微波辅助N、S共掺杂纳米TiO_2制备、表征及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球性环境污染和能源危机日趋严重的今天,如何有效利用太阳能来治理污染已引起世界各国的广泛关注。半导体氧化物多相光催化技术,因具有能广泛地利用太阳能,并且能耗低、反应条件温和、操作简便、无二次污染、特别对生物难降解有机污染物具有很好的氧化降解作用等突出特点,已成为环境污染控制和治理方面的研究热点。在众多的半导体氧化物中,TiO_2因其良好的光电特性,光照射下能够被光子激活,在表面发生很强的氧化(或还原)作用,将绝大多数有机污染物降解并最终完全矿化为CO_2、H_2O和其他一些无机小分子物质而消除对环境的污染,以及化学性质稳定、安全无毒、来源丰富等特点,使之成为目前最为广泛和成熟的半导体氧化物材料之一。然而, TiO_2的禁带宽度较大(锐钛矿型TiO_2的Eg≈3.2eV),光催化仅限于紫外光区,而太阳光中紫外光(300nm~400nm)的含量只占3%~4%,太阳能利用率低;并且量子产率同样较低。因此,本文拟采取掺杂的方式制备高性能的TiO_2催化材料,以提高其光催化效率。
     本文首先简要介绍了半导体光催化的基本原理,在总结和评述了提高半导体光催化总量子效率和太阳能利用率的各种方法及其研究进展和面临的主要问题的基础上,采用廉价易得的无机盐TiCl_4为钛源,硫脲为均相沉淀剂并提供硫元素,在微波辐照下合成了S掺杂的纳米TiO_2前驱体,然后在NH3/N2气氛中经程序升温的煅烧处理得到N、S共掺杂纳米TiO_2光催化剂。以纳米TiO_2的平均晶粒度、晶相结构和光催化活性为指标,考察了TiCl_4初始浓度、微波作用功率、微波作用时间、微波作用温度以及NH_3/N_2气氛中氮化温度等因素对制备的光催化剂性能的影响,得到N、S共掺杂纳米TiO_2制备的最佳工艺条件:初始c(Ti4+)为0.9 mol·L-1,微波作用功率900W,微波作用时间0.5h,微波作用温度95℃,NH2/N2气氛中高温氮化温度500℃。
     采用XRD、UV-Vis/DRS、FT-IR、XPS、TG-DTA和TEM等现代分析测试手段对所制备的N、S共掺杂纳米TiO_2结构和性能进行表征。结果表明,所制备的N、S共掺杂可见光响应纳米TiO_2光催化剂为锐钛矿型和金红石型的混晶,晶粒基本呈球形或类球形,平均晶粒度在15~20nm之间;N元素以两种掺杂态存在:一种是以N_3-替位取代O_2-进入TiO_2晶格形成Ti-N-Ti联接的掺杂态,另一种是通过化学吸附NH_3或NH_4~+进入晶格原子间隙产生的掺杂态;S元素掺杂以S~(6+)取代Ti~(4+)进入TiO_2晶格,使晶格局部畸变,导致TiO_2的带隙变窄;而N、S共掺杂纳米TiO_2具有可见光催化活性是因为N、S元素的掺杂在禁带形成了新的杂质能级,使光催化剂的吸收边带红移至500~550nm处。
     掺杂N、S元素的纳米TiO_2具有较强的光催化活性,光催化剂对甲基橙的可见光催化降解满足准一级动力学模型,且N、S元素的共掺杂对光催化剂的可见光催化活性具有协同作用。
     同时,离子液体的添加对光催化剂的晶相组成有很大影响,并且有助于N、S元素的掺杂;添加阴离子为[BF_4]~-的离子液体可以引起F~-吸附在TiO_2表面的F元素掺杂;可见光降解甲基橙表明,添加离子液体后催化剂可见光活性得到提高。最后,初步探讨了其提高可见光活性机理。
Environment pollution and energy resource crisis are the hot topics today and, effective utilization of solar energy to solve pollution problems attains much attention now. With outstandingly characteristics in widely utilization of solar energy, low energy consumption, moderate reaction condition, convenient operation, no secondary pollution, and good oxidation degradation for bio-refractory organic pollutants, the semiconductor oxide heterogeneous photocatalytic technology is a hot research topic in environment science. Among those semiconductor oxides, TiO_2 has excellent photoelectric properties, which can activate photoelectron, occuring redox reaction on surface, decomposing most organic pollutants and mineralizing them into CO2, H2O and other small inorganic molecules completely under light irradiation. TiO_2 is also chemical stable, safe and imnoxious, abundant source. However, the energy band-gap of TiO_2 in the anatase crystalline is wide (Eg≈3.2eV) and it can only catalyze the degradation of persistent organic pollutants under ultraviolet light (300nm~400nm) irradiation, which accounts for only a small part (3%~5%) of solar energy with low quantun yield. The present work is focused on preparation of doped TiO_2 to get good photocatalytic performance catalyst.
     In this dissertation, the basic principle about semiconductor photocatalysis was reviewed briefly at first. The methods, research progress and main problems about improving the total quantum-efficiency and utilization effeiciency of solar energy for semiconductor photocatalysis have been summarized. Then, the more available and cheaper inorganic TiCl_4 was used as raw material, and thiourea was used as the precipitator, as well as supply sulfur, S-doped nanosize TiO_2 precursors were prepared by homogeneous precipitation via microwave irradiation. And then N, S-codoped nanosize TiO_2 were prepared with temperature-programmed calcinations in NH_3/N_2 atmosphere. With the indexes of the average grain size, crystal composition, and photo catalytic activity of nanosize TiO_2, the initial TiCl_4 concentration, microwave power, microwave reaction time, microwave reaction temperature and calcinations temperature in NH_3/N_2 atmosphere on photocatalyst were studied. And process parameters were optimized also. The results showed N, S-codoped nanosize TiO_2 photocatalytic activity is upmost under the follow conditions: initial TiCl4 concentration, 0.9 mol·L~(-1); microwave power, 900W; microwave reaction time, 0.5h; microwave reaction temperature, 95℃; calcinations temperature in NH_3/N_2 atmosphere, 500℃.
     The crystal structure and properties of N, S-codoped nanosize TiO_2 were characterized by XRD, UV-Vis/DRS, FT-IR, XPS and TEM. The results showed that the catalyst has mixed phase structure of anatase and rutile. The nanoparticle were spherical or spherical-like, and the particle size in the range of 15~20nm; Nitrogen was existed in two doping states: one is substitutional N impurity, which formated joint of Ti-N-Ti doping state, another is interstitial impurity by chemical-adsorption of NH_3 or NH4+; Sulfur ions (S6+) substituted partially for the lattice titanium ions (Ti~(4+)), which resulted in the localized crystal deformation of TiO_2 and the bandgap between valence band and conduction band narrowed. Visible-light photocatalytic activity obtained by N, S-codoped nanosize TiO_2, was because of formation of a new impurity level, which led it’s absorption spectrum red-shft to 500~550nm.
