镁合金等离子喷涂Al/Al_2O_(3p)复合材料涂层组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是工程结构应用中最轻的金属材料之一,具有比强度和比刚度高、导热性与导电性好、无磁性与电磁屏蔽特性、良好的阻尼特性和切割加工性等优点,在航空航天、汽车制造、电子电器、国防科技等领域都有广泛的应用,是继钢铁材料和铝合金材料之后发展起来的第三类金属结构材料。但是,镁合金的电极电位较低,化学性质活泼,在空气中形成的氧化膜疏松多孔,耐腐蚀性能和耐磨损性能较差,在一定程度上限制了其更广泛的应用。
     为提高镁合金的综合性能,特别是表面性能,扩大其应用范围,本文首先采用电弧喷涂技术,在AZ91D镁合金表面制备纯Al涂层。涂层组织均匀,晶粒细小,部分晶粒尺寸已达到纳米级。涂层与基材之间存在界面,界面结合良好,发生原子之间的相互扩散,有新组织Mg17Al12生成。涂层中几乎没有氧化物或杂质颗粒,但存在一定量光滑近圆形的孔隙。涂层断口中有大量塑性韧窝状断裂。喷涂电压和喷涂气压两个参数是影响涂层结合强度以及致密性的重要因素。本试验条件下,喷涂电压为30V,喷涂气压为0.6MPa时,涂层的致密性最好,结合强度最高,孔隙率为5.18%,结合强度为12.84MPa。盐雾腐蚀试验表明,涂层及其封孔涂层的耐腐蚀性能明显优于镁合金基材。
     采用等离子粉末喷涂技术在AZ31镁合金表面制备纯Al涂层和Al/Al_2O_(3p)复合材料涂层。用不同配比的复合粉末(Al+Al_2O_3)喷涂涂层,观察各涂层表面3D形貌、SEM形貌,进行XRD分析和划痕试验,优化出的最佳复合粉末配比为:Al_2O_3的质量分数20wt%,Al的质量分数为80wt%。设计六因素五水平正交实验表,用极差分析方法确定的Al/Al_2O_(3p)复合材料涂层最佳工艺参数为:喷涂电流700A、喷涂距离90mm、主气压力0.4827MPa、次气压力0.2069MPa、喷涂速度400mm/s、送粉量30.3g/min。
     Al/Al_2O_(3p)复合材料涂层成型良好,涂层没有明显的层状组织产生,Al_2O_3颗粒增强相均匀弥散地镶嵌在涂层的Al基体中,二者之间的相容性和润湿性较好。涂层与基材之间存在着界面,界面两侧互有一定程度的扩散,并产生AlMg和Al12Mg17两种新组织。涂层呈现韧性断口形貌,平均孔隙率仅为3.80%。Al_2O_3颗粒在等离子焰流中的位置不同,熔化程度不同,冷却凝固后的形状也不相同,有的呈圆形和椭圆形,有的呈多棱角形。
     等离子弧热源的平均温度高,可使Al_2O_3颗粒熔化充分,基材获得的热量充足。熔融粒子在等离子焰流中的飞行速度比普通电弧高,撞击基材时具有的动能和撞击力大,可使扁平粒子层与基材之间以及层与层之间结合得更加紧密,片层被压得更薄更扁,孔隙很少。处在Ar气氛围中的等离子喷涂比普通电弧喷涂的保护条件好,熔融粒子和涂层不容易被氧化。一般等离子喷涂涂层的氧增量在0.1-1%左右,而普通电弧喷涂涂层的氧增量达到0.5-3%左右。而氧增量高,涂层的氧化物杂质含量就会增多,导致涂层孔隙增多。
     Al/Al_2O_(3p)复合材料涂层与基材的平均结合强度为16.04MPa。涂层显微硬度由涂层表面至基材呈逐渐增大趋势,基本分布在HV45-HV55之间。通过快速磨损和环块磨损对比试验可以看出,Al/Al_2O_(3p)复合材料涂层的磨损体积和磨损质量失重量比纯Al涂层和基材都要小很多,而摩擦系数却最大。Al_2O_3颗粒增强相减小和阻碍了涂层中Al基体的塑性变形,改变了摩擦副与基材之间的接触特性,充分显示出Al_2O_3颗粒增强相在涂层中的强化效果。
     从极化曲线的测试结果可以看出,电弧喷涂纯Al涂层、等离子喷涂纯Al涂层及Al/Al_2O_(3p)复合材料涂层的电极电位都比镁合金低,而腐蚀电流又都比镁合金高,他们都可作为阳极与镁合金基材形成原电池,对其起到牺牲阳极的阴极保护作用。Al表面容易形成致密的Al_2O_3膜层,可阻止腐蚀介质浸入基材内部,但溶液中的Cl-离子穿透力强,容易穿透Al_2O_3膜层,破坏Al的钝化状态。同时,Cl-离子还容易吸附在涂层表面,取代Al_2O_3膜层中的O而破坏涂层。溶液中的O还能够引起金属表面的去极化过程,加速阳极溶解,使渗入涂层缺陷里的盐溶液体积膨胀,引起应力腐蚀。
     Al/Al_2O_(3p)复合材料涂层与其热处理涂层的耐腐蚀性能差别很小,在盐雾腐蚀试验环境中的耐腐蚀性能优于其在浸泡腐蚀试验环境中的耐腐蚀性能。在盐雾腐蚀试验中,NaCl溶液沉降量比较小,腐蚀主要发生在涂层表层,其腐蚀行为主要是点蚀。在浸泡腐蚀试验中,涂层被完全浸泡在流动的NaCl溶液中,涂层产生的腐蚀不仅是表面的点蚀,更主要的是发生在Al与Mg接触面之间的电偶腐蚀,导致涂层的腐蚀失重量远大于基材和封孔处理的Al/Al_2O_(3p)复合材料涂层。封孔涂层在浸泡腐蚀试验和中性盐雾腐蚀试验中,腐蚀失重量都很小,几乎没有被腐蚀,对镁合金基材有很好的保护作用,大幅提高了镁合金的耐腐蚀性能。
     基于Al、Al_2O_3涂层的特点,Al_2O_3颗粒增强Al基复合材料(Al/Al_2O_(3p))涂层是改善镁合金耐腐蚀性能和耐磨损性能更为有利的选择,本文的研究工作为改善镁合金的耐腐蚀性能和耐磨损性能提供了必要的理论依据。
Magnesium alloy is one of the lightest metals on the earth, which has the characteristics of high specific strength, high specific stiffness, excellent thermal conductivity, superior electrical conductivity, non-magnetic, electromagnetic shielding, good damping and excellent cutting, and so on. As the third type of metallic structural material except for the steels and aluminum alloys, magnesium alloy is widely used in industries such as aviation and aircraft, automobile manufacturing, electronics, national defense technology, and etc. due to these superior properties. However, the applications of magnesium alloy is restricted by its low electrode potential and active chemical properties, forming oxide film with porous structure in the air, the poor corrosion resistance and wear resistance.
