可见光响应纳米TiO_2的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2作为一种高效、节能、无二次污染、低成本的光催化剂,已经广泛应用于环保、制氢及能源领域。TiO_2虽然具有独特的光学性能,但是由于其禁带宽度较大(3.2eV),只能捕获不到3%的太阳光能量(波长小于387nm),而且光生电子-空穴对在TiO_2表面或体内能够很快复合,致使TiO_2许多应用都受到限制。因此,如何通过改性提高TiO_2在太阳光照射下的光催化效率成为目前研究的重点。
     本研究制备了氮掺杂改性、氮铈共掺改性纳米TiO_2光催化剂,通过比较TiO_2改性前后的光催化活性、晶体结构和化学状态特征,论述了氮掺杂、氮铈共掺杂TiO_2的光催化活性改性机理。
     本研究采用溶胶-凝胶法制备氮掺杂、氮铈共掺改性纳米TiO_2粉末,通过实验对比其光催化活性,使用TEM、XPS、XRD、BET、DRS等表征分析催化剂形貌、结构,通过在不同波长光照射下光催化氧化KI实验考察改性前后的光催化效率。在紫外光和可见光照射下均有如下实验结论:氮掺量为0.97 at.%的氮掺杂改性TiO_2,铈掺量为0.70 at.%,氮掺量为0.33 at.%的氮铈共掺改性TiO_2光催化活性最高。氮掺量及氮在TiO_2晶体中存在状态是影响氮掺杂和氮铈共掺改性TiO_2光催化活性的主要因素,变价铈离子对光催化剂的的特殊作用也是影响氮铈共掺改性纳米TiO_2的因素。
Titanium dioxide exhibits unique photo-functionalities that make it an excellent choice for photocatalytic applications in environmental protection, hydrogen production and energy fields due to TiO_2 is a highly effective, saving energy, without any further polluted and low cost photocatalyst. However many applications have been limited by its large band gap (3.2eV) which can only capture less than 3% of the solar irradiance (wavelength < 387nm), and the fast recombination of photogenerated electron-hole pairs both on the surface and in the lattice of TiO_2. So, the current issue is how to improve its efficiency under sunlight irradiation by structure modification.
     The modified TiO_2 photocatalyst doped with nitrogen and/or cerium were synthesized in this paper. By comparing their photocatalytic activity, crystal structure and chemical state characterization, the mechanism of doped nitrogen and/or cerium elements on photocatalytic activity of nitrogen and/or cerium doped TiO_2 have been discussed.
     The nitrogen with/without cerium co-doped TiO_2 nanoparticles were synthesized via Sol-gel technique. Photocatalysts were characterized by TEM, XPS, XRD, BET, and DRS. By the KI photocatalytic oxidation experiments under different wavelengths irradiation were carried out and their catalytic efficiency were studied. From the current results we could concluded: the optimal doped ratio is 0.97 at.% nitrogen for nitrogen doped TiO_2, and 0.70 at.% cerium and 0.33 at.% nitrogen for nitrogen and cerium co-doped TiO_2. Doping nitrogen and its chemical state in TiO_2 nanocrystal are the important impact factors on the photocatalytic activity of nitrogen with/without cerium co-doped TiO_2 nanoparticles. The special role of cerium as a variable valence element is another factor on the photocatalytic activity of nitrogen and cerium co-doped TiO_2.
引文
[1]高濂,郑珊,张青红.纳米二氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002.
    [2] Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J], Applied Catalysis B:Environmental, 1997, 14:55-68.
    [3] Chen S F, Chen L, Gao S, et a1. The preparation of coupled WO3/TiO2 photocatalyst by hall milling[J], Powder Technology, 2005, 160:198-202.
    [4] Goswam D Y, Vijayaraghavan S. New and emerging developments in solar energy[J], Solar Energy, 2004, 76:33-38.
    [5]刘国光,丁雪军,张学治,等.光催化氧化技术的研究现状及发展趋势[J],环境污染治理技术与设备, 2005, 4:65-69.
    [6] Wingkei H, Jimmy C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles[J], Molecular Catalysis A:Chemical, 2006, 247:268-273.
    [7] Iliev V, Tomova V, Bilyarska L, et a1. Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution[J], Applied Catalysis B:Environmental, 2005, 63:261-266.
    [8]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社, 2006.
    [9] Anpo M, Shima T, Kodam S, et al. Photocatalytic hydrogenation of CH3COOH with H2O on small particle TiO2[J], Physics Chemical, 1987, 91:4305-4310.
    [10] Regan B O, Gratzel M. High efficiency solar cell based on dye-sensitized colloidal TiO2 films[J], Nature, 1991, 353:737-739.