     N, S-codoped nanosize TiO_2 has higher photocatalytic activity, and the degradation of MO in visible-light irradiation was proved fitted the pesudo-first-order model. The higher photocatalytic activity also attributed to the synergetic of N, S-codoped.
     Besides, the crystal phase composition of photocatalysts were effected by ionic liquid addition, and it could also assisted to nitrogen and sulfur doping. Ionic liquid with anion of [BF_4]~- could cause F-doping which F~- absorbed on N, S-codoped nanosize TiO_2. The degradation of MO showed that the visible-light activity was improved by adding ionic liquid. The mechanism of visible-light improved with ionic liquid addition has been also discussed in the wnd.
引文
[1] Michael Gratzel, Ph.D. Heterogeneous Photochemical Electron Transfer. CRC Press, Inc. Boca Raton, Floride, 1989.
    [2] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev., 1995, 95(1): 49~68.
    [3] Kamat P V, Dimijevic N M. Colloidal semiconductors as photocatalysts for solar energy conversion[J]. Solar Energy, 1990, 44(2): 83~98.
    [4]吴越.催化化学(下)[M].科学出版社:北京, 1998.
    [5] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev., 1995, 95(1): 49~68.
    [6] Wilcoxon J P. Catalytic Photooxidation of Pentachlorophenol Using Semiconductor[J]. J. Phys. chem. B, 2000, 104(31): 7334~7343.
    [7] Dal-Rung Park, Jinlong Zhang, Keita Ikeue, et al. Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO_2 Photocatalysts in the Presence of O2 and H2O. Journal of Catalysis, 1999, 185(1): 114~119.
    [8]赵改青,邱克辉,高晓明.化学沉淀法合成纳米TiO_2粉体及其应用[J].材料导报, 2003, 17(11): 47~49.
    [9] .Sattler K, Mühlbach J, Recknagel E. Genration of metal clusters containing from 2 to 500 atoms[J]. Phys. Rev. Lett., 1980, 45: 821~824.
    [10]张立德,牟季美.纳米材料与纳米结构[M].科学出版社:北京, 2001.
    [11] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37~38.
    [12] Carey J H, Lawrence J, Tosine H M, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension[J]. Bull. Environ. Contam. Toxicol., 1976, 16: 697~701.
    [13] Frank S N, Bard A J. Semiconductor electrodes 12. Photoassisted oxidation and photoelectrosynthesis at polycrystalline titanium dioxide electrodes[J]. JACS, 1977, 99: 4667.
    [14] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion aqueous solutions at titanium dioxide power[J]. J. Am. Chem. Soc., 1977, 99: 303.
    [15] Wang R., Hashimoto K., Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388: 431~432.
    [16] Fujishima A, Recent progress intitanium dioxide photocatalysis[C]. 2002 National Conference on Photocatalysis Conference Corpus. 2002.
    [17] Kim D W, Enomoto N, Nakagawa Z, Kawamura K. Molecular Dynamic Simulation in Titanium Dioxide Polymorphors: Rutile, Brookite, and Anatase[J]. J. Am. Ceram. Soc., 1996, 79(4): 1095~1099.
    [18] Burdett J K, Hughbanks T, Miller G J. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K[J]. J. Am. Chem. Soc., 1987, 109(12): 3639~3646.
    [19] Shannon R D, Pask J A. Topotaxy in the anatase-rutile transformation[J]. Am. Minera., 1964, 1707: 49-55.
    [20]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002, 34~35.
    [21]沈伟韧,赵文宽,贺飞等. TiO_2光谱反应及其在废水处理中的应用[J].化学进展, 10(4): 349~361.
    [22] Amy L Linsebigler, Guangquan Lu, John T Yates, et al. Photocatalysis on TiO_2 surface: principles, mechanism, and selected results[J]. Chem. Rev., 1995, 95(3): 735~738.
    [23] Dibble L A, Raupp G B. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide[J]. Catal. Lett., 1990, 4, 345~354.
    [24] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1~21.
    [25] Zhao W, Ma W H, et al. Efficient degradation of organic pollutants with Ni2O3/TiO_2-xNx under visible irration[J]. J. Am. Chem. Soc., 2004, 126(15): 4782~4783.
    [26] Grela M A, Coronel M E J, Colussi A J. Quantitation spin-trapping studies of weakly illuminated titanium dioxide sols. Implications for the mechanism of photocatalysis[J]. J. Phys. Chem., 1996, 100:16940~16946.
    [27] Claire Richard, Pierre Boule. Oxidizing species involved in photocatalytic transformation on zinc oxide[J]. J. Photochem. Photobiol. A:Chem., 1991, 60 (2): 235~243.
    [28] Munuera G, Rivesarnau V, Saucedo A. Photo-adsorption and Photo-desorption of Oxygen on Highly Hydroxylated TiO_2 Surface, Part1. Role of Hydryoxyl Groups in Photo-adsorption[J]. J. Chem. Soc. Farad. Trans. I., 1979, 75(4): 736~747.
    [29] Xu Y, Langford C H. A comparation of acetophenone photoxidation in aqueous media via direct photolysis and TiO_2 photocatalysis[J]. J. Adv. Oxid. Technol., 1997, 2(3): 408.
    [30] Martin S T, Herrmann H, Choi W, et al. Time-resolved microwave conductivity (TRMC) 1. TiO_2 photoactivity and size quantization[J]. J. Chem. Soc. Trans. Faraday Soc., 1994, 90: 3315~3322.
    [31] Martin S T, Herrmann H, Choi W, et al. Time-resolved microwave conductivity (TRMC) 1.Quantum-sized TiO_2 and effects of adsorbates and light intensity on the charge carrier dynamics[J]. J. Chem. Soc. Faraday Trans., 1994, 90:3323~3330.
    [32] Hoffmann M R, Martin S T, Choi W, et al, Environmental applications of semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95, 69~96.
    [33] Tanaka K, Capule M F V, Hisanage T, et al. Effect of crystallinity of TiO_2 on its photocatalytic action[J]. Chem. Phys. Lett., 1991, 187(1-2):73~76.
    [34]范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报, 2001, 46 (4): 265~273.
    [35] Bickley I B, Gonzalez-Carreno T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysts[J]. J. Solid State Chem., 1991, 92: 178~190.