     In this paper, aluminum coating prepared on the surface of the magnesium alloy AZ91D by wired arc spray was investigated firstly to improve the comprehensive properties of magnesium alloy, especially surface properties, and expand its application scope. Homogeneous microstructure and fine grains of the coating were gained. Part of the grain size has reached the nanometer level. The bonding of interface between coating and Mg alloy substrate was excellent. The study showed that there were new phases Mg17Al12 evolved due to the interdiffusion of atoms. There were no oxides and impurities in the coating except for some smooth and nearly circular pores. A large number of plastic and dimple-like fractures were observed. In this experiment, arc voltage and spray gas pressure were two important factors which have obvious effects on the bonding strength of Mg alloy substrate and coatings. The compactness of the coating and bonding strength were satisfied under spray voltage of 30V, spray gas pressure of 0.6MPa, which were 5.18% and 12.84MPa, respectively. The coating without sealing agent and the coating with sealing agent had better corrosion resistance than that of the Mg alloy substrate.
     Pure Al coating and Al/Al_2O_(3p) composite coating were prepared on the surface of Mg alloy AZ31 by plasma powder spraying. The optimum powder mixing ratio, obtained by observing surface 3D morphology, SEM morphology, XRD analysis and scratch test of the different ratio mixed sprayed coatings, was 80wt.% Al and 20wt.% Al_2O_3, respectively. Based on the orthogonal experiment of six factors and five levels, the proper parameters of arc spray for preparation of the Al/Al_2O_(3p) coating were spray current of 700A, spray distance of 90mm, main gas pressure of 0.4827MPa, secondary gas pressure of 0.2069Mpa, spray speed of 400mm/s and powder feed rate of 30.3g/min.
     The formability of the Al/Al_2O_(3p) coating was good and there was no obvious lamellar structure in the composite coating. As reinforced phase, Al/Al_2O_(3p) was uniformly dispersed in the coatings. The matrix Al and reinforced phase Al_2O_3 showed good compatibility and wettability. The interface between the coating and the substrate could be easily observed and the new phases AlMg and Al12Mg17 were found nearby the interface, which indicated that the diffusion of atoms occurred. The mean porosity of the coating was only about 3.80% and plastic fracture surface could be observed. The study revealed that the particles of Al_2O_3 exhibited different shape in the coating such as round, oval or multi-angular shape, which resulted from different melting degree of the Al_2O_3 in the plasma.
