半滑舌鳎(Cynolossus semilaevis Gǖnther)对温度和营养胁迫的生长响应及其生理生态学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数鱼类在自然或养殖环境中均不可避免地会受到一些胁迫因子的影响,这些胁迫因子包括温度、盐度、光照和食物的变化等。而在不适宜的环境中,鱼类正常的生长往往会受到一定的抑制,从而导致其生长速度减慢。补偿生长就是鱼类在经历一段时间的生长抑制后,当恢复有利条件时,在一定时间内出现的一种生长加速的现象。从现有的研究结果看,鱼类的补偿生长主要分为三个类型,即部分补偿生长,完全补偿生长和超补偿生长。鱼类补偿生长研究一直是国际鱼类生物学研究的热点之一。尽管很多种类都发现了补偿生长现象,但不同种类反应不一,诱发鱼类补偿生长的生理生态学机制也一直有所分歧。由于鱼类的这种补偿生长现象能抵消生长抑制,因此对减少个体差异、渔业养殖管理和研究鱼类生活史具有重要的意义。
     半滑舌鳎(Cynolossus semilaevis Gunther),为近海名贵经济鱼类。它是我国黄渤海海区的原产鱼种,属东北亚特有种,主要产自黄渤海区,我国的东海以及朝鲜、日本沿海也有一定的分布。半滑舌鳎营养级低、生长速度快、个体大、出肉率高、肉味鲜美,深受人们的喜爱,近年来日益受到国内外市场的青睐,具有较高的经济价值。伴随该鱼人工繁殖手段的成熟,其商品鱼养成已渐成为产业化的主题,适宜的养殖环境条件和投喂技术是该鱼养殖的重点之一。目前对半滑舌鳎的进行的研究主要包括生活史、食性、卵及胚胎发育观察、染色体和遗传多样性、人工繁殖和养殖技术等。关于半滑舌鳎对温度和营养胁迫的生长响应及其生理生态学机制还尚未见报道。开展本项研究,不仅有助于揭示重要种类的生物能量学特征,丰富鱼类的生理生态学研究内容,还可以为进一步发展半滑舌鳎的人工增养殖实践、改进养殖和投饲技术提供理论依据,因而具有重要的理论和实际意义。
     本研究获得的主要结果如下:
     1研究了不同温度(16、19、22、25、28和31℃)对半滑舌鳎幼鱼的生长、体成分组成和能量收支的影响。结果表明,随温度的升高,半滑舌鳎幼鱼生长率总体呈现先升高后降低的趋势。其中,在19-25℃温度范围内,半滑舌鳎幼鱼的特定生长率相对较高,在16和28℃下则有所降低,而在31℃下,半滑舌鳎幼鱼特定生长率则显著降低。本研究表明半滑舌鳎幼鱼特定生长率与温度符合二次曲线模型。半滑舌鳎摄食量随温度升高而逐渐增大,但在31℃时显著减小,饵料转化率则随温度的升高而降低。鱼体脂肪与能值均随温度升高而降低,蛋白质含量受温度影响不显著。温度对半滑舌鳎的能量收支影响显著,其中,生长能和代谢能主导半滑舌鳎的能量分配,生长能占摄食能比例则随温度的升高而降低,呼吸能占摄食能比例则随温度的升高而升高。本研究表明,半滑舌鳎幼鱼(13-37g)适宜生长温度范围为19-25℃,而不同温度导致的半滑舌鳎摄食量和能量收支的差异可能是温度影响其生长的主要生理生态学机制。
     2研究了不同温度(16,22和28℃)和日粮水平(饥饿,25%,50%,75%和100%饱食)对半滑舌鳎幼鱼生长、体成分组成和能量收支的影响。结果表明,特定生长率随日粮水平的增加而增加,在22℃、100%日粮条件下的幼鱼生长最佳。回归分析表明,SGRw.SGRe、RLw和RLe的回归方程:SGRw=20.778 log(RLw+5)-0.0767T-13.628,SGRe=11.016 log(RLe+5)-0.152T- 6.730.由此得出16、22和28℃下以体重表示的维持日粮水平为0.19%、0.46%和0.74%,以能量表示的维持日粮水平分别为1.79%、3.21%和4.94%。50%-100%日粮水平对饵料转化率影响不显著(P>0.05)。75%和100%日粮水平条件下的消化率没有显著差异(P>0.05)。脂肪含量随日粮水平的升高而增加,而随温度的升高而下降。蛋白含量在16℃时,随日粮水平的升高而下降,在22和28℃时,随日粮水平的升高而升高。生长能和呼吸能占摄食能的比例决定半滑舌鳎幼鱼能量收支的类型。在本研究的温度范围内,生长能占摄食能的比例随温度的升高而降低,并且受50%-100%日粮水平的影响不显著(P>0.05)。而呼吸能占摄食能的比例随日粮水平的升高而下降,随温度的升高而升高。22℃时,半滑舌鳎幼鱼的特定生长率最高,这意味着将其养殖在22℃、100%日粮水平下可以获得更快的生长速度。
     3研究了饥饿后恢复投喂对半滑舌鳎幼鱼的补偿生长、体成分组成、代谢和能量收支的影响。实验设置C(对照)、S1(饥饿4天)、S2(饥饿8天)、S3(饥饿16天)、S4(饥饿32天)、S0(持续饥饿)六个处理,饥饿后恢复饱食投喂,每个处理5个重复,在22℃下进行实验并按时测定呼吸强度,共进行64天。实验结束时,S1组鱼体重最大但是与对照组没有显著差异(P>0.05),表明S1组鱼产生完全补偿生长现象。虽然,S2、S3和S4组鱼的特定生长率在恢复投喂后均高于对照组,但到实验结束时,其体重均小于对照组,所以这三组的半滑舌鳎幼鱼产生部分补偿生长现象。S1组半滑舌鳎的饵料转化率显著高于对照组(P<0.05)。S2、S3和S4组的摄食率和表观消化率均显著高于对照组,但S1组与对照组无显著差异。实验结束时,S1、S2和对照组的主要体成分组成和体能值没有显著差异(P>0.05)。恢复投喂后的实验各组代谢率迅速升高,只有S4组的排氨率在延迟了一段时间后才显著升高。并且饥饿时间越长,代谢率的峰值越高。在能量收支中,S1组生长能占摄食能的比例显著高于对照组,而呼吸能比例显著低于对照组(P<0.05)。基于本研究结果,半滑舌鳎幼鱼补偿生长的机制可归结为恢复投喂期间其代谢降低,从而能量效率提高所致。