    [36]杨建军,郭泉辉,毛立群等.商品二氧化钛的光催化性能比较[J].化学研究, 2001, 12(2): 12~14.
    [37] Yamashita H, Nakao H, Takeuchi M, et al. Coating of TiO_2 photocatalysts on surper-hydrophobic porous teflon membrance by an ion assisted deposition method and their self-cleaning performance[J]. Nuclear Instruments and Methods in Physice Research Section B, 2003, 206: 898~901.
    [38] Martin N, Sanjinés R, Takadoum J. Enchanced sputting of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique[J], Surface and Coatings Technology, 2001, 142: 615~620.
    [39] García González M L, Salvador P. The influence of oxygen vacancies on the kinetics of water photoelectrolysis at (001) n-TiO_2 rutile[J]. Journal of Electroanalytical Chemistry, 1992, 325(1-2): 369~376.
    [40] Bilmes S A, Mandebaum P, Alvarez F, et al. Surface and Electronic Structure of Titanium Dioxide Photocatalysts[J]. Phys. Chem. B, 2000, 104(42): 9851~9858.
    [41]曹茂盛,关长斌,徐甲强等.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社, 2001.
    [42] Jardim W F, Aiberic R M, Takiyama M K, Hung C P; Gas-Phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO_2[C]. The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
    [43] Dibble L A,Raupp G B. Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated air streams. Environ.Sci.Technol: 1992, 26: 492~495. Raupp G B, Junio C T. photocatalytic oxidation of Oxygenated Air Toxics, Appl. Sur. Sci; 1993, 72: 321.
    [44] Peterson M W, Turner J A, Nozik A J. Mechanistic Studies of the Photocatalytic Behavior of TiO_2 Particles in a Photoelectrochemical Slurry Cell and Relevance to Photodetoxification Reactions[J], J. Phys. Chem., I991, 95: 221.
    [45] Robertson P K J, Lawton L A, Münch B, et al. J. Adv. Oxid. Technol. 1999, 4(1): 20-26.
    [46] Blake Turchi,Mayri Niki. Kinetic and mechanistic overview of TiO_2-photocatalyzed oxidation reactions in aqueous solution. Solar Energy Material ,1993, 93: 341~357.
    [47] Ohko Y, Hashimoto K, Fujishima A. Kinetics of Photocatalytic Reaction under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films[J]. J. Phys. Chem. A., 1997, 101(43): 8057~8062.
    [48] Ohko Y, Fujishima A, Hashimoto K. Kinetic Analysis of the Photocatalytic Degradation of Gas-Phase 2-Propanol under Mass Transport-Limited Conditions with a TiO_2 Film Photocatalyst[J]. J. Phys. Chem. A., 1998, 102(10): 1724~1729.
    [49]周武艺,唐绍裘,万隆等.纳米TiO_2光催化降解有机物的机理及其影响因素的研究[J].中国陶瓷工业, 2003, 10(5): 26~29.
    [50] Chen D, Ray A K. Photocatalytic kinetics of phenol and its derivates over UV irradated TiO_2. Applied Catalysis B: Environmental, 1999, 23: 143~157.
    [51]俞英,顾伯锷,吴震霄等. TiO_2在光照下分解有机污水的研究.石油大学学报, 1994, 18(2): 90~94.
    [52] Fernandes-Ibanez P, Nieves F J, Malato S. Titanium dioxide/electrolyte solution interface: electron transfer phenomena[J]. J.Colloid and Interface Science, 2000, 227:510-516.
    [53] Anderson M A, Nishida S Y. Cervera-March S. Photodegradation of TCE in the Gas Phase Using TiO_2 Porous Ceramic Membrane.Photocatalytic Purification and Treatment of Water and Air[J].Elsevier Science Publishers B.V.,1993: 405~420.
    [54] Avila P, Bahamonde A, Blanco J, Sanchez B, Cardona A I, Romero M. Gas-Phase Photo-assisted Minerlization of Volatile Organic Compound by Monlithic Titania Catalysts[J].Appl. Catal. B: Environ., 1998, 17: 725-788.
    [55] Pearl J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase oganiics for air purification: acetone,l-butanol,butyraldehyde,formaldehyde,and m-xylene oxidation[J]. J.Catalysis, 1992, 136: 554~562.
    [56] Herrmann J M, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technology for water treatment. Catalysis Today, 1993, 17: 7~20.
    [57] Wang K H. Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Applied Catalysis B: Environment, 1999, 21: 1~8.
    [58]付贤智,杨青,魏可镁等.气相光催化氧化反应的温度效应及其机理研究[C].第九届全国催化学术会议论文集.北京:海潮出版社, 1998, 1145-1146.
    [59] John L, Falconer, Kimberley A. Magrini-Bair. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO_2[J]. J. Catal. 1998, 179(1): 171~178.
    [60]吴合进,吴鸣,谢茂松等.增强型电场协助光催化降解有机污染物的初步研究[J].分子催化. 2000, 14(4): 241~242.
    [61]安太成,何春,朱锡海等.三维电极电助光催化降解直接湖蓝水溶液的研究[J].催化学报. 2001, 22(2): 193~197.
    [62] Vinodgopal K, Enhanced Rates of Photocatalytic Degradation of an Azo Dye using SnO2/TiO_2 Coupled Semiconductor Thin Films., Environ.Sci.Technol: 1995, 29(3): 841~845
    [63]黄金球,唐超群,马新国等.电场对纳米膜光催化性能的影响[J].催化学报, 2006, 27(9): 783~786.
    [64] Selli E,Bianchi C L, Pirola C, et a1.Degradation of methyl tertbutyl ether in water: effects of the combined use of sonolysis and pbotocataLysis[J]. Ultrasonics Sonochemistry. 2005, 12: 395~400.
    [65] Harada H, Chigusa H, Makoto I. Sonophotocatalysis of water in a CO2-Ar atmosphere[J]. J. Photochem. Photobio. A: Chem., 2003, 160: 11~17.
    [66] Harada H. Synergistic effect of combining sonolysis and photocatalysis of oxalic acid[J]. Electrochemistry, 2005 , 73 (3): 202 ~204.
    [67]吴缨,陈红,曹家会等.等超声- TiO_2光催化协同降解聚乙烯醇[J].应用化学, 2007, 24(5): 570~574.
    [68] Zhang Wen, Wang Xuxu Fu Xianzhi. Magnetic field effect on photocatalytic degradation of benzene over Pt/TiO_2[J]. Chem. Commun., 2003, 17: 2196~2197.