     Due to high thermal density of the plasma, the Al_2O_3 was melted fully and plenty of thermal was gained for the substrate. Flight speed of molten particles in plasma flame was faster than that in arc spray. So greater kinetic energy and percussive force were obtained when molten particles striking the substrate. At the same time, the bonding was more closely between the plat particle layer and substrate, layer and layer, and lamella was getting thinner and flatter with lower porosity. The oxides in the coatings were decreased greatly resulting from the better protection of the inert gas Ar. Generally, the oxygen increase was about 0.1-1% for plasma spray process and 0.5-3% for arc spray, respectively. The high oxygen increase meaned the high oxides content in the coating, which resulted in high porosity.
     The mean bonding strength of the Al/Al_2O_(3p) coating and Mg alloy substrate was 16.04MPa. The microhardness increased gradually from the coating surface to the substrate, ranging from HV45-HV55. Based on the rapid wear test and ring block wear test, wear volume and weight loss of the Al/Al_2O_(3p) coating were lower than those of the Al coating and AZ31 alloy but with highest friction coefficient. This could be explained by that the reinforced phase Al_2O_3 restricted the plastic deformation of Al and changed the interface state. This was also contributed to the effect of the reinforced phase.
     From the Tafel curves of the pure Al coatings prepared with arc spray and plasma spray, the composite coatings of Al/Al_2O_(3p), the electrode potentials of three kinds of coatings were lower than that of the substrate but with higher corrosion currents. The three kinds of coatings mentioned above could be regarded as anodes of the primary battery and aimed to sacrifice the anodes to protect the Mg alloy substrate, which was cathode in the primary battery. Though Al_2O_3 oxides film formed easily on the Al surface, which can protect the substrate from attack of the corrosive media, the Cl- could penetrate the film and attack the Al substrate. Further, the Cl- can adsorb onto the coating surface and substitute O of the Al_2O_3, thus destroy the coating. Meanwhile, the atom O in the solution could cause the depolarization process of metal surface, accelerate anode to dissolve, make volume expansion for infiltration coating salt solution and led to stress corrosion.
     The corrosion resistance of the composite coating Al/ Al_2O_(3p) before and after heat treatment showed no obvious difference, which was better in the salt spray corrosion test than that in the soak corrosion test. During the salt spray corrosion test, NaCl hardly settled down in the solution. The corrosion mainly occurred at the surface of the coating, which belonged to the pit corrosion. During the soaking corrosion test, the coating was surrounded by the NaCl solution. The main corrosion, galvanic corrosion, occurred at the interface of the Al and Mg alloy except for the pit corrosion at the surface. In this case, the weight loss due to the corrosion was larger than those of the Mg alloy substrate and the composite coating Al/Al_2O_(3p) with sealing treatment. The weight loss of the composite coating Al/Al_2O_(3p) with sealing treatment was very small in either soak corrosion test or salt spray corrosion test, which indicated the coating provided good protection to the Mg alloy substrate and greatly improved performance of the Mg alloy in corrosive environment.
     According to the characteristics of Al and Al_2O_3 coating, the composite coating Al/Al_2O_(3p), based on the Al substrate reinfored with Al_2O_3 particles, became the better choice to increase the wear resistance and corrosion resistance of the coating. The invetigation in this work offered some theoretical foundation for improving the wear resistance and corrosion resistance of the Mg alloy coating.
引文
[1]国家中长期科学和技术发展规划纲要(2006━2020年)中华人民共和国国务院(20060209).
    [2] ISHIHARA S, NAN Z, GOSHIMA T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Materials Science and Engineering A, 2007, 468-470: 214-222.
    [3] LI W, ZHOU H, ZHOU W, et al. Effect of cooling rate on ignition point of AZ91D-0.98 wt.% Ce magnesium alloy [J]. Materials Letters, 2007, 61(13): 2772-2774.
    [4] AGHION E, BRONFIN B, FRIEDRICH H. The environmental impact of new magnesium alloys on the transportation industry [J]. magnesium Technology 2004, 14-18: 167-172.
    [5] MONTEMOR M F, SIMOES A M, CARMEZIM M J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection [J]. Applied surface Science, 2007, 253(16): 6922-6931.
    [6]吴国华,樊昱,翟春泉,等.镁合金表面腐蚀膜的研究现状与展望[J].铸造, 2007, 156(3): 223-225.
    [7]陈长军,王茂才,王东生,等. ZM5镁合金表面电火花合金化改性层的获得[J].材料热处理学报, 2004, 25(2): 42-44.
    [8]马幼平,杨蕾,徐可为,等.镁合金表面改性技术研究现状及进展[J].轻合金加工技术, 2007, 35(9): 6-11.
    [9]李兆峰,黄伟久,刘明,等. AZ91D镁合金热喷涂Zn-Al涂层的热扩散研究[J].热加工工艺, 2006, 35(19): 38-40.
    [10]马全友,王振家,王璐科,等.压铸镁合金AZ91D在酸性NaCl溶液中的腐蚀行为[J].表面技术, 2004, 33(4): 16-18.
    [11]陈飞,周海,姚斌,等. AZ31镁合金表面微弧氧化陶瓷层的性能[J].中国有色金属学报, 2005, 15(2): 308-312.
