New Insights into the Origin of Visible Light Photocatalytic Activity of Nitrogen-Doped and Oxyen-Deficient Anatase TiO_2[J]. Journal of Physical Chemistry B, 2005, 109: 20948-20952.
    [19] Cristiana Di Valentin, Gianfranco Pacchioni. Characterization of Paramagnetic Speciesin N-Doped TiO_2 Powders by EPR Spectroscopy and DFT Calculations[J]. Journal of Physical Chemistry B, 2005, 109: 11414-11419.
    [20] Oliver Diwald, Tracy L. Thompson. Photochemical Activity of Nitrogen-Doped Rutile TiO_2(110) in Visible Light[J]. Journal of Physical Chemistry B, 2004, 108:6004-6008.
    [21] A. Enrique, Reyes Garcia, Yan ping Sun, et al. 15N Solid State NMR and EPR Characterization of N-Doped TiO_2 Photocatalysts[J]. Journal of Physical Chemistry C, 2007, 111:2738-2748.
    [22] Ryuhei Nakamura, Tomoaki Tanaka. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO_2 Film Electrodes[J]. Journal of Physical Chemistry B, 2004, 108:10617-10620.
    [23] Hongbo Fu, Liwu Zhang. Electron Spin Resonance Spin-Trapping Detection of Radical Intermediates in N-Doped TiO_2-Assisted Photodegradation of 4-Chlorophenol[J]. Journal of Physical Chemistry B, 2006, 110:3061-3065.
    [24] Teruhisa Ohno, T. Mitsui, Michio Matsumura. PhotocatalyticActivity of S-doped TiO_2 Photocatalyst under VisibleLight[J]. Chemistry Letters, 2003, 32 (4): 364– 365.
    [25] Teruhisa Ohno, M. Akiyoshi, T. Umebayashi, et al. Preparation of S-doped TiO_2 Photocatalysts and Their Photocatalytic Activities under Visible Light[J]. Applied Catalysis A: General, 2004, 265:115-121.
    [26] T. Umebayashi, T. Yamaki, S. Tanaka, et al. Vsible Light-Induced Degradation of Methylene Blue On S-doped TiO_2[J]. Chemistry Letters, 2003, 32(4): 330-331.
    [27] T. Umebayashi, T. Yamaki, S. Yamamoto, et al. Sulfur-Doping of Rutile-TitaniumDioxide by Ion Implantation: Photocurrent Spectroscopy and First-Principles Band Calculation Studies[J]. Journal of Applied Physics, 2003, 93(9): 15156 - 5160.
    [28] Hongyan Liu, Lian Gao. (Sulfur, Nitrogen)-Codoped Rutile-Titanium Dioxide as A Visible-Light-Activated Photocatalyst[J]. Journal of the American Ceramic Society, 2004, 87(8):1582-1584.
    [29] JiaguoYu, Minghua Zhou, Bei Cheng, et al. Preparation, Characterization and Photocatalytic Activity of in Situ Powders N、S-codoped TiO_2[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246:176-184.
    [30] Fengyu Wei, Liangsou Ni, and Peng Cui. Preparation and Characterization of N-S-codoped TiO_2 Photocatalyst and Its Photocatalytic Activity[J]. Journal of Hazardous Materials (2008), doi:10.1016/j.jhazmat. 2007.12.018.
    [31] Jianghua Xu, Jingxia Li, Weilin Dai, et al. Simple Fabrication of Twist-Like Helix N、S-codoped Titania Photocatalyst with Visible-Light Response[J]. Applied Catalysis B: Environmental, 2008, 79:72-80.
    [32]孙大贵,韦存福,刘作华.N, S共掺杂纳米TiO_2的制备、表征及光催化性能研究[J].功能材料,2007,(38):2379-2382.
    [33]邢朋飞,王金淑,金建新.S-N共掺杂纳米TiO_2可见光光催化剂的制备及其性能研究[J].纳米科技,2007,4(2):29-33.
    [34] Yi Xie, Xiujian Zhao. The Effects of Synthesis Temperature on The Structure and Visible-Light-Induced Catalytic Activity of F–N-codoped and S–N-codoped Titania[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285:142-149.
