可溶性淀粉辅助生长氧化锌及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)作为一种典型的宽禁带多功能半导体材料,在很多领域具有广泛的应用。半导体光催化技术能利用太阳光来分解水和降解有机污染物,广泛应用于环境治理保护等方面。氧化锌作为一种性能优良的光催化剂,得到国内外广泛的研究。但是,单一的氧化锌半导体材料因为势垒等因素使得光催化效率不高。通过外来元素的掺入,能改变氧化锌本体的很多性能,如缺陷浓度、颗粒大小等,这些因素能提高氧化锌的光催化性能。因此,制备高效的氧化锌及其复合半导体材料是提高光催化效率的研究热点。本文以可溶性淀粉作为辅助生长剂,采用水溶液法和溶胶凝胶法分别制备了形貌均匀的氧化锌微球,以及铁、锰、铬、钴、镍与锌的氧化物复合物。采用粉晶X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FESEM)、紫外可见漫反射(DRS)、荧光光谱分析(PL)、拉曼光谱(Raman)等多种表征技术对所合成样品进行了研究。
     SEM和FESEM表明,水溶液法制备的氧化锌微球形貌均一,单分散性好。SEM表明,在500℃焙烧之前氧化锌微球的粒径在200-450 nm之间,在500℃焙烧之后,氧化锌微球的粒径减小在150-300 nm之间。FESEM表明,氧化锌微球在焙烧前后均有较小的氧化锌小颗粒组成,焙烧之后这种氧化锌小颗粒由5nm增大到15-30 nm不等。Raman分析表明,采用水溶液法制备的氧化锌微球是由淀粉和氧化锌的复合物,在500℃焙烧之后的氧化锌微球只有氧化锌成分。DRS分析表明,采用溶胶凝胶法制备的氧化锌复合半导体粉末与单一的氧化锌粉末相比,其吸收边带均出现红移现象。
     在紫外光照条件下,我们对制备的氧化锌微球以及各种氧化锌复合半导体对模拟对硝基苯酚和罗丹明B废水进行光催化降解实验。实验结果表明,氧化锌微球在紫外光照下,对罗丹明B和4-硝基苯酚具有较好的光催化性能,而采用溶胶凝胶法制备的氧化锌复合半导体,只有Cr-Zn-O复合氧化物具有比相同条件下单一氧化锌更好的光催化性能。其中以Cr:Zn摩尔比为1:40的配比制备出的复合半导体,在光催化降解一小时后,对罗丹明B(5 mg/L)的降解率达到92%,而单一的氧化锌只有70%,掺入Cr之后,氧化锌复合氧化物的催化性能有很大的提高。其他金属(Fe、Mn、Ni、Co)的氧化锌复合半导体不仅没有提高单一氧化锌的催化性能,而且降低了氧化锌的催化性能。
As a typical wide band gap multifunction semiconductor, Znic oxide (ZnO) has been used in many fields. Semiconductor photocatalytic technology has been employed in phtotocatalytic decomposition of water and degradation of organic pollutants, so it was widely utilized in environmental waste treatment and protection. ZnO is one of the most widely used effective photocatalyst, and has attracted the public concern from home and abroad. But the photocatalytic efficiency of ZnO always was relatively low for the reason of energy barrier. The doping of other elements or semiconductors into ZnO was used to change the properties, such as defect concentration, particle sizes, which had been verified to enhance the photocatalytic property of ZnO. So, how to fabricate ZnO and ZnO mixed oxide of high photocatalytic efficiency has become the hotspot of research. In this paper, we have adapted soluble starch-assisted aqueous solution method to fabricate uniform ZnO spheres, and sol-gel method to obtain M-Zn-0 (M= Fe, Mn, Cr, Co, Ni) mixed oxide. The final photocatalysts had been analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Field-emission scanning electron microscopy (FESEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and Ramon spectra (Raman).
     SEM and FESEM show that the morphology of ZnO spheres is very uniform and have good monodispersity. And SEM analysis revealed the size of single ZnO decreased from 200-450 nm to 150-300 nm after calcination at 500℃. FESEM revealed the single ZnO sphere is composed of many nano-ZnO particles. The sizes of ZnO nanoparticles increased from 5 nm to 15-30 nm after calcination at 500℃. Ramon spectra showed the ZnO sphere fabricated by aqueous solution method is a mixed of starch and ZnO. The starch was removed by calcination at 500℃. The DRS analysis revealed the absorption band of ZnO compound were red shift compared with the pure ZnO.