    [12]谭成文,郭冠伟,王潇屹,等. AZ31镁合金表面液相渗Al的工艺与性能[J].中国有色金属学报, 2007, 17(7): 1053-1057.
    [13]曲明,刘忆. AZ91D镁合金表面电弧喷涂Al锌涂层组织的研究[J].表面技术, 2006, 35(6): 17-18.
    [14]杨晓飞,林文光,毛广雷,等. AZ91D镁合金表面激光熔覆Al+Al2O3涂层研究[J].兵器材料科学与工程, 2007, 30(4): 20-23.
    [15]樊建锋,杨根仓,周尧和,等. Mg-3.5Y-0.8Ca阻燃镁合金的表面氧化膜结构研究[J].稀有金属材料与工程, 2007, 36(8): 1326-1330.
    [16]许越,陈湘,吕祖舜,等.镁合金表面的腐蚀特性及其防护技术[J].哈尔滨工业大学学报, 2001, 33(6): 753-757.
    [17]崔洪芝,王勇.镁合金表面等离子束熔凝处理的组织和耐蚀性研究[J].金属热处理, 2007, 32(6): 72-74.
    [18]尹建军,李元东,梁卫东,等.镁合金表面电镀锌的预处理工艺研究[J].甘肃工业大学学报, 2003, 29(1): 36-38.
    [19]渠毓萍,李忠厚,秦妍梅,等.镁合金表面化学镀Ni-P合金研究[J].表面技术, 2005, 34(1): 43-45.
    [20]陈飞,周海,姚斌,等.镁合金表面离子注Ti耐蚀性能的研究[J].表面技术, 2007, 36(3): 7-9.
    [21]韦春贝,张春霞,田修波,等.镁合金的表面耐蚀改性技术[J].轻合金加工技术, 2004, 32(6): 6-11.
    [22]仵海东,曹鹏军,刘筱薇,等.镁合金表面涂装前处理工艺研究[J].表面技术, 2003, 32(6): 46-47.
    [23]钱建刚,李荻,郭宝兰,等.镁合金的化学转化膜[J].表面技术, 2002, 35(3): 5-6.
    [24]程素玲,杨根仓,樊建锋,等.铸造镁合金的发展及其展望[J].材料导报2005, 19(2): 91-93.
    [25] GROSHART E. Preparation of Nonferrous metals for painting [J]. Metal Finishing, 2002, 98(A): 82-86.
    [26] VOYTKO J E. Organic finishing & plating &surface finishing [M]. Plating &Surface Finishing, 2000(8): 54-56.
    [27]肖卫华.镁合金表面防腐技术研究进展[J].淮海工学院学报(自然科学版), 2005, 14(3): 53-56.
    [28]黄开金,林鑫,陈池,等. AZ91D镁合金表面激光熔覆Zr-Cu-Ni-Al/TiC复合粉末的组织与磨损[J].中国激光, 2007. 34(4): 549-553.
    [29]黄正华,张忠明,郭学锋,等.镁合金阻燃方法与机理[J].兵器材料科学与工程, 2004, 27(1): 63-66.
    [30] GHION A, BRONFIN E. Magnesium alloys development towards the 21st century [J] Materials Science Forum, 2000, 350-351: 19-28.
    [31]孙海斌,左秀荣. RE对细晶Al锭细化效果的影响[J].特种铸造及有色合金, 2006(6): 381-383.
    [32] LIU S Y, LIU J D, YANG Y, et al. Microstructure of magnesium alloy melted by laser irradiation [J]. Appl. Surf. Sci. 2005, 252(5): 1723-1731.
    [33] LEI M, LI K P. Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy [J]. Surface & Coatings Technology, 2007, 201: 5182-5185.
    [34] MIAO Q, CUI C E. CrN-TiN multilayer coating on magnesium alloy AZ91 by arc-glow plasma depositing process [J]. Surface & Coatings Technology, 2007, 201: 5077-5080.
    [35] CUI CAI, MIAO Q. Ti/Cr multi-layer coating on magnesium alloy AZ91 by arc-added glow plasma depositing technique [J]. Surface & Coatings Technology, 2007, 201: 5400-5403.
    [36]张永君,严川伟,王福会,等.镁的应用及其腐蚀与防护[J].材料保护, 2002, 35(4): 4-6.
    [37] MORDIKE B L, EBERT T. Materials Science and Engineering [M]. 2001, A302: 37-45.
    [38] GRAY J E, LUAN B. Alloy Compd [M]. 2002, 336: 88-113.
    [39]黃伯云.我国有色金属材料现状及发展战略[J].中国有色金属学报, 2004, 14(5): 122-127.
    [40]刘正.压铸镁合金在汽车工业中的应用和发展[J].特种铸造及有色合金, 1999(5): 55-58.