    [69] Masanohu Wakasa, Nobuharu Ishii, Mitsutoshi Okano. Magnetic filed effect on photocatalytic decomposition reaction of tert-butanol with platinized TiO_2 particle[J]. C. R. Chimie, 2006, 9: 839~840.
    [70]赵景联,种法国,赵靓等.磁场TiO_2光耦合降解酸性大红3R的研究[J],西安交通大学学报, 2006, 40(7): 851~855.
    [71] Martra G. Lewis Acid and Base Sites at the Surface of Microcrystalline TiO_2 Anatase: Relationships Between Surface Morphology and Chemical Behaviour[J]. Applied Catalysis A, 2000, 200(2): 275-283.
    [72] Amy L Linsebigler, Guanquan Lu, John T Yates. Photocatalysis on TiO_2 surface: principles, mechanisms, and selected results[J]. Chem Rev,1995,95: 735~758.
    [73] Serpon N, Texier I, Emeline A V, Pichat P, Hidaka H, Zhao J. Post-Irradiation Effect and Reductive Dechlorination of Chlorophenol at Oxygen-Free TiO_2/Water Interfaces in the Presence of Prominent Holscavengers[J]. J. Photochem. Photobiol. A, 2000, 136(3): 145~152.
    [74] Zoppi R A, Trasferetti B C, Davanzo C U. Sol-gel titanium dioxide thin films on platinum substrates: preparation and characterization[J]. Journal of Electroanalytical Chemistry, 2003,544: 57~57.
    [75] Xi Bei-Dou, Liu Hong-Liang. Photocatalytic degradation of PCP-Na with TiO2 photocatalysis loaded with platinum[J]. Journal of Environmental Sciences, 2002, 14(3): 428~432.
    [76] Y. C hen, D. Li, X. W ang, X. Fu. H2-O2 atmosphere increases the activity of Pt/TiO2 for benzene photocatalytic oxidation by two orders of magnitude[J]. Chem. Commun., 2004,21(20): 2304~2305.
    [77] L.M. Petkovic, D.M. Ginosar, H.W. Rollins, et al. Pt/TiO2 (rutile) catalysts for sulfuric acid decomposition in sulfur-based thermochemical water-splitting cycles[J]. Applied Catalysis A: Greneral, 2008, 338(1-2): 27~36.
    [78] Kato Shinji, Hirano Yuji, Iwata Misao, et al. Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide[J]. Applied Catalysis B: Environmental, 2005,57(2): 109~115.
    [79] B. X in, L. Jing, Z. Ren, B. Wang, et al. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2, J. Phys. Chem. B, 2005, 109: 2805~2809.
    [80] Hongyuan Wang, Junfeng Niu, Xingxing Long, et al.Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions[J]. Ultrasonics Sonochemistry, 2008, 15(4): 386~392.
    [81] Bin Dong, Ben-Lin He, Jier Huang, et al. High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation[J]. Journal of Power Sources, 2008, 175(1~3): 266~271.
    [82] A. Goossens, M. W. J. Craje, A. M. Kraan, et al. Supported Gold Catalyst Studied with Au Mossbauer Effect Spectroscopy[J]. Catalysis Today, 2002,72(1): 95~100.
    [83] S. Kielbassa, M. Kinne, R. J. Behm, Microstructured Au/TiO2 Model Catalyst Systems[J]. Langmuir, 2004, 20(16): 6644~6650.
    [84] W. Yu, Ch. Yang, J. Lin, et al. Preparation of Au/TiO2 for catalytic preferential oxidation of CO under a hydrogen rich atmosphere at around room temperature[J]. Chem. Commun., 2005, 354-356.
    [85] C. Elmasides, D. I. Kondarides, W. Gruenert. XPS and FT-IR study of Ru/Al2O3 and Ru/TiO2 catalysts: reduction characterization and interaction with methane-oxygen mixture[J]. J. Phys. Chem. B, 1999, 103: 5227-5239.
    [86] A. Berko, T. Biro, F. Solymosi. Formation and migration of carbon produced in the dissociation of CO on Rh/TiO2(110)-(1*2 ) model catalyst: a scanning tunneling microscopy study[J].J. Phys. Chem. B, 2000, 104: 2506~2510.
    [87] Zhao W, Chen C, Li X, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst[J]. J. Phys. Chem. B. 202,106: 5022~5028.
    [88] Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum- sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679.
    [89] Paola A D, Garcia-Lopez E, Ikeda S, et al. Photocatalytic degradationof organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 [J]. Catal Today, 2002, 75: 87~93.
    [90]冯良荣,吕绍洁,邱发礼.过渡元素掺杂对纳米TiO2光催化剂性能的影响[J].化学学报,2002, 60(3):463-467.
    [91] Anpo M, Takeuchi M. The design and development of highly reactive titamium oxide photocatalysts operating under visible light irradiation[J]. J. Catal., 2003, 216: 505-516.
    [92] Wilker K, Breuer H D. The influence on transition metal doping on the physical and photocatalytic properties of titania[J]. J. Photochem. Photobiol. A: Chemistry, 1999, 121: 49-53.
    [93] Martin S T, Morrison C, Hoffmann M R. Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J. Phys. Chem., 1994, 98(51):13695-13704.
    [94] Yuan Z H, Jia J H, Zhang L D. Influence of co-doped of zn(Ⅱ)+Fe(Ⅲ) on the photocatalytic activity of TiO2 for phenol degradation[J]. Mater. Chem. Phys., 2002, 73: 323~326.
    [95] Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of aceton in air[J]. J. Photochem. Photobiol. A: Chem., 1998, 116: 63~67.
    [96] Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants. J. Mater.Sci., 1999, 34: 5273~5280.
    [97] Xu A W, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activites of rare-earth-doped TiO2 nanoparticles[J]. J. Catal., 2002, 207: 151~157.
    [98]周艺,魏坤,唐绍裘等.Gd3+掺杂纳米TiO2自然光催化降解甲基橙的研究[J].云南大学学报, 2002,24(1A): 43~45.
    [99]陈建军.纳米TiO2光催化剂的制备、改性及其应用研究[中南大学博士学位论文].长沙:中南大学, 2001, 41~42.
    [100] Vogel R, Hoyer P, Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. J.Phys. Chem.,1994, 98(12): 3183~3188.
    [101] Marci G, Augugliaro V, Lopez-Munoz M J, et al. Preparation characterization andphotocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. surface, bulk characterization, and 4-nitrophenol photodegradation in liquid- solid regime[J]. J. Phys. Chem. B, 2001, 105(5): 1033~1040.
    [102] Tada H, Hattori A, Tokihisa Y, et al. A patterned-TiO2/SnO2 bilayer type photocatalyst[J]. J. Phys. Chem. B, 2000, 104: 4585~4587.