    [11]周林,谭欣,赵林,等.可见光响应的Fe3+修饰纳米TiO2光催化降解氮氧化物研究[J],化学工业与工程, 2008, 25(5):299-403.
    [12]施利毅,李春忠,房鼎业,等. TiO2超细粒子的制备及其光催化降解古酚溶液[J],华东理工大学学报, 1998, 24(3):291-294.
    [13] Floretina A, Betianu C, Robu B M, et al. Study concerning the influence of oxidizing agents on heterogeneous photocatalytic degradation of persistent organic pollutants[J], Environmental Engineering and Management Journal, 2007, 6(6):483-489.
    [14] Yurdakai S, Loddo V, Augugliaro V, et al. Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions:Mechanism and kinetics[J], Catalysis Today, 2007, 129(1):9-15.
    [15] Tanizaki T, Murakami Y, Hanada Y, et al. Titanium dioxide assisted photocatalytic degradation of volatile organic compounds at ppb level[J], Journal of Health Science, 2007, 53(5):514-519.
    [16] Zhu J, Deng Z. Hydrothermal doping method for preparation of Cr3 +-TiO2 photocatalysts with concentration gradient distribution of Cr3+ [J], Applied Catalysis B:Environmental, 2006, 62:329-335.
    [17] Ao C, Lee S, Roberta L, et al. Photodegradation of volatile organic compounds and NO for indoor air purification using TiO2:promotion versus inhibition effect of NO[J], Applied Catalyst B:Environmental, 2002, 12:94-99.
    [18] Suzuko Y, Satoru T, Hidekazu T, et al. Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst[J], Photochemistry Photobiology A:Chemistry, 1999, 121:55-61.
    [19] Wang K H, Tsai H, Hsieh Y H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead [J], Applied Catalyst B:Environmental, 1998, 17:313-319.
    [20] Obuchi E, Sakamoto T, Nakano K, et al. Photocatalytic decomposition of acetadehyde over TiO2 /SiO2 catalyst[J], Chemical Science, 1999, 54:52-55.
    [21] Sauer M L, Ollis D F. Acetone oxidation in a photocatalytic monolith reactor[J], Catalysis Today, 1994, 149:81-87.
    [22]桥本和仁,藤岛昭.图解光催化技术大全(邱建荣,朱从善译)[M].北京:科学出版社, 2007.
    [23] Chen S, Cao G. Study on the photocatalytic oxidation of NO2- ions using TiO2 beads as a photocatalyst[J], Desalination, 2006, 194(1):127-134.
    [24] Zhao Y, Zhao L, Jing H, et al. Study on method and mechanism for simultaneous desulfurization and denitrification of flue gas based on the TiO2 photocatalysis[J], Science in China Series:Technological Sciences, 2008, 51(3):268-276.
    [25] Florence B, David E, Nicolas K, et a1. Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation[J], Thin Solid Films, 2006, 495:272-279.
    [26] Tsuang Y H, Sun J S, Huang Y C, et al. Studies of photokilling of bacteria using titanium dioxide nanoparticles[J], Artificial Organs, 2008, 32(2):167-174.
    [27] Brahimi R, Bessekhouad Y, Bouguelia A, et al. Improvement of eosin visible light degradation using PbS-sensitized TiO2[J], Journal of Photochemistry and Photobiology A:Chemistry, 2008, 194(2):173-180.
    [28] Jang J S, Choi S H, Park H, et al. A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets[J], Journal of Nanoscience and Nanotechnology, 2006, 6(11):3642-3646.
    [29] Mora E S. Morphological optical and photocatalytic properties of TiO2-Fe2O3 multilayers[J], Solar Energy Materials and Solar Cells, 2007, 91(15) :1412-1415.
    [30] Kitano M, Matsuoka M. Recent developments in titanium oxide-based photocatalysts[J], Applied Catalysis A:General, 2007, 325(1):1-14.
    [31] Yamashita H, Harada M, Misaka J, et a1. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2 [J], Catalysis Today, 2003, 84(3):91-96.
    [32] Wilke K, Breuer H D. The influence of transition mental doping on the physical and photocatalytic properties of titania[J], Journal of Photochemistry and Photobiology A:Chemistry, 1999, 121(1):49-53.
    [33] Xie Y B, Yuan C W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation[J], Applied Catalysis B:Environmental, 2003, 46(2):251-259.
    [34] Asahi R, Morikawa T, Ohwaki T, et a1. Visible-light photocatalysis in nitrogen-doped titanium dioxide[J], Science, 2001, 293:269-271.
    [35] Sato S. Photocatalytic activity of nitrogen doped TiO2 in the visible light region[J], Chemistry Physics, 1986, 123:126-128.
    [36]黄东升,陈朝凤,李玉花,等.铁、氮共掺杂TiO2粉末的制备及光催化活性[J],无机化学学报, 2007, 23(4):38-43.