    [41]陈力禾.镁合金压铸及其在汽车工业中的应用[J].铸造, 1999(10): 45-50.
    [42]张微,李涛,刘永丰,等. AZ31镁合金表面防腐胶粘涂层的研制[J].电镀与涂饰, 2009, 28(2): 60-62.
    [43]张小伶.镁合金在汽车工业中的应用[J].铸造工程, 2006(4): 41-44.
    [44]邓春明,刘敏,任建平,等. AZ31镁基高速火焰喷涂WC涂层的研究[J].轻金属, 2008, 2: 48-52.
    [45]唐全波,黃少东,伍太宾,等.镁合金在武器装备中的应用分析[J].兵器材料科学与工程, 2007, 30(2): 69-72.
    [46]曾英,罗静.镁合金触变成形在3C产品壳体上的应用分析[J].重庆工学院学报, 2006, 20(11): 44-46.
    [47]余刚,刘跃龙,李英,等.镁合金的腐蚀与防护[J].中国有色金属学报, 2002, 6(12): 1087-1093.
    [48]陈振华.镁合金[M].北京,化学工业出版社, 2004: 1-135.
    [49]国家发展和改革委员会技术产业司,中国材料研究学会.中国新材料产业发展报告-镁及镁合金[M].北京:化学工业出版社, 2004, 115-142.
    [50]吉泽升.日本镁合金研究进展及新技术[J].中国有色金属学报, 2004, 14(12): 1977-1984.
    [51]赵鸿金,张迎晖,康永林,等.镁合金阻燃元素氧化热力学及氧化物物性分析[J].特种铸造及有色合金, 2006, 26(6): 340-342.
    [52]姜巍巍,李峻青,张密林,等.镁合金表面防护涂层的研究进展[J].电镀与涂饰, 2006, 25(11): 42-45.
    [53]吕玲敏,杨昇,栗万仲,等.镁合金表面钝化膜微观组织分析及可镀性研究[J].材料导报, 2007, 21(8): 430-432.
    [54]许越,陈湘,吕祖舜,等. AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究[J].中国稀土学报, 2005, 23(1): 40-43.
    [55] SHI Z M, SONG G L, ATRENS A. The corrosion performance of anodized magnesium alloys [J]. Corrosion Science, 2006, 48(11): 3531-3546.
    [56] NOBUTO Y, HIROSHI N, ARI I. Characteristics of ion beam modified magnesium oxide films [J]. Thin Solid Film, 2004(447-448): 377-382.
    [57]杨在兴,霍宏伟,王艳,等. AZ91D镁合金表面铈转化膜成膜工艺及其耐腐蚀性的研究[J].腐蚀科学与防护技术, 2009, 21(2): 200-202.
    [58]陈菊芳,张永康,许仁军,等. AM50镁合金表面激光熔凝层的组织与耐蚀性能[J].中国激光, 2007, A35(2): 307-310.
    [59] GAO B, HAO S Z, ZOU J X, et al. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ1HP magnesium alloy [J]. Surface& Coatings Tecnology, 2007. 201(14): 6297-6303.
    [60] DEXTER S C. Localized corrosion, Metals Handbook [M], 9th edition, Vol. 13, Corrosion, ASM International, 1987: 106.
    [61]丁文江.镁合金科学与技术[M].北京:科学出版社, 2007.
    [62]刘新宽,向阳,辉胡,等.镁合金化学镀镍磷研究[J].宇航材料工艺, 2001, 4: 21-25.
    [63]罗胜联,戴磊,周海晖,等.镁合金新型电镀工艺研究[J].湖南大学学报, 2006, 33(3): 106-109.
    [64]贾志华,王玉平.镁及镁合金化学镀Ni-Cu-P三元合金工艺[J].电镀与涂饰, 2004, 23(3): 6-8.
    [65]赖奂汶,丁汀,黄清安.镁合金化学镀(电镀)的研究进展[J]. 2007年上海市电子电镀学术会论文集, 2007: 9-13.
    [66]韩夏云,郭忠诚.镁及镁合金表面镀锌工艺[J].材料保护, 2002, 35(11): 31-33.
    [67]崔建忠,赵隆昌,赵惠.一种镁及镁合金表面化学镀铜的方法[P]. CN1793426, 2006.
    [68]刘新宽,向阳辉,王渠东,等.镁合金的防蚀处理[J].腐蚀科学与防护技术, 2001, 13(4): 211-213.
    [69] DELONG H K. Plating on magnesium [J]. Metal Finishing Guidebook, 1978:83-175.
    [70] GRAY J E, LUAN B. Protective coatings on magnesium and its alloys-a critical review [J]. Journal of Alloys and Compounds, 2002, 336: 8-113.
    [71] ONO S, ASAMI K, OSAKA T. Characterization of chemical conversion coating films grown on magnesium [A]. International Corrosion Congress Proceedings 13th [C]. Australia: Clayton, 1996: 80-82.