    [103] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradation[J]. J. Photochem.Photobiol.A: Chemistry, 2001, 141: 209-217.
    [104]张青红,高濂,孙静.氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用[J].无机材料学报, 2002,17(3): 415~421.
    [105] Fu X Z, Louis A C, Yang Q, et al. Enhanced photocatalyti performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2[J]. Environ. Sci. Technol., 1996, 30(2): 647~653
    [106] Pala B, Sharonb M, Nogami G. Preparation and characterization of TiO2/Fe2O3 binarymixed oxides and its photocatalytic properties[J]. Mater. Chem. Phys., 1999,59: 254~261.
    [107] Luis J A, Luca L, Natale F, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 de-NOx catalysts[J]. J. Catal., 1995, 155: 117~130.
    [108]许波连,范以宁,刘浏等. V2O5 / TiO2催化剂表面钒氧物种的分散状态和催化性能[J].中国科学B, 2002, 32(3): 235~242.
    [109] Spanhel L,Weller H,Henglein A.Photochemistry of Semiconductor Colloids.22.Electron Injection from Illuminated CdS into Attached TiO2 and ZnO Particles[J].Journal of the American Chemical Society,1987(109):6632~6635.
    [110] Hu Ch, Tang Y Ch, Zheng J. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2[J]. Appl. Catal. B, 2003, 253: 389~396.
    [111] Hu Chen, Tang Y Ch, Tang H X. Characterization and photocatalytic activity of transition–metal–supported surface bond-conjugated TiO2/SiO2[J]. Catal. Toda., 2004, 90: 325~330.
    [112] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001,293 : 269~271.
    [113] Sato. Photocatalytic of NOx-doped TiO2 in the visible lightregion[J]. Chem. Phys. Lett., 1986, 123: 126~135.
    [114] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem. B, 2003, 107: 5483~5486.
    [115] Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J]. J. Phys. Chem. B,2003, 107: 5709~5716.
    [116] Gole J L, Stout J D, Burda C, et al. Highly efficient formation of visible light tunable TiO2-xNxphotocatalysts and their transformation at the nanoscale[J]. J. Phys. Chem. B, 2004, 108: 1230~1240.
    [117] Diwald O, Thompshon T L, Zubkov T, et al. Photochemical Activity of Nitrogen-doped Rutile TiO2(110) in Visible Light[J]. J. Phys. Chem. B, 2004, 108: 6004~6008.
    [118] Di Valentin C, Pacchioni G, Selloni A, et al. Characterization of paramagnetic psecies in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J. Phys. Chem. B, 2005, 109: 11414~11419.
    [119] Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes[J]. J. Phys. Chem. B, 2004, 108: 10617~10620.
    [120] Fu H, Zhang L, Zhang S, et al. Electron Spin Resonance Spin-Trapping Detection of Radical Intermediates in N-Doped TiO2-Assited Photodegradation of 4-Chlorophenol[J]. J. Phys. Chem. B, 2006, 110: 3061~3065.
    [121] Tachikawa T, Takai Y, Tojo S, et al. Visible Light-Induced Degradation of Ethylene Glycol on Nitrogen-Doped TiO2 Powders[J]. J. Phys. Chem. B, 2006, 110: 13158~13165.
    [122] Ohno T, Mitsui T, Matsumura M. Photocatalytic Activity of S-doped TiO2 Photocatalysts under Visible Light[J]. Chem. Lett., 2003, 32: 364~365.
    [123] Umebayashi T, Yamaki T, Itoh H, et al.Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl. Phys. Lett., 2002, 81: 454~456.
    [124] Umebayashi T, Yamaki T, Tanaka S. Visible linght-induced degradation of methyene blue on S-doped TiO2[J]. Chem. Lett., 2003, 32: 330~331.
    [125] Gómez R, López T, Ortiz-Islas E, et al. Effect of sulfation on the photoactivity of TiO2 sol-gel derived catalysts[J]. J. Mol. Catal. A, 2003, 193: 217~226.
    [126] Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Appl. Cata. A: Gen, 2004, 265: 115~121.
    [127] Ohno T. Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities[J]. Water Sci. Technol., 2004, 49: 159~163.
    [128] Zhou Zhiqiang, Zhang Xianyou, Wu Ze, et al. Mechanochemical preparation of sulfur-doped nanosized TiO2 and its photocatalytic activity under visble light[J]. Chinese Science Bulletin, 2005, 50: 2691~2695.
    [129] Yamamoto T, Yamashita F, Tanaka I, et al. Electronic States of Sulfur Doped TiO2 by Frist Principles Calculations[J]. Mater. Trans. 2004, 45: 1987~1990.
    [130] Tian F H, Liu Ch B. DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2[J]. J. Phys. Chem. B, 2006, 110: 17866~17871.
    [131] Khan S U M, Al-Shahry M, Iangler Jr W B.Efficient Photochemical Water Splitting by aChemicall Modified-n-TiO2[J]. Science, 2002, 297: 2243~2245.
    [132] Irie H, Watanabe Y, Hashimoto K. Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst[J]. Chem. Lett., 2003, 32:772~773.
    [133] Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst . Appl. Catal. B:Environ. ,2001,32,215.
    [134] Yamaki T, Sumita T, Yamamoto S. Formation of TiO2-xFx compounds in fluorine-implanted TiO2[J]. J. Mater. Sci. Lett., 2002, 21:33~35.
    [135] Yamaki T, Umebayashi T, Sumita T, et al. Flourine-doping in titanium dioxide by ion implantation technique[J]. Nuclear Instruments and Methods in Physics Research, Section B, 2003, 206: 254~258.
    [136] Yu J C, Yu J G, Ho W K, et al. Effect of F-doping on the Photocatalytic Activity and Mircrostructure of Nanocrystalline TiO2 Powders[J]. Chem. Phys., 2002, 14: 3808~3816.
    [137] Di Li, Hajiang Haneda, Shunichi Hishita, Naoki Ohashi, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J]. Journal of Fluorine Chemistry, 2005, 126: 69~77.
    [138] Hong X, Wang Z, Cai W, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide[J]. Chem. Mater.., 2005, 17: 1548~1552.
    [139] Liu G, Chen Z, Dong C, et al. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework[J]. J. Phys. Chem. B, 2006, 110(42):20823-20828.
    [140] Luo H, Takata T, Lee Y, et al. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine ang Chlorine[J]. Chem. Mater. 2004, 16: 846~849.
    [141] Lin L, Lin W, Zhu Y, et al. Phosphor-doped Titania—a Novel Photocatalyst Active in Visible Light[J]. Chem. Lett., 2005, 34: 284~285.