    [37] Mofikawa T, Irokawa Y, Ohwaki T. Enhanced photocatalytic activity of TiO2-xNx loaded with copper ions under visible light irradiation[J], Applied Catalysis A:General, 2006, 314:123-127.
    [38]孙大贵,韦存福,刘作华,等. N、S共掺杂纳米TiO2的制备、表征及光催化性能研究[J],功能材料, 2007, 38:73-79.
    [39] Wei H Y, Wu Y S, Lun N, et a1. Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum[J], Material Science, 2004, 39(4):1305-1311.
    [40] Wu P X, Tang J W, An Y, et al. Preparation and photocalysis of nanoparticles doped with nitrogen and cadmium[J], Material Chemistry Physics, 2007, 103:264-271.
    [41]施尔畏.水热法的应用与发展[J],无机材料学报, 1996, 11(2):193-198.
    [42]赵文宽.高热稳定性锐钛矿TiO2纳米粉体的制备[J],无机材料学报, 1998, 13(4):608-612.
    [43] Manjail T, Vishol C, Pushan A. Synthesis of Ce/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol[J], Material Research, 1998,13 (5):1249-1251.
    [44]李志军,王红英.纳米TiO2的制备方法[J],山西化工, 2006, 26(6):47- 49.
    [45]赵敬哲,冯守华.液相一步合成金红石型超细TiO2[J],高等学校化学学报, 1999, 20(3):467-496.
    [46]杨敏.液相共沉淀制备超细TiO2粉末的工艺过程对产品性能的影响(学位论文),广东:华南理工大学无机材料科学与工程系, 1993.
    [47]张金龙,陈锋.光催化[M].上海:华东理工大学出版社, 2004.
    [48] Yanagida S. Recent research progress of dye-sensitized solar cells in Japan[J], Thin Solid Films, 2006, 9:597-604.
    [49] Ragan B, Ratzel M. Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Film[J], Nature, 1991, 253:737-740.
    [50] Gratzel M. Solar Energy conversion by dye-sensitized photovoltaic cells[J], Inorganic Chemisty, 2005, 44:6841-6851.
    [51]程萍,顾明元,金燕苹. TiO2光催化剂可见光化研究进展[J],化学进展, 2005, 17(1):8-14.
    [52]周文芳,赵宗彦,田晶.纳米TiO2光催化剂共掺改性的研究进展[J],材料导报, 2008, 8(22):52-55.
    [53]赵文宽,方佑龄,张开诚.高热稳定性锐钛矿型TiO2纳米粉的制备[J],无机材料学报, 1998, 13(4):608-612.
    [54]张小辉. X射线衍射在材料分析中的应用[J],沈阳工程学院学报(自然科学版), 2006, 2(3):281-282.
    [55]张锐.现代材料分析方法[M].北京:化学工业出版社, 2007.
    [56]郭沁林. X射线光电子能谱[J],物理, 2007, 36(5):405-410.
    [57] Lu G, Bemasek S L, Schwartz J. Oxidation of a poly-crystalline titanium surface by oxygen and water[J], Surface Science, 2000, 458:80-90.
    [58]陈崧哲,徐盛明,徐刚,等.稀土元素在光催化剂中的应用及作用机理[J],稀有金属材料与工程, 2006, 35(4):505-509.
    [59] Rodriguez T. Modification of the phase transition temperature in Titania doped with various cations[J], Journal of Material Research, 1997, 12:439-442.
    [60]张红兵,陈若梅.紫外可见吸收光谱在染料及中间体分析中的应用[J],染料工业, 2001, 38(3):48-49.
    [61] Wei C H, Tang X H, Liang J M, et a1. Preparation, characterization and photocatalytic activities of boron and cerium-codoped TiO2 [J], Environmental Science, 2007, 19(1):90-96.
    [62] Li F B, Li X Z, Hou M F, et a1. Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for edour control [J], Applied Catalysis, 2005, 285:181-189.
    [63]陈其凤,姜东,徐耀,等.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J],物理化学学报, 2009, 25(4):617- 623.
    [64] Irie H, Hashimoto K. Nitrogen concentration dependence on photocatalytic activity of TiO2-xNx powders [J], Physics Chemistry, 2003, 107(23):583-586.
    [65]曹锡章,宋天佑,王杏乔.无机化学:第三版.北京:高等教育出版社, 2003.
    [66] Chen X B, Burda C. Photoelectron spectroscopic investigation of nitrogen doped titania nanoparticles[J], Physics Chemistry B, 2004, 108(40):1546-1549.
    [67] Sakthivel S, Kisch H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide[J], Physics Chemistry, 2003, 4(5):487-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700