    [72] EPPENSTEINERr, FRED W, JENKINS, et al. Chromate conversion coatings [J]. Metal finishing, 2002, 100 (1) : 479-491.
    [73] SHARMA A K. Chromate conversion coatings for magnesium-lithium alloys[J]. Metal Finishing, 1989, 67 (2): 73-74.
    [74] SKAR J I, ALBRIGHT D. Phosphate permanganate: a chrome free alternative for magnesium pretreatment [A]. International Congress Magnesium Alloys and Their App locations[C]. Canada: Coronado, 2000: 180-183.
    [75] DAVIAD H, ALBRIGHT D L, et al. A phosphate-permanganate conversion coating for magnesium [M]. Metal Finishing; 1995.
    [76]张华云,李华伦,郭伊娜.镁合金化学转化膜的耐腐蚀性研究[J].材料保护, 2007, 40(1):10-12.
    [77]吴丹,杨湘杰,王建永,等.镁合金环保型化学转化膜工艺研究[J].金属热处理, 2008, 33(3):86-89.
    [78]许越,滕玉洁,张勇,等. AZ91镁合金稀土表面改性的研究[J].稀土, 2004, 25 (5): 13-14.
    [79]蒋玉思.镁及其合金阳极氧化技术的发展[J].广州有色金属学报, 2001, 11(2): 120-122.
    [80] RBBERT E, BROWN. Hard anodizing light metals [J]. Light metal age, 1993, 51(3-4): 16.
    [81] ZHANG Y J, YAN C W, WANG F H, et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy [J]. Surface and Coating Technology, 2002, 161: 36-43.
    [82]周玲伶,易丹青,邓姝皓,等.镁合金环保型阳极氧化工艺研究[J].中国腐蚀与防护学报, 2006, 26(3):176-179.
    [83]许洲,王海庆,丁毅,等. AZ31镁合金表面阳极氧化工艺研究[J].表面技术, 2008, 37(3):46-48.
    [84]朱祖芳.镁合金部件的表面保护工艺和装饰工艺[J].材料保护, 2002, 35 (6) : 4-7.
    [85] LEI T, OUYANG C, TANG W, et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process [J].CossosionScience, 2010, 52(10) : 3504-3508.
    [86] BONILLA F, BERKANI A, LIU Y, et al. Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte [J]. Journal of the Electrochemical Society, 2002, 149(1): 4-13.
    [87] CARSTEN B, WOLF D, ENDWARD G, et al. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments [J]. Advanced Engineering Materials, 2006, 8(6): 511-533.
    [88] HOCHE H, SCHEERER H, PROBST D, et al. Plasma iodization as an environmental harmless method for the corrosion protection of magnesium alloys [J]. Surface and Coatings Technology, 2003, 174-175: 1002-1007.
    [89] WANG Y Q, ZHENG M Y.Microarc oxidation coating formed on SICw/AZ91 magnesium matrix composite and its corrosion resistance [J].Materials Letters, 2005(59):1727-1731.
    [90] GRAY J E, GRAY B, LUAN B.Protective coatings on magnesium and its alloys—a critical review [J].Journal of Alloys and Compounds, 2002:88–113.
    [91] SHINGEMATSU I, NAKAMURA M, SAITOU N, et al. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating [J]. Journal of Materials Science Letters, 2000, 19: 473-475.
    [92] ZHANG M X, KELLY P M. Surface alloying of AZ91D alloy by diffusion coating [J]. Mater Res, 2002, 17: 2447-2479.
    [93] NAKATSUGAWA I. Characteriaztion and performance of laser melted AZ91D and AM60B [J]. Materials Science and Engineering A, 2001, 29(1): 38-45.
    [94]王莹,张津,麻彦龙,等.镁合金表面处理新进展[J].表面技术, 2006, 35(6):61-63.
    [95]周大伟,许晨阳,李晋,等.镁合金激光表面改性研究新进展[J].轻金属, 2007(4):39-42.
    [96] GAO Y L, WANG C S, LIN Q, et al.Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy [J]. Surface& Coatings Technology, 2006, 201:2701-2706.
    [97] LI G Y, WANG C S, PANG H J, et al.Broad-beam laser cladding of Al–Cu alloy coating on AZ91HP magnesium alloy[J]. Applied Surface Science, 2007, 253:4917–4922.
    [98] DUTTA J, MAJUMDAR, GALUN R,et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy.Materials Science and Engineering, 2003: 119–129.
    [99]刘红宾,王存山,高亚丽,等.镁合金表面激光熔覆Cu-Zr-Al非晶复合材料涂层[J].中国激光, 2006, 33 (5):709-713.
    [100] YUE T M, SU Y P.Laser cladding of SiC reinforced Zr65Al7. 5Ni10Cu17. 5 amorphous coating on magnesium substrate [J]. Applied Surface Science2008, 255(5): 1692.