     We investigated the photocatalytic properties of ZnO and ZnO mixed oxide by degradation of rhodamine B (RhB) and 4-nitrophenol (4-NP) under ultra-visible light. The results showed that the ZnO spheres had high photocatalytic efficiency of RhB and 4-NP. The Cr-Zn-O (1:40) mixed oxide, which was obtained by sol-gel method, had much better photocatalytic property than single ZnO under the same photocatalytic condition. And the photocatalytic degradation efficiency of RhB (5 mg/L) reached 92% after one hour of illumination. Compared with that, it was only 70% for the single ZnO. The photocatalytic property of ZnO had been enhanced a lot after doping of Cr. But the doping of the other metal (Fe, Mn, Ni, Co) elements did not play the same role in improving the photocatalytic property of ZnO.
引文
[1]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995(95):69-96.
    [2]吴燕.掺镧光催化薄膜降解室内空气中甲醛气体的实验研究[D].重庆:重庆大学城市建设与环境工程学院,2009.
    [3]孙梦君.改性TiO2薄膜光催化降解空气中的甲苯[D].辽宁:大连理工大学环境工程,2007.
    [4]彭丽.以石膏板为载体的掺氮TiO2粉末光催化降解室内甲醛污染的实验研究[D].重庆:重庆大学城市建设与环境工程学院,2009.
    [5]谈俊.二氧化钛纳米材料及有机污染物光催化降解研究[D].湖南:湖南大学化学化工学院,2009.
    [6]Guillen E, Fernandez-Lorenzo C, Alcantara R, et al. Solvent-free ZnO dye-sensitised solar cells[J]. Sol. Energy Mater. Sol. Cells,2009(93):1846-1852.
    [7]Kassis A, Saad M. Fill factor losses in ZnO/CdS/CuGaSe2 single-crystal solar cells[J]. Sol. Energy Mater. Sol. Cells,2003(80):491-499.
    [8]Zhu J F, Zach M. Nanostructured materials for photocatalytic hydrogen production[J]. Curr. Opin. Colloid Interface Sci.,2009(14):260-269.
    [9]Kanade K G, Baeg J O, Kale B B, et al. Rose-red color oxynitride Nb2Zr6O17-xNx:A visible light photocatalyst to hydrogen production[J]. Int. J. Hydrogen Energy,2007(32):4678-4684.
    [10]Chabas A, Lombardo T, Cachier H, et al. Behaviour of self-cleaning glass in urban atmosphere[J]. Build. Environ.,2008(43):2124-2131.
    [11]Mellott N P, Durucan C, Pantano C G, et al. Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses:Photocatalytic performance and chemical durability[J]. Thin Solid Films,2006(502):112-120.
    [12]Amin S A, Pazouki M, Hosseinnia A. Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli[J]. Powder Technol., 2009(196):241-245.
    [13]Pichat P, Disdier J, Hoang-Van C, et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis[J]. Catal. Today,2000(63):363-369.
    [14]Przepiorski J, Yoshida S, Oya A. Structure of K2CO3-loaded activated carbon fiber and its deodorization ability against H2S gas[J]. Carbon,1999(37):1881-1890.
    [15]Gao F F, Chino N, Naik S P, et al. Photoelectric properties of nano-ZnO fabricated in mesoporous silica film[J]. Mater. Lett.,2007(61):3179-3184.
    [16]Kakenoa T, Sakai K, Komaki H, Yoshino K, et al. Dependence of oxygen flow rate on piezoelectric photothermal spectra of ZnO thin films grown by a reactive plasma deposition[J]. Mater. Sci. Eng., B 2005(118):70-73.
    [17]Fan S W, Srivastava A K, Dravid V P. Nanopatterned polycrystalline ZnO for room temperature gas sensing[J]. Sens. Actuators, B,2010(144):159-163.
    [18]Baek K K, Tuller H L. Atmosphere sensitive CuO/ZnO junctions[J]. Solid State Ionics, 1995(75):179-186
    [19]Talbi A, Sarry F, Elhakiki M, et al. ZnO/quartz structure potentiality for surface acoustic wave pressure sensor[J]. Sens. Actuators A,2006(128):78-83.
    [20]马磊.结构取向ZnO的制备及其催化性能研究[D].辽宁:大连理工大学环境工程,2006.
    [21]韩培林.非金属掺杂纳米NaTaO3的水热合成及结构性能研究[D].内蒙古:内蒙古大学物理化学,2009.