    [35] Gaoke Zhang, Xinmiao Ding, Fangsheng He, et al. Preparation and Photocatalytic Properties of TiO_2-Montmorillonite Doped with Nitrogen and Sulfur[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5-6):1102-1106.
    [36]肖文敏,周家宏,顾晓天.氮和硫共掺杂的纳米二氧化钦的制备及表征[J].南师大学报(自然科学版),2006,29(4):55-57.
    [37]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社, 2003.
    [38]罗庆尧,邓延倬等.分光光度分析[M].北京:北京科学出版,1992.
    [39] N. J. Peill, L. Bourne, and M. R. Hoffmann. Iron-Doped Q-Sized TiO_2 Coatings in A Fiber-Optic Cable Photochemical Reactor[J]. Journal of Photochemistry and Photobiology A, 1997, 108:221-228.
    [40] J. Nicole, D. Tsiplakides. Electrochemical Promotion and Metal-Support Interactions[J]. Journal of Catalysis, 2001, 204: 23-24.
    [41] W. Choi, A. Termin, and M. R. Hoffmann. The role of metal ion in quantum-sized TiO_2: Correlation between photoreactivity and charge recombination dynamics[J]. Journal of Physical Chemistry, 1994, 98:13669-13679.
    [42] M. Moonsiri, P. Rangsuinvigit. Effects of Pt and Ag on the Photocatalytic Degradation of 4-chlorophenol and Its By-Products[J]. Chemical Engineering Journal, 2004, 97:241-248.
    [43] B. Sun, A. V. Vorontsov. Role of Platimum Deposited on TiO_2 in Phenol Photocatalytic Oxidation[J]. Langmuir, 2003, 19:3151-3156.
    [44] S. Zheng, L. Gao. Synthesis and Characterization of Pt, Au or Pd Clusters Deposited Titania-Modified Mesoporous Silicate MCM-41[J]. Materials Chemistry and Physics, 2002, 78:512-517.
    [45] H. Kazuhiro, S. Eiji. Sensitization of TiO_2 Particles by Dyes to Achieve H2 Evolution by Visible Light[J]. Journal of Photochemistry and Photobiology A, 2000, 136(2):157-161.
    [46] K. B. Dhanalakshmi, S. Lathaet. Dye Sensitized Hydrogen Evolution from Water [J]. International Journal of Hydrogen Energy, 2001, 26:669-674.
    [47] S. Z. Wu, F. Zeng. Energy and Electron Transfers in Photosensitive Chitosan[J]. Journal of the American Chemical Society, 2005, 127:2048-2049.
    [48] H. Fuji, M. Ohtaki. Prepartion and Potocatalytic Activties of A SemiconductorComposite of CdS Embedded in A TiO_2[J]. Journal of Molecular Catalysis A: Chemical, 1998, 129:61-68.
    [49]陈菘哲,张彭义,祝万鹏等.可见光响应光催化剂研究进展[J].化学进展,2004,16(4):613-619.
    [50]洪孝挺,王正鹏,陆峰等.可见光响应型非金属掺杂TiO_2的研究进展[J].化工进展,2004,23(10):1077-1079.
    [51]苏文悦,付贤智,魏可镁.光催化剂SO2-4/TiO_2和TiO_2的光谱行为比较[J].环境科学,2000,120(15):655-657.
    [52]杜金菊,徐安武,祝静艳.固体超强酸SO42-/TiO_2制备及其光催化氧化性能[J].中山大学学报,2001,40(3):48-51.
    [53] Junwei Wang, Wei Zhu, Yinqing Zhang, et al. An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue[J]. Journal of Physical Chemistry C, 2007, 111:1010-1014.
    [54] G. Beamson, D. Briggs. High Resolution Monochromated X-ray Photocatalytic Spectroscopy of Organic Polymers: A Comparison between Solide State Data for Organic Polymers and Gas Phase Data for Small Molecules[J]. Molecular Physics, 1992, 76(4):919-936.
    [55] S. Sakthivel, Janczarek, and H. Kisch. Visible light activity and photoelectrochemical properties of Nitrogen-Doped TiO_2[J]. Journal of Physical Chemistry B, 2004, 108:19384-19387.