    [101] DUBE E M, COUTURE A. Characterization and performance of laser melted AZ91D and AM60B [J]. Materials Science and Engineering, 2001, 299: 38-45.
    [102]高波,郝胜智.镁合金表面处理研究的新进展[J].材料保护, 2003, 10: 1-3.
    [103]崔洪芝,王勇.镁合金表面等离子束熔凝处理的组织和耐蚀性研究[J].金属热处理, 2007, 32(6): 72-75.
    [104]姚寿山,李戈扬,胡文彬.表面科学与技术(1)[M].北京:机械工业出版社, 2005:228-229.
    [105]赵文轸.金属材料表面新技术[M].西安:西安交通大学出版社, 1992. 247.
    [106] STEIPPICH E F, WOLF G K, BERG G, et al. Enhanced corrosion protection of magnesium oxide coating son magnesium deposited by ion beam assisted evaporation [J]. Surface and Coatings Technology, 1998, 103-104: 29-35.
    [107] BRUCHKNER J, GUNZEL R, MOLLER W. Metal plasma immersion ion implantation and deposition (MPIIID): chromium on magnesium [J]. Surface and Coatings Technology, 1998, 103-104: 227-230.
    [108]曾爱平,薛颖,钱宇峰,等.镁合金表面改性新技术[J].材料导报, 2000(3): 19-20.
    [109] TUE T M, WANG A H, MAN H C. Corrosion resistant enhancement of magnesium ZK60/SiC composite by Nd: YAG laser cladding [J]. Scripta Mater, 1999, 40(3): 303-311.
    [110] FRANGK H, RENATE W, JANA S. Characteristics of PVD-coating on AZ31hp magnesium alloys [J]. Surface and Coatings Technology, 2003, 162: 261-268.
    [111] HOCHE H, BLAWERT C, BROSZEIT E, et al. General corrosion and galvanic corrosion properties of differently PVD treated magnesium die cast alloy AZ91 [J]. Advanced Engineering Materials, 2003, 5: 896-902.
    [112] SCHHIER V, WALTER A G.物理气相沉积(PVD)制备氧化Al涂层[J].工具技术, 2006, 40(1): 84-85.
    [113]吴国松,曾小勤,姚寿山. AZ31镁合金表面气相沉积不锈钢薄膜的实验研究[J],材料工程, 2006, ( z1): 43-46.
    [114]刘志远,邵忠财.镁合金表面处理的研究现状与展望[J].电镀与涂饰, 2007, 26(11):27-30.
    [115]吴清波,刘培英,周铁涛.镁合金的耐腐蚀表面防护技术[J].航空工程与维修, 2005(1): 57-59.
    [116]王芬,康志新,李元元.镁合金表面防腐蚀处理研究[J].钛工业进展, 2007, 24(1):20-23.
    [117]陈迪春,蒋百灵,吴文文,等.镁合金表面磁控溅射CrAlTiN镀层的制备技术研究[J].表面技术, 2008, 37(2):8-10.
    [118]梁春林,刘宜汉,韩变华,等.镁合金表面处理研究现状及发展趋势[J].表面技术, 2006, 35(6):57-60.
    [119] MAKAR G L, KRUGER J. Corrosion of Magnesium [J]. International Materials Reviews, 1993, 38 (3): 138 -153.
    [120] MORI K, HIRAHARA H, OISHI Y, et al. Effect of triazine dithiols on the polymer plating of magnesium alloys. Materials Science Forum, 2000, 350:223-234.
    [121]陈愚,肖泽辉,谭香玲.镁合金表面熔覆改性技术的研究进展[J].材料导报, 2008, 22(3): 90-93.
    [122]马壮,曲文超,李智超. AZ91D热化学反应热喷涂陶瓷涂层热震性研究[J].表面技术, 2008, 37(2):52-53.
    [123]吕楠.镁合金表面冷喷涂快凝Zn-Al合金粉末及涂层性能的研究[D].沈阳工业大学, 2005.
    [124]易春龙.电弧喷涂技术.北京:化学工业出版社. 2006.
    [125]杜小红.电弧喷涂技术在中国的发展和应用[J].表面技术, 2000, 29(5): 21-23.
    [126]王新烘,邹增大,曲仕尧.表面熔融凝固强化技术—热喷涂与堆焊技术[M].北京:化学工业出版社, 2005:119-122.
    [127]谭成文,杨素媛,陈志永,等.镁合金表面电弧喷涂纯Al的界面特性研究[J].材料热处理学报, 2007, 28(2): 102-105.
    [128]张津,孙智富. AZ91D镁合金表面热喷Al涂层研究[J].中国机械工程, 2002, 12: 2057-2060.
    [129]路佳.镁合金电弧喷涂Al涂层的研究[D].吉林大学, 2006年.
    [130]梁永政,郝远,杨贵荣,等.镁合金AZ91D表面电弧喷涂Al工艺的研究[J].机械工程材料, 2005, 29(3): 29-31.