    [22]韦存福.微波辅助N、S共掺杂纳米TiO2制备、表征及光催化性能研究[D].重庆:重庆大学,2008.
    [23]侯乙东.TiO2纳米晶结构形态、光电特性及其光催化性能研究[D].福建:福州大学物理化学,2004.
    [24]侯廷红.稀土掺杂纳米TiO2的结构和电子特性研究[D].四川:四川大学材料学,2006.
    [25]Gerisher H, Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water[J]. J. Electrochem. Soc.,1992(139):113-121.
    [26]Noda H, Oikawa K, Kamada H. ESR spin-trapping study of active oxygen radicals from photoexcited semiconductors in aqueous H2O2 solutions[J]. Bull. Chem. Soc. Jpn.,1993(66): 455-458.
    [27]李园园.铋系光催化剂纳米-微米结构的制备、修饰及可见光催化性能的研究[D].武汉:华中师范大学,2009.
    [28]Cheng S F, Tsai S J, Lee Y F. Photocatalytic decomposition of phenol over titanium oxide of various structures[J]. Catal. Today,1995(26):87-96.
    [29]Jeon S H, Eom Y J, Lee T G. Photocatalytic oxidation of gas-phase elemental mercury by nanotitanosilicate fibers[J]. Chemosphere,2008(71):969-974.
    [30]Mohapatra P, Samantaray S K, Parida K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania[J]. J. Photochem. Photobiol., A:Chem.,2005(170): 189-194.
    [31]Samantaray S K, Mohapatra P, Parida K. Physico-chemical characterisation and photocatalytic activity of nanosized SO42-/TiO2 towards degradation of 4-nitrophenol[J]. J. Mol. Catal. A:Chem.,2003(198):277-287.
    [32]Zheng Z F, Liu H W, Ye J P, et al. Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2 (B) phases[J]. J. Mol. Catal. A:Chem., 2010(316):75-82.
    [33]Kim D S, Han S J, Kwak S Y. Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size[J]. J. Colloid Interface Sci.,2007(316):85-91.
    [34]Jing L, Xu Z, Sun X, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Appl. Surf. Sci.,2001(180):308-314.
    [35]李长青.Bi2O3和Bi2Sn2O7粉体的微乳液法制备、表征及其性质的研究[D].福建:福州大学物理化学系,2004.
    [36]Koci K, Obalova L, Matejova L, et al. Effect of TiO2 particle size on the photocatalytic reduction of CO2[J]. Appl. Catal., B:Environ.,2009(89):494-502.
    [37]Muller B R., Majoni S, Meissner D, et al. Photocatalytic oxidation of ethanol on micrometer-and nanometer-sized semiconductor particles[J]. J. Photochem. Photobiol., A:Chem., 2002(151):253-265.
    [38]Tian G H, Fu H G, Jing L Q, et al. Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area[J]. J. Hazard. Mater.,2009(161): 1122-1130.
    [39]Kim D S, Kwak S Y. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity,thermal stability, large surface area, and enhanced photocatalytic activity [J]. Appl. Catal., A:General,2007(323):110-118.
    [40]Vorontsov A V, Savinov E N. The influence of the non-irradiated surface area on the kinetics of heterogeneous photocatalytic reaction in a static reactor[J]. Chem. Eng. J.,1998(70):231-235.
    [41]Lillo-Rodenas M A, Bouazza N, Berenguer-Murcia A, et al. Photocatalytic oxidation of propene at low concentration[J]. Appl. Catal., B:Environ.,2007(71):298-309.
    [42]Othman I, Mohamed R M, Ibrahem F M. Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2[J]. J. Photochem. Photobiol., A:Chemistry,2007(189):80-85.
    [43]支正良,汪信.环境中有机污染物的半导体光催化降解研究进展[J].环境污染与防治,1998,20(1):42-44.
    [44]Choi W Y, Termin A, Hoffmann M R. Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles[J]. Angew.Chem.,Int.Ed.,1994(33):1091-1092.
    [45]果玉沈.半导体物理[M].北京:国防工业出版社,1998:19.
    [46]Zhong J B, Lu Y, Jiang W D, et al. Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene[J]. J Hazard Mater.,2009(168):1632-1635.
    [47]Cho K C, Hwang K C, Sano T, et al. Photocatalytic performance of Pt-loaded TiO2 in the decomposition of gaseous ozone[J]. J. Photochem. Photobiol.,A:Chemistry,2004(161):155-161.
    [48]Zhou M H, Yu J G, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method[J]. J. Hazard. Mater., 2006(137):1838-1847.