    [142] Zhao W, Ma W,Chen C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc., 2004, 126: 4782~4783.
    [143] Wei H, Wu Y, Lun N, et al. Preparation and Photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum[J]. J. Mater. Sci., 2004, 39:1305~1308.
    [144] Hongyan Liu, Lian Gao. Codoped Rutile TiO2 as a New Photocatalyst for Visible Light Irradiation[J]. Chem. Lett., 2004, 33: 730~731.
    [145] Li D, Haneda H, Hishita S, et al. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization[J]. Chem. Mater., 2005, 17: 2588~2595.
    [146] Li D, Haneda H, Hishita S, et al. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification[J].Chem. Mater., 2005, 17: 2596~2602.
    [147] Sun H, Bai Y, Cheng Y, et al. Preparation and Characterization of Visible-Light-Driven Carbon-Sulfur-Codoped TiO2 Photocatalysts[J]. Ind. Eng. Chem. Res., 2006, 45: 1971~4976.
    [148] Cong Y, Chen F, Zhang J, et al. Carbon and Nitrogen-codoped TiO2 with High Visible Light Photocatalytic Activity[J]. Chem. Lett., 2006, 35: 800~801.
    [149] Minghua Zhou, Jiaguo Yu. Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders[J]. Journal of Hazardous Materials, 2008, 152(3): 1229~1236.
    [150]柳闽生等.导电高聚物修饰纳米尺度TiO2多孔膜电极的光电化学研究[J].化学学报, 2001, 59(6): 376.
    [151]黄怀国等.TiO2-聚苯胺复合膜的光电化学[J].电化学, 2001, 7(1): 102.
    [152] Senadeera G K R, et al. Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells[J]. Photochemistry and Photobiology, 2004, 164: 61~66.
    [153] Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants[J]. J. Mater.Sci., 1999, 34: 5273~5280
    [154] Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J]. Environ. Sci. Technol., 2001, 35(5): 966~970.
    [155] Bae E Y, Choi W Y. Highly enhangced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light[J]. Environ. Sci. Technol., 2003, 37(1): 147~152.
    [156] Solbrand A, Henningsson A, So1dergren S. Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients[J]. J. Phys.Chem. B, 1999, 103(7): 1078~1083.
    [157] Park N G, Lagemaat J, Frank A J. Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells[J]. J. Phys. Chem. B, 2000, 104(38): 8989-8994.
    [158] Yükse ?KTE A N. TiO2 sensitized photomineralization kinetics of phthalic anhydride[J]. Chemosphere, 1998, 36(14): 2969~2975.
    [159]邓慧华,毛海舫,沈耀春等.卟啉、酞菁共敏化二氧化钛纳米电极[J].化学学报, 1999, 57(7): 1199~1205
    [160] Tai W P. Photoelectrochemical properties of SnO2 /TiO2 coupled electrode sensitized by a mercurochrome dye[J]. Mater. Lett., 2001, 51: 451~454.
    [161] Jayaweera P M, Palayangoda S S, Tennakone K. Nanoporous TiO2 solar cells sensitized with iron (II) complexes of bromopyrogallol red ligand[J]. J.Photochem.Photobiol. A: Chem., 2001,14:173~177.
    [162]张莉,高恩勤,王艳芹等. Ru(bpy)2(NCS)2染料敏化PdS/Zn2+-TiO2复合半导体纳米多孔膜的光电化学[J].化工冶金, 2001, 21(2) :113~117.
    [163]杨术明,李富友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质[J].中国科学B, 2003, 33(1): 59~65.
    [164]张莉,王艳芹,杨迈之等. Ru(bpy)2(NCS)2染料敏化CdS/Zn2+- TiO2复合半导体纳米多孔膜的光电化学[J].高等学校化学学报, 2000, 21(7):1075~1079.
    [165] Uchihara T, Matsumura M, Ono J, et al. Effect of ethylene diamine tetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide[J]. J. Phys. Chem., 1990, 94(1): 415~418.
    [166] Moser J, Punchihewa S, Pierre P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates[J]. Langmuir, 1991, 7(12): 3012~3018.
    [167] Hong A P, Bahnemann D W, Hoffmann M R. Cobalt(II) tetra sulfophthalo-cyanine on titanium dioxide: A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions[J]. J. Phys. Chem., 1987, 91(8): 2109~2117.
    [168] Ranjit K T, Willner I, Bossmann S B, et al. Iron(III) phthalocyanine-modified titanium dioxide: a novel photocatalyst for the enhanced photodegradation of organic pollutants[J]. J. Phys. Chem. B, 1998, 102(47): 9397~9403.
    [169] Li F B, Li X Z, Ao C H, et al. Enchanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification[J]. Chemosphere, 2005, 59(6): 787~800.
    [170]杨宗志.机械粉末法制备超TiO2粉体[J].现代化工, 1994(1): 38~40.
    [171]入谷繁树.TiO2超微粒子的制备方法[J].固体物理, 1997, 12(4): 231~233.
    [172] Siegels R W .The study of titania prepared in gas phase[J ].Mater Rev, 1998, 3(6): 1367~1370.
    [173]祖庸,李晓娥.超细二氧化钛的合成技术进展.西北大学学报(自然科学版),1995, 25(4):319~324.
    [174]施利毅,李春忠,陈爱平等.高温气溶胶反应器中制备纳米TiO2颗粒的形态与结构[J].华东理工大学学报, 1999, 25(2): 151~155.
    [175] Jang H D, Kim S K, Kim S J. Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties[J].Journal of Nanoparticales Research,2001, 3(2):141~147.
    [176]李春华,朱以华,陈爱平等. TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究[J].无机材料学报, 1999, 14(5): 717~725.
    [177]王世敏,许祖勋,傅晶.纳米粒子制备技术[M].北京:化学工业出版社, 2002.
    [178]胡黎明,郑柏存,古宏晨等.气溶胶反应器中合成TiO2超细颗粒[J].华东化工学院学报,1992, 18(4): 433~439.
    [179]施利毅,李春忠.气相合成TiO2超细粒子的形态及其光催化活性[J].环境科学学报, 2000, 20(2): 134~138.
    [180] Park D G, Burlitch J M. Electro-spray Synthesis of Titanium Oxide Nano-particles[J]. Journal of Sol-Gel Science and Technology, 1996, 6(3): 235~249.
    [181] Xu A W, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activites of rare-earth-doped TiO2 nanoparticles[J]. J. Catal., 2002, 207: 151~157.
    [182] Yu Minglin, Tseng Yao-Hsuan, Huang Jiahuang, et al. Photocatalitic Activity for Degradation of Nitrogen Oxides over Visible Light Responsiver Titania-Based Photocatalysts[J]. Environmental Science and Technology, 2006, 40(5): 1616~1621.