    [131]贺定勇,耿丹丹,蒋建敏.镁合金表面电弧喷涂Al涂层在氯离子中的腐蚀行为[J].焊接, 2007(3): 24-28.
    [132]蒋建敏,耿丹丹,贺定勇,等.镁合金表面电弧喷涂Al涂层[A].第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C], 2006年.
    [133]冀芳.镁合金表面Al涂层的制备及性能研究[D].西安建筑科技大学, 2007年.
    [134] Raask E, Tube erosion by ash impaction [J]. Wear, 1969, 13(4-5): 301-315.
    [135] Barbezat G, Nicol A R, Sickinger A. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications [J]. Wear,1993, 162-164(1): 529-537.
    [136] Pomeroy M J. Coatings for gas turbine materials and long term stability issues [J]. Materials & Design, 2005, 26(3): 223-231.
    [137] Rogers M, Hutchings I M, Little J A. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds [J]. Wear, 1995, 186-187: 238-246.
    [138]吴子健.热喷涂技术与应用[M].北京,机械工业出版社, 2005, 84-209.
    [139]戴达煌,周克崧,袁镇海.现代材料表面技术科学[M].北京,冶金工业出版社, 2004, 591-592.
    [140]杨元政,刘正义,庄育智.等离子喷涂Al2O3+13%TiO2陶瓷涂层组织结构及其耐磨损性能[J].功能材料, 2000, 31(4): 390-392.
    [141]叶宏,张津,等.镁合金表面等离子喷涂纳米陶瓷涂层的研究[J].武汉理工大学学报, 2004(4): 9-11.
    [142]冯亚如,张忠明,徐春杰,等. AZ31镁合金表面等离子喷涂Al65Cu23Fe12涂层的研究[J].铸造技术, 2006, 27(2): 160-162.
    [143]王东生,田宗军,沈理达,等.等离子喷涂纳米复合陶瓷涂层的组织结构及其形成机理[J].中国有色金属学报. 2009, 19(1): 77.
    [144]王敬丰,覃彬.镁合金防腐蚀技术的研究现状及未来发展方向[J]. 2008, (10): 71-75.
    [145] MARIA P, ZHAO L D. Erich Lugscheider. Investigation of particle flattening behavior and bonding mechanisms of APS sprayed coatings on magnesium alloys[J], surface &coatingsTechnology, 2007, 201: 6290-6296.
    [146]胡传,宋幼慧.涂层技术原理及应用[M].北京,化工工业出版社,材料科学与工程出版中心. 2000: 338-350.
    [147]郝士明.镁的合金化与合金相图[J],材料与冶金学报, 2002, 1(3):66-69.
    [148] YUE T M, WANG A H, MAN H C. Improvement in the corrosion resistance of magnesium ZK60/SiC composite by exciter laser surface treatment [J]. Scripta Materialia, 1997, 38(2):191-198.
    [149]姜银方,朱元右,戈晓岚.现代表面工程技术[M].北京:化学工业出版社, 2006, 239.
    [150]杨淑莹. VC++图像处理程序设计(第1版) [M].北京:北方交通大学出版社, 2003.
    [151]秦襄培,刘洪涛,李键,等.图像技术在镀层孔隙率测定上的应用[J].材料保护, 2005(9):70-72.
    [152] Ma Kai, Sun Daqian, Gu Xiaoyan, Li Yupeng and Xuan Zhaozhi. Parameteroptimization for plasma-sprayed Al2O3p/Al composite coating on AZ31 magnesium alloy, China Welding, 2010: 19(1), 15-20.
    [153]吴翊,李永乐,等.应用数理统计[M].湖南,国防科技大学出版社. 1995: 235-252.
    [154]杨晖,王良.等离子喷涂工艺参数对例子速度和温度的影响[J].热加工工艺, 2007(11): 44-48.
    [155]徐滨士,刘世参.表面工程新技术[M].国防工业出版社, 2002:45-78, 115-117.
    [156]王赫莹,李德元,吴卫枫.等离子喷涂送粉参数对粉末粒子运动行为的影响分析[J],表面技术, 2005, 34(5): 40-42.
    [157]陈健,潘复生.合金元素影响Al陶瓷界面润湿性的研究[J].现状兵器材料科学与工程, 1999, 7(4): 53-59.
    [158] B. A.巴而维诺克.等离子体涂层性能及其应力状态的控制.北京力学研究所编译, 2000: 110-113.
    [159] YU S R. HE Z M, CHEN K. Dry sliding friction and wear behavior of fiber reinforced zinc-based alloy composites [J]. Wear, 1996, 198(1): 108-114.
    [160] YIN Z J, TAO S Y. Microstructure and mechanical properties of Al2O3-Al composite coatings deposited by plasma spraying [J]. Applied Surface Science, 2008, 254: 1636-1643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700