    [49]Anandan S, Vinu A., Sheej Lovely K L P, et al. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension[J]. J. Mol. Catal. A:Chem.,2007(266): 149-157.
    [50]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chem. Phys. Lett.,1986(123):126-128.
    [51]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001(293):269-271.
    [52]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl. Catal.B,2003(42): 403-409.
    [53]Wang Z P, Cai W M, Hong X T, et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources[J]. Appl. Catal.B:Environ.,2005(57): 223-231.
    [54]Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2 nanoparticles[J], Nano Lett.,2003(3):1049-1051.
    [55]Liu Y M, Liu J Z, Lin Y L, et al. Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation[J]. Ceramics International,2009(35): 3061-3065.
    [56]Shang J, Yao W Q, Zhu Y F, et al. Structure and photocatalytic performances of glass/Sn02/Ti02 interface composite film[J]. Applied Catalysis A:General,2004(257):25-32.
    [57]Tristao J C, Magalhaes F, Corio P, et al. Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006(181):152-157.
    [58]Xiao Q, Zhang J, Xiao C, et al. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation[J]. Catalysis Communications,2008(9): 1247-1253.
    [59]Shi L Y, Li C Z, Gu H C, et al. Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles[J] Mater. Chem. Phys.2000(62):62-67.
    [60]Song K Y, Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties[J]. Chem. Mater.,2001(13) 2349-2355.
    [61]Pal B, Sharon M, Nogami G. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties[J]. Mater. Chem. Phys.,1999(59):254-261.
    [62]Pal B, Hata T, Goto K, et al. Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts[J] J. Mol. Catal. A Chem.,2001(169) 147-155.
    [63]Wang C, Zhao J C, Wang X M, et al. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts[J]. Appl. Catal. B:Environ.,2002(39) 269-279.
    [64]Jin R C, Gao W L, Chen J X, et al. Photocatalytic reduction of nitrate ion in drinking water by using metal-loaded MgTiO3-TiO2 composite semiconductor catalyst[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004(162):585-590.
    [65]Hattori A, Tokihisa Y, Tada H, et al. Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst[J]. J. Electrochem. Soc.,2000(147): 2279-2283.
    [66]Tada H, Hottri A, Tokihisa Y, et al. A Patterned-TiO2/SnO2 Bilayer Type Photocatalyst[J]. J. Phys.Chem.B,2000(104):4585-4587.
    [67]Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environ. Sci. Technol.,1995(29):841-845.
    [68]Vinodgopal K, Bedjia I, Kamat P V. Nanostructured semiconductor films for photocatalysis. photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic segradation of a textile azo dye[J].Chem. Mater.,1996(8):2180-2187.
    [69]Hotchandani S, Kamat P V. Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system[J]. J. Phys. Chem.,1992(96):6834-6839.
    [70]Nasr C, Kamat P V, Hotchandani S. Photoelectrochemistry of composite semiconductor thin films. Photosensitization of the SnO2/TiO2 coupled system with a ruthenium polypyridyl complex[J]. J. Phys. Chem. B,1998(102):10047-10056.
    [71]Kumeta K, Ono H, Iizuka S. Formation of ZnO nanostructures in energy-controlled hollow-type magnetron RF plasma[J]. Thin Solid Films,2010(518):3522-3525.
    [72]Moribe S, Ikoma T, Akiyama K, et al. EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechanochemical method[J]. Chem. Phys. Lett.,2007(436): 373-377.
    [73]Ashkarran A A, Zad A I, Mahdavi S M, et al. ZnO nanoparticles prepared by electrical arc discharge method in water[J]. Mater. Chem. Phys.,2009(118):6-8.
    [74]Wu R, Jiang Y X, Cong S H, et al. Optical absorptive characteristics of ZnO tetrapod nanowhiskers[J]. Mater. Lett.,2004(58):3792-3795
    [75]郑磊.纳米ZnO材料的制备及光电催化降解苯酚溶液的研究[D].安徽:合肥工业大学应用化学,2009.
    [76]Musat V, Teixeira B, Fortunato E, et al. Al-doped ZnO thin films by sol-gel method[J]. Surf. Coat. Technol.,2004(180-181):659-662.
    [77]Tsay C Y, Cheng H C, Tung Y T, et al. Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method[J]. Thin Solid Films,2008(517): 1032-1036.
    [78]Xu L H, Li X Y. Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol-gel method[J]. J. Cryst. Growth,2010(312):851-855.