    [183]张庆今,胡晓洪,杨敏等.液相沉淀法制备TiO2超微粉末的影响因素分析[J].华南理工大学学报, 1996, 24(7): 52~56.
    [184]董利国,高荫本,陈诵英.纳米TiO2粉体的制备研究II絮凝剂及其浓度的影响[J].无机化学学报, 1998, 14(3): 327~332.
    [185] Zhang Meihong, Ding Shiwen, Wang Zhenxing, et al. Synthesis of mesoporous nano-TiO2 doped with Sn by auto-assembly method and photocatalytic property[J]. Science in China series B: Chemistry, 2005, 48(5): 436~441.
    [186] Xu Z L, Shang J, Liu C,et al. The Preparation and Characterization of TiO2 Ultrafine Particles[J]. Materials Science and Engineering B, 1999, 63(3): 211~214.
    [187]刘威,陈爱平,林嘉平.均相水解法制备金红石含量可控的纳米TiO2[J].化学学报, 2004, 62(12): 1148~1152.
    [188] Cushing B L, Kolesnichenko V L, Oconnor CH J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev. 2004, 104: 3893~3946.
    [189]郑燕青.低受限度体系晶体同质变体生长机理研究[博士学位论文].上海:上海硅酸盐研究所, 2000.
    [190] Cheng H M, Ma J M, Zhao Zh G, et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles[J]. Chem. Mater., 1995, 7: 663~671.
    [191] Lee Man Sig, Lee Gun-Gae, Park Seong Soo, et al. Synthesis of TiO2/SiO2 nanoparticles in a water-in-carbon dioxide microemulsion and their photocatalytic activity[J]. Research on Chemical Intermediates, 2005, 31(4-6): 379~389.
    [192]金钦汉.微波化学[M].北京:科学出版社. 1999.
    [193]于会文,刘奎仁,王红伟等.微波烧结制备Sm掺杂TiO2光催化材料与催化性能表征[J].稀土, 2006, 27(3): 1~6.
    [194] Judy N. Hart, David Menzies, Yi-Bing Cheng, et al. A comparison of microwave andconventional heat treatments of nanocrystalline TiO2[J]. Solar Energy Materials and Solar Cell, 2007, 91: 6~16.
    [195]王新,韩梅娟,魏雨等. TiOCl2溶液微波加热制备金红石型TiO2纳米粒子[J].人工晶体学报, 2004, 33(4): 634~637.
    [196]冯海涛,王芬,同小刚.微波液相沉积法制备二氧化钛薄膜[J].材料导报, 2006, 20: 85~86.
    [197] Vadivel Murugan A, Violet Samuel, Ravi V. Synthesis of nanaocrystalline anatase TiO2 by microwave hydrothermal method[J]. Materials Letters, 2006, 60: 479~480.
    [198] Zhanqi Gao, Shaogui Yang, Cheng Sun, Jun Hong. Microwave assisted photocatalytic degradation of pentachlorophenol in aqueous TiO2 nanotubes suspension[J]. Separation and Purification Technology, 2007, 58(1): 24~31.
    [199] Zhanqi Gao, Shaogui Yang, Na Ta, Cheng Sun. Microwave assisted rapide and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions[J]. Journal of Hazardous Materials, 2007, 45(3): 424~430.
    [200] Xiwang Zhang, Guoting Li, Yizhong Wang. Microwave assisted photocatalytic degradation of high concentration azo dye Reactive Brilliant Red X-3B with microwave electrodeless lamp as light source[J]. Dyes and Pigments, 2007, 74(3): 536~544.
    [201] Jun Hong, Cheng Sun, Shao-Gui Yang and Ya-Zi Liu. Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps[J]. Journal of Hazardous Materials, 2006, 133(1-3): 162~166.
    [202] Klan P, Literak J, Hajek M. The electrodeless discharge lamp: a prospective tool for photochemistry[J]. J. Photochem. Photobiol A: Chemistry, 1999, 128: 145~149.
    [203] Cirkva V, Hajek M. Microwave photochemistry. Photoinitiated radical addition of tetrahydrofuran to perfluorohexlethene under microwavr irradiation[J]. J. Photochem. Photobiol. A: Chemistry, 1999, 123: 21.
    [204] Horikoshi S, Hidaka H, Serpone N. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamin-B Dye in Aqueous TiO2 Dispersision[J]. Environ. Sci. Technol., 2002, 36(6): 1357~1366.
    [205] Horikoshi S, Hidaka H, Serpone N. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of·OH radicals probed by ESR techniques in microwave-assisted photocatalysis in TiO2 dispersions[J]. Chem. Phys. Lett., 2003, 376(3-4): 475~480.
    [206] Horikoshi S, Serpone N, Hidaka H. Environmental remediation by an integrated microwave/UV-illumination technique IV. Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions J.Photochem. Photobiol. A: Chem., 2003, 159(3): 289-300.
    [207] Booske J H, Cooper R F, Dobson I.. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids[J]. J. Mat. Res., 1992, 7(2): 495~501.
    [208] Janekovic A, Matijevic E.Preparation of monodispersed colloidal cadmium compounds[J]. Colloid Interface Sci., 1985, 103:436.
    [209]邱羽,高濂.由硝酸盐尿素配合物前驱体制备过渡金属氮化物的研究[J].无机材料学报,2004, 19(1): 63~68.
    [210]郑忠.胶体科学导论[M].北京:高等教育出版社, 1989.
    [211]周英彦,高首山,李红霞等.关于成核速率公式的研究(Ⅰ)液相胶粒成核速率公式的简化近似表达式[J].中国粉体技术, 2000, 6(增刊): 287~294.
    [212]贾志谦,刘忠洲.液相沉淀法制备纳米粒子的过程特征和原理[J].化学工程, 2002, 30(1):38~41.
    [213]田玉明,黄平,冷叔炎等.沉淀法的研究及其应用现状.材料导报, 2000,14(2):47~48
    [214]高玮,古宏晨,胡英.面向21世纪的化工沉淀技术[J].化学工业与工程技术, 2000, 21(1):1~4.
    [215]陈瑞澄.四氯化钛水解过程的研究[J].湿法冶金, 1999(3), 1~7.
    [216] Hildenbrand V D, Fuess H, Pfaff G, et al. Structural Investigations on TiCl4 Solutions.Zeitschrift fur Physikalische Chemie[J], 1996, 194(2): 139~150.
    [217]石建稳,郑经堂,胡燕等.纳米TiO2光催化剂共掺杂研究进展[J].化工进展, 2006, 25(6): 604~607.