     4研究了2周不同程度的食物限制之后恢复饱食投喂对半滑舌鳎幼鱼的生长、体成分组成、代谢和能量收支的影响。实验包括5个处理:饥饿组(R0)、25%饱食组(R25)、50%饱食组(R50)、75%饱食组(R75)和持续饱食组(对照组,C),实验时间56天。结果表明,R25、R50和R75与对照组的体重在实验第六周直至实验结束没有显著差异(P>0.05)。恢复饱食后,各处理的特定生长率随饱食程度的增加逐渐降低,摄食率(FR)随限食程度的增加而增加,对照组的饵料转化率较低,而饥饿组在第4周到第7周饵料转化率一直高于对照组(P<0.05),在实验的第4-8周,各处理的消化率没有显著差异(P>0.05)。R0组和R25组的耗氧率在恢复饱食后均出现峰值,而后又恢复到与对照组没有差异的水平,而R50组和R75组的耗氧率与对照组变化相似没有出现较大波动。体成分组成中,水分含量和灰分含量变化相似,随饱食程度的增加而逐渐降低,蛋白含量随时间没有显著的变化规律。对照组的能量收支各组分能值均是各处理中最高的,但是在能量收支式中此种优势却没有体现出来。研究表明,半滑舌鳎幼鱼在限食投喂2周后,25%、50%和75%饱食组均具有完全补偿生长能力,而饥饿组具有部分补偿生长能力;由于营养胁迫程度不同,半滑舌鳎幼鱼可能采取不同的补偿生长策略。
     5研究了不同循环投喂模式对半滑舌鳎幼鱼的生长、体成分组成、代谢和能量收支的影响。其中包括5个处理:C(对照组,实验过程中持续投喂);S2F4组(饥饿2天,投喂4天);S4F8组(饥饿4天,投喂8天);S8F16组(饥饿8天,投喂16天);S12F24组(饥饿12天,投喂24天),实验时间72天。结果表明,对照组的特定生长率(SGRw和SGRe)显著高于循环投喂各组(P<0.05)。对照组和S2F4组半滑舌鳎幼鱼的末体重没有显著差异(P>0.05)并且均显著高于其它各组(P<0.05)。对照组半滑舌鳎幼鱼的消化率显著低于其它各组(P<0.05),而能量消化率与S12F24组没有显著差异(P>0.05),但显著低于其它三个处理组(P<0.05)。S4F8组半滑舌鳎幼鱼饵料转化率显著低于S12F24组(P<0.05),对照组饵料转化率低于S2F4组和S12F24组但没有显著差异(P>0.05)。对照组半滑舌鳎幼鱼的摄食率显著低于其它各组(P<0.05)。体成分中,蛋白含量随饥饿投喂周期的延长而下降,S2F4组和对照组半滑舌鳎的蛋白含量没有显著差异(P>0.05)。S2F4组的耗氧率和排氨率均较低。对照组的摄食能显著高于其它各组(P<0.05),S2F4组的呼吸能占摄食能的比例显著高于对照组(P<0.05)。研究表明,半滑舌鳎在循环投喂模式下,具有较强的补偿生长能力,S2F4组具有完全补偿生长能力;其在较长的周期性饥饿条件下,首先利用蛋白质作为能量来源。
     6研究了高温和低温胁迫对半滑舌鳎幼鱼的生长、体成分组成、血液生理和能量收支的影响。实验包括7个处理,其中1个处理在22℃下持续投喂,设为对照组(C),另外6个处理分别在16℃(A)和28℃(B)下养殖1、2、3周,再恢复到22℃至实验结束,处理编号依次为:A1、A2、A3、B1、B2、B3。每个处理5个重复,实验时间56天。结果表明,A1组和B1组半滑舌鳎在实验结束时,体重显著大于对照组(P<0.05),A1组和B1组的SGRw显著高于其它各处理(P<0.05)。在温度胁迫后各胁迫组的食物转化率均出现了先升高后降低的现象,到实验结束时除B3组外,其它各组的食物转化率与对照组无显著差异(P>0.05)。表观消化率在温度胁迫之后随着时间的延长,胁迫组表现出比对照组更明显的优势。到实验结束时,对照组的蛋白含量最低,各处理的水分、脂肪、灰分含量和体能值无显著差异(P>0.05)。在能量收支式中,对照组和B3组生长能占摄食能的比例与B2组无显著差异(P>0.05),但显著低于其它各处理(P<0.05)。对照组粪能和排泄能占摄食能的比例均最高。血清中的游离三碘甲状腺原氨酸(FT3)含量在16℃和28℃时均高于对照组;而血清中游离甲状腺素(FT4)低温处理时间越长,FT4的含量越高,高温组仅有B3组在处理结束时,FT4含量显著升高。在温度恢复到22℃后各处理的FT3、FT4水平很快恢复到与对照组相仿的水平。研究表明,半滑舌鳎幼鱼在温度胁迫一周后表现出超补偿生长现象。温度胁迫条件下半滑舌鳎幼鱼通过降低代谢,提高饵料转化率实现补偿生长。
     7比较研究了温度和限食胁迫对半滑舌鳎幼鱼的生长、体成分组成和能量收支的影响。实验包括7个处理,其中1个处理在22℃下持续投喂,设为对照组(C),另外6个处理分别在28-C(B)和25%饱食(R)条件下养殖1、2、3周,再恢复到22℃饱食投喂至实验结束,处理编号依次为:B1、B2、B3、R1、R2、R3。每个处理5个重复,实验时间56天。结果表明,B1组半滑舌鳎在实验结束时,体重显著大于对照组(P<0.05),而R1组体重与对照组没有显著差异(P>0.05),B1组的SGRw显著高于其它各处理(P<0.05)。在温度胁迫后各组的饵料转化率均出现了先升高后降低的现象,到实验结束时除B3组外,其它各组的饵料转化率与对照组无显著差异(P>0.05),而营养胁迫组的饵料转化率在恢复投喂期间的1-2周显著高于对照组(P<0.05)。表观消化率在恢复正常条件之后随着时间的延长,胁迫组表现出比对照组更明显的优势。到实验结束时,各处理的水分、脂肪、蛋白、灰分含量和体能值无显著差异(P>0.05)。在能量收支式中,B1组的生长能占摄食能的比例显著高于B3组和对照组(P<0.05),除B1组,其它各组生长能占摄食能的比例无显著差异(P>0.05);对照组粪能占摄食能的比例显著高于其它各处理(P<0.05),其中R1组最低(P<0.05);排泄能占摄食能的比例在B1组最低(P<0.05),其它各组没有显著差异(P>0.05);实验各处理间呼吸能占摄食能的比例没有显著差异(P>0.05)。研究表明,半滑舌鳎幼鱼在高温胁迫一周后表现出超补偿生长现象,而在25%饱食胁迫一周后出现完全补偿生长现象。温度胁迫条件下半滑舌鳎幼鱼通过降低代谢,提高饵料转化率实现补偿生长,而营养胁迫条件下,通过降低代谢,提高饵料转化率和摄食率实现补偿生长。