    [79]Music S, Dragcevic D, Popovic S, et al. Precipitation of ZnO particles and their properties[J]. Mater. Lett.,2005(59):2388-2393.
    [80]Lee J, Yun Y, Oh J, et al. Remote electro-precipitation of transparent ZnO on nano-porous alumina template[J]. Electrochim. Acta,2005(51):1-6.
    [81]Chen J, Lei W, Chai W Q, et al. High field emission enhancement of ZnO-nanorods via hydrothermal synthesis[J]. Solid-State Electron.,2008(52):294-298.
    [82]Pal E, Hornok V, Oszko A, et al. Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures[J]. Colloids Surf., A:Physicochem. Eng. Aspects,2009(340): 1-9.
    [83]He Y J, Yang B L, Cheng G X. On the oxidative coupling of methane with carbon dioxide over CeO2/ZnO nanocatalysts[J]. Catal. Today,2004(98):595-600.
    [84]He Y J. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route[J]. Powder Technol.,2004(147):59-63.
    [85]Chen J H, Cheng C Y, Chiu W Y, et al. Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization[J]. Eur. Polym. J.,2008(44):3271-3279.
    [86]Han J H, No Y S, Kim T W, et al. Microstructural and surface property variations due to the amorphous region formed by thermal annealing in Al-doped ZnO thin films grown on n-Si (100) substrates[J]. Appl. Surf. Sci.,2010(256):1920-1924.
    [87]Fukuoka O, Matsunami N, Tazawa M, et al. Irradiation effects with 100 MeV Xe ions on optical properties of Al-doped ZnO films[J]. Nucl. Instrum. Methods Phys. Res., Sect. B, 2006(250):295-299.
    [88]Bourret-Courchesne E D, Derenzo S E, Weber M J. Development of ZnO:Ga as an ultra-fast scintillator[J]. Nuclear Instruments and Methods in Physics Research A,2009(601):358-363.
    [89]Han N, Tian Y J, Wu X F, et al. Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO[J]. Sens. Actuators, B,2009(138):228-235.
    [90]Pal E, Hornok V, Oszko A, et al. Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures[J]. Colloids Surf., A:Physicochem. Eng. Aspects,2009(340): 1-9.
    [91]Tao Z W, Yu X B, Fei X Y, et al. A facile synthesis and optical properties of ZnO:S,Cl apertured architectures[J]. Mater. Lett.,2008(62):1187-1189.
    [92]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J], Acta Cryst. A,1976(32):751-767.
    [93]Han N, Tian Y J, Wu X F, et al. Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO[J]. Sens. Actuators, B,2009(138):228-235.
    [94]Du S F, Tian Y J, Liu H D, et al. Calcination effects on the properties of gallium-doped zinc oxide powders[J], J. Am. Ceram. Soc.,2006(89):2440-2443.
    [95]马男.镓、锂掺杂的氧化锌纳米颗粒/阵列的制备及性能[D].天津:天津理工大学材料学,2008.
    [96]李春燕.氮掺杂二氧化钛的制备及降解活性红紫染料的研究[D].上海:东华大学环境工程,2009.
    [97]Mohamed G A, Mohamed E M, El-Fadl A A. Optical properties and surface morphology of Li-doped ZnO thin films deposited on different substrates by DC magnetron sputtering method[J]. Physica B,2001(308-310):949-953.
    [98]Lin S S, Lu J G, Ye Z Z, et al. P-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes[J]. Solid State Commun.,2008(148):25-28.
    [99]Xu L H, Li X Y, Yuan J. Effect of K-doping on structural and optical properties of ZnO thin films[J], Superlattices Microstruct.,2008(44):276-281.
    [100]Shishido T, Yamamoto Y, Morioka H, et al. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation:Steam reforming and oxidative steam reforming[J] J. Mol. Catal. A:Chem.,2007(268):185-194.
    [101]Yu L M, Zhu C C. Field emission characteristics study for ZnO/Ag and ZnO/CNTs composites produced by DC electrophoresis[J]. Appl. Surf. Sci.,2009(255):8359-8362.
    [102]Gouvea C A K, Wypych F, Moraes S G, et al. Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO[J]. Chemosphere,2000(40):427-432.
    [103]Kappers L A, Gilliama O R, Evans S M, et al. EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2008(266): 2953-2957.
    [104]Dai L P, Deng H, Chen G, et al. Growth of a-b-axis orientation ZnO films with zinc vacancies by SSCVD[J]. Vacuum,2007(81):969-973.