    [218] Zhang Hengzong, Banfield J. F. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanaocrystalline Aggregates: Insights from TiO2[J]. J. Phys. Chem. B, 2000, 104: 3481~3487.
    [219] Dong Heon Lee , Yong Soo Cho , Woul In Yi , et al. Metalorganic chemical vapor deposition of TiO2: N anatase thin film on Si Substrate[J]. Applied Physics Letters, 1995, 66(7): 815~816
    [220] Suda Y,Kawasaki H,Ueda T,et al.Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method[J].Thin Solid Films, 2004, 453~454: 162~166.
    [221] Diwald O, Thompson T, Goralski E, et al. The effect of nitrogen ion implantation on photoactivity of TiO2 rutile single crystals[J]. J. Phys. Chem., 2004, 108: 52~57.
    [222] Shu Yin, Hiroshi Yamaki, Masakazu Komatsu, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J]. J. Mater. Chem., 2003, 13(12): 2996~3001.
    [223] Zhang Q, Wang J, Yin S, et al. Synthesis of a visible-light active TiO2-xSx photocatalyst bymeans of mechanochemical doping[J]. J. Am. Ceram. Soc., 2004, 87(6): 1161~1163.
    [224] Jia-Guo Yu, Jimmy C Yu , Bei Chen, et al. The effect of F- -doping and temperature on the structure and textural evolution of mesoporous TiO2 Powders[J]. Journal of solid State Chemistry, 2003, 174(2): 372~380.
    [225]孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光催化活性的关系[J].催化学报, 1998, 19(3): 229~233.
    [226]黄军华,高濂,陈锦元等.纳米TiO2粉体制备过程中结晶度的控制[J].无机材料学报, 1996, 11(1): 51~57.
    [227]陈孝云,刘守新,陈曦,孙承林. TiO2/wAC复合光催化剂的酸催化水解合成及表征[J].物理化学学报, 2006, 22(5):517~522.
    [228] Zhang X, Zhang F, Chen K Y. Synthesis of titania–silica mixed oxide mesoporous materials, characterization and photocatalytic properties[J]. Appl. Catal. A, 2005, 284(1-2): 193-198.
    [229] Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J]. Environ. Sci. Technol., 2005, 39: 1175.
    [230] Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical properties of nitrogen-oped TiO2[J]. J. Phys. Chem., 2004, 108: 19384~19387.
    [231] Morikawa T, Ashi R, Ohwaki T, et al. Band-gap narrowing of Titanium Dioxide by Nitrogen Doping[J]. Japanese Journal of Applied Physics, 2001, 40(6): L561~563.
    [232] J Yu, M Zhou, B Cheng, et al. Preparation, characterization and hotocatalytic of in situ N,S-codoped TiO2 powders[J]. J. Mol. Catal. A, 2006, 246: 176.
    [233] Peng F, Cai L F, Yu H, et al. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2008, 181: 130~136.
    [234] Dionysiou D D, Khodadoust A P, Kern A M, et al. Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water[J]. Appl. Catal. B: Environ., 2000, 26: 153~171.
    [235]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社, 2004.
    [236] Huddleston J G, Willauer H D, Swatloski R P, et a1. Room temperature ionic liquids as novel media for clean liquid-liquid extraction[J]. Chem. Commun., 1998, l765~ l766.
    [237] Zhao D B, Wu M, Kou Y. Ionic liquids: applications in catalysis[J]. Catalysis Today, 2002, 17(1-2): 157~189.
    [238] El Abedin S Z, Moustafa E M, Hempelmann R, et al. Electrodeposition of nano- and microcrystalline aluminium in three different atr and water stable ionic liquids[J]. Chem. Phys. Chem., 2006, 7(7): 1535~1543.
    [239] Zhang S M, Zhang C L, Zhang J W, et al. Preparation of silver nanaoparticles in room temperature ionic liquids[J]. Acta Phys-Chem. Sin., 2004, 20(5): 554~556.
    [240] Mu X D, Meng J Q, Li Z C, et al. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquid: long lifetime nanaocluster catalysts for benzene hydrogenation[J]. J. Am. Chem. Soc., 2005, 127(27): 9694~9695.
    [241] Taubert A. (Sub)micron CaF2 cubs and hollow rods from ionic liquid emulsions[J]. Acta. Chem. SLov., 2005, 52(2): 168~170.
    [242] Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates[J]. J. Am. Chem. Soc., 2003, 125(49): 14960~14961.
    [243] Liu Y, Li J, Wang M J, et al. Preparation and properties of nanostructure anatase TiO2 monoliths using 1-buty-3-methylmidazolium tetrafluorobarate room-temperature ionic liquids as template solvents[J]. Cryst. Growth Des., 2005, 5(4): 1643~1649.
    [244] Yoo K, Choi H, Dionysiou D D. Ionic liquid assisted preparation of nanostructured TiO2 particles. Chem. Commun., 2004, 17: 2000~2001.
    [245] Ningya Yu, Liming Gong, Huijuan Song, et al. Ionic liquid of [Bmim]+Cl- for the preparation of hierarchical nanostructured rutile titania[J]. Journal of Solid State Chemistry, 2007, 180: 799~803.
    [246] Cao J M, Wang J, Fang B Q, et al. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperture ionic liquid[J]. Chem. Lett., 2004, 33(10): 1332~1333.
    [247] Zhou Y, Antonietti M. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique[J]. Adv. Mater., 2003, 15(17): 1452~1455.
    [248] Zhou Y, Schattka J H, Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique[J]. Nano Lett., 2004, 4(3): 477~481.
    [249] Yoo K S, Lee T G, Kim J. Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids[J]. Microporous Mesoporous Mat., 2005, 84(1-3): 211~217.
    [250] Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids[J]. J. Am. Chem. Soc., 2003, 125(21): 6386~6387.
    [251] Zhao X, Xie Z Y, Jiang Z Y, et al. Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid[J]. Chem. Commun., 2005, 44: 5572~5574.
    [252]费贤祥,熊予莹.具有可见光活性的纳米掺氮TiO2制备和表征[J].功能材料与器件学报, 2005, 11(2): 223~227.
    [253]李雪辉,张磊,李琼等. 1-正丁基-3-甲基咪唑溴化物离子液体TGA-FT研究[J].物理化学学报, 2004, 20(12): 1456~1468.
    [254]王保玉,吴建梅,李冠峰.钛酸纳米管和钛酸纳米薄片相变规律比较[J].化学应用于研究, 2006, 18(3): 316~319.
    [255]黄冬根,廖世军,党志.氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能[J]化学学报, 2006, 64(17): 1805~1811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700