Compensatory growth is a phase of accelerated growth when favourable conditions are restored after a period of growth depression. It reduces variance in size by causing growth trajectories to converge and is important to fisheries management, aquaculture and life history analysis because it can offset the effects of growth arrests. Compensatory growth has been demonstrated in both individually housed and grouped fish, typically after growth depression has been induced by complete or partial food deprivation. Partial, full and over-compensation have all been evoked in fish. But the studies on compensatory growth are far from enough. There is so much work to do to make the phenomenon of the compensatory growth clear. Effects and mechanism of temperature and nutrition stress on tongue sole, Cynolossus semilaevis Giinther were investigated in this study. The main results are as followings:
     1. The influence of temperature (16,19,22,25,28 and 31℃) on growth, biochemical composition and energy budget was investigated in juvenile tongue sole. The results showed that the specific growth rate of tongue sole increased with the increase of temperature from 16-25℃and then decrease at 28-31℃. The relationship between specific growth rate of juvenile tongue sole and temperatures was described as quadratic graph. Lipid and energy contents of dry body decreased with the increasing temperatures, while crude protein content was not significantly affected by temperature. The effects of temperatures on the energy budget of juvenile tongue sole were significant. Energy assimilated in growth and those consumed in respiration dominated the mode of the energy allocation of juvenile tongue sole. The proportion of food energy allocated to respiration increased with the increasing temperature. However, those assimilated to growth decreased with the increasing temperature. The present study revealed that the suitable temperature of juvenile tongue sole was 19-25℃. The mechanism of effects of temperature on the growth of tongue sole may be ascribed to the differences of food consumption and energy budget resulted from different temperatures.