    [56] O. Diwald, Tracy L. Thompshon, Tykhon Zubkov, et al. Photochemical Activity of Nitrogen-Doped Rutile TiO_2(110) in Visible Light[J]. Journal of Physical Chemistry B, 2004, 108:6004-6008.
    [57] Xiaobo Chen, Clemens Burda. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles[J]. Journal of Physical Chemistry B, 2004, 108:15446-15449.
    [58] N. C. Saha, H. G.Tompkins. Titanium Nitride Oxidation Chemistry: An X-ray Photoelectron Spectroscopy Study[J]. Journal of Applied Physics, 1992, 72 (7): 3072-3079.
    [59] M. Sathish, B. Viswanathan. Synthesis, Characterization, Electronic Structure, and Photocatalytic Nanocatalyst Activity of Nitrogen-Doped TiO_2[J].Chemistry of Materials, 2005, 17:6349-6353.
    [60]费贤翔,熊予莹.具有可见光活性的纳米掺氮TiO_2制备和表征[J].功能材料与器件学报,2005,11(2):223-227.
    [61] E.Gy?rgy, A. Perez del Pino, P. Serra, et al. Surface Nitridation of Titanium by Pulsed Nd: YAG Laser Irradiation[J]. Applied Surface Science, 2002, 186:130-134.
    [62] S.Liu, X.Chen. A Visible Light Response TiO_2 Photocatalyst Realized by Cationic S-doping and Its Application for Phenol Degradation[J]. Journal of Hazardous Materials, 2007, doi:10.1016/j.jhazmat. 2007. 06. 062.
    [63]王永强,于秀娟,杨红芬等.可见光催化剂S/TiO_2的制备与表征[J].无机化学学报,2006,22(44):771-774.
    [64] Minghua Zhou, Jiaguo Yu. Preparation and Enhanced Daylight-Induced Photocatalytic Activity of C, N, S-tridoped Titanium Dioxide Powders[J]. Journal of Hazardous Materials, 2008, 152(3):1229-1236.
    [65] Y. Nosaka, M. Matsushita, J. Nishino, et al. Nitrogen-doped Titanium Dioxide Photocatalysts for Visible Response Prepared by Using Organic Componds[J]. Science and Technology of Advanced Materials, 2005, 6: 143-148.
    [66] Y. Kuroda, T. Mori, K. Yagi, et al. Preparation of Visible-Light- Responsive TiO_2-xNx Photocatalys by A Sol-Gel Method: Analysis of The Active Center on TiO_2 that Reacts with NH3[J]. Langmuir, 2005, 21: 8026 -8034.
    [67] Liqiang Jing, Baifu Xin, Fulong Yuan, et al. Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO_2 Nanoparticlesand Their Relationships [J]. Journal of Physical Chemistry B, 2006, 110:17860-17865.
    [68]曹亚安,谢腾锋,张昕丹等.TiO_2纳米粒子膜表面性质研究[J].物理化学学报,1999,15(8):680-683.
    [69]井立强,袁福龙,侯海鸽等.ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J].中国科学B,2004,34(4):310-314.
    [70] M. Zhang, G. Gao, D. C. Zhao, et al. Crystallization and Photovoltaic Properties of Titania-Coated Polystyrene Hybrid Microspheres and Their Photocatalytic Activity[J]. Journal of Physical Chemistry B, 2005, 109: 9411-9415.
    [71] X. Z. Li, C. C. Chen, Zhao. Mechanism of Photodecomposition of H2O2 on TiO_2 Surfaces Under Visible Light Irradiation[J]. Langmuir, 2001, 17: 4118-4122.
    [72]付宏刚,闫鹏飞,辛柏福.二氧化钛改性材料与光催化[M].哈尔滨:黑龙江出版社,2003.
    [73] I. Sopyan, M. Watanabe, S. Murasawa, et al. A Film-Type Photocatalyst Incorporating Highly Active TiO_2, Powder and Fluororesin Binder: Photocatalytic Activity and Long-term Stability[J]. Journal of Electroanalytical Chemistry, 1996, (415):183-186.
    [74] M. R Hoffmann, S. T. Martin, W. Choi, et al. Enviornmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95:69-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700