    [105]Leem J H, Lee D H, Lee S Y. Properties of N-doped ZnO grown by DBD-PLD[J]. Thin Solid Films,2009(518):1238-1240.
    [106]Golshahi S, Rozati S M, Martins R, et al. P-type ZnO thin film deposited by spray pyrolysis technique:The effect of solution concentration [J]. Thin Solid Films,2009(518):1149-1152.
    [107]Hu G X, Gong H. Unexpected influence of substrate temperature on the properties of P-doped ZnO[J]. Acta Mater.,2008(56):5066-5070.
    [108]Shen Y Q, Mi L, Xu X F, et al. Studies of the mechanism of electrical conduction in As-doped ZnO by structural and chemical-bonding analyses and first principle calculations[J]. Solid State Commun.,2008(148):301-304.
    [109]仇明侠.Li掺杂p型Zn1-xMgxO薄膜及ZnO和ZnMgO纳米材料的研究[D].浙江:浙江大学材料物理与化学,2008.
    [110]Lu J G, Ye Z Z, Zhuge F, et al. P-type conduction in N-Al co-doped ZnO thin films[J]. Appl. Phys. Lett.2004(85):3134-3135.
    [111]Rommeluere J F, Svob L, Jomard F, et al. Nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy[J]. Phys. Status Solidi C,2004(1):904-907.
    [112]Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO[J]. Phys. Rev. B,2001(64):851201-851205.
    [113]Lu J F, Zhang Q W, Wang J, et al. Synthesis of N-doped ZnO by grinding and subsequent heating ZnO-urea mixture[J], Powder Technol.2006(162):33-37.
    [114]Li D, Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J]. J. Photochem. Photobiol. A:Chem.2003(155):171-178.
    [115]Wang X, Yang S, Wang J, et al. Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition[J]. J. Cryst. Growth.,2001(226):123-129.
    [116]Li D, Haneda H, Ohashi N, et al. Synthesis of nanosized nitrogen-containing MOx-ZnO (M=W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetalde-hyde decomposition[J]. Catal. Today 2004(93-95):895-901.
    [117]Li D, Haneda H. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and W03-Zn0 composite powders in gas-phase acetaldehyde decomposition[J]. J. Photochem. Photobiol. A: Chem.2003(160):203-212.
    [118]Tennakone K, Bandara J. Photocatalytic activity of dye-sensitized tin (IV) oxide nanocrystallineparticles attachedto zinc oxideparticles:longdistance electron transfer via ballistic transport of electrons across nanocrystallites[J]. Appl. Catal. A:Gen.,2001(208):335-341.
    [119]Liao S, Huang D, Yu D, et al. Preparation and characterization of ZnO/TiO2,SO42-/ZnO/TiO2 photocatalyst and their photocatalysis[J]. J. Photochem. Photobiol. A: Chem.,2004(168):7-13.
    [120]Wang C, Wang X, Zhao J, et al. Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4[J]. J. Mater. Sci.,2002(37):2989-2996.
    [121]Wang J F, Wang Y J, Su W B, et al. Novel (Zn, Nb)-doped SnO2 varistors[J]. Mater. Sci. Eng. B,2002(96):8-13.
    [122]Kuang Q, Jiang Z Y, Xie Z X, et al. Tailoring the optical property by a three-dimensional epitaxial heterostructure:a case of ZnO/SnO2[J]. J. Am. Chem. Soc.,2005(127):11777-11784.
    [123]EPA (Environmental Protection Ageney). EPA-440/5-80-063. Ambient water quality for nitrophenols[S]. Washington:1980.
    [124]Gemini V L, Galleg A, de Oliveira, et al. Biodegradtion and dctoxification of p-nitrophenol by Rhodococcus wratislaviensis[J]. Int. Biodeterior. Biodegrad.,2005(55):103-108.
    [125]Zhang H, Yang D, Li S Z, et al. Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process[J]. Mater. Lett.,2005(59):1696-1700.
    [126]Wiedmer S K, Cassely A, Hong M, et al. Electrophoretic studies of polygalacturonate oligomers and their interactions with metal ions[J]. Electrophoresis,2000(21):3212-3219.
    [127]Wang C, Wang X M, Xu B Q, et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation[J]. J. Photochem. Photobiol., A: Chemistry,2004(168):47-52.
    [128]Jang J S, Yu C J, Choi S H, et al. Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity[J]. J Catal.,2008(254):144-155.
    [129]Li B X, Wang Y F. Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite[J]. Superlatt. Microstruc.,2010(47):615-623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700