     2. The influence of water temperatures (16,22 and 28℃) and ration levels (0%,25%, 50%,75% and 100% of satiation) on the growth, body composition and energy budget in juvenile tongue sole were investigated over 60 days. The specific growth rates of fish increased with increasing ration levels. Fish fed to 100% satiation at 22℃exhibited better growth than other treatments. The relationship among SGRW, SGRe, temperature (T) and ration (RLw, in weight and RLe, in energy) could be described by the regression equations:SGRW=20.778 log(RLw+5)-0.0767T-13.628, SGRe= 11.016 log(RLe+5)-0.152T-6.730. The maintenance ration levels were 0.19%, 0.46% and 0.74% of body weight, while 1.79%,3.21% and 4.94% of body energy at 16,22 and 28℃, respectively. Ration level from 50%-100% satiation did not influence food conversion efficiency. There is no significant difference in apparent digestion rate between fish fed to 75% and 100% satiation. The content of lipid in fish tended to increase with increasing ration levels, while tend to decrease with increasing water temperature. The crude protein content in fish tended to decrease with increasing ration levels at low temperature (16℃), while tended to increase at high temperature (22 and 28℃). The proportion of food energy assimilated in growth and the proportion consumed for respiration dominated the mode of the energy allocation of juvenile tongue sole. In the temperature range of this experiment, the proportion of food energy allocated to growth decreased with increasing temperature, and was not affected significantly ration level from 50%-100% satiation at the same temperature. The proportion of food energy consumed for respiration decreased with increasing ration, while increased with increasing temperature. The maximum of specific growth rate occurred in fish fed to satiation at 22℃, which suggested that commercial farmers could feed juvenile tongue sole to satiation at 22℃to obtain higher growth rate.
     3. The effects of starvation and re-feeding on compensatory growth, body composition, metabolism and energy budget were examined in juvenile tongue sole at 22℃for 64 days. Fish were divided into six groups including control group (continuously fed ad libitum group, C), starvation group (SO) and other four groups with food deprivation for 4 days (S1),8 days (S2),16 days (S3) and 32 days (S4), respectively. Fish in S1, S2, S3 and S4 resumed feeding after the corresponding starvation period. At the end of the experiment, the weight of S1 fish was highest but not significantly different with that of the control fish (P>0.05), indicating complete compensatory growth occurred. Although the specific growth rate in S2, S3 and S4 fish was greater than that in the control fish after re-feeding, S2, S3 and S4 fish did not reach the same body weight of the control fish at the end. Food conversion efficiency of tongue sole was significantly higher in S1 than in the control fish (P< 0.05). The feeding rate and apparent digestion in S2, S3 and S4 fish were significantly higher than those in the control fish, while no significant difference was found between S1 and the control fish. There was no significant difference among S1, S2 and C in the content of moisture, lipid, protein, ash and energy (P>0.05) at the end of the experiment. Upon re-feeding, metabolic rates of juvenile tongue sole increased rapidly except that there was a time lag appeared in nitrogen excretion for the fish starved for 32 days, and the peaks of these increases were directly proportional to the length of the starvation period. Estimated form energy budget during the period of the experiment, S1 fish exhibited significantly higher proportion of food energy assimilated in growth and significantly lower proportion consumed for respiration than the control fish (P<0.05). Based on the result of the present study, the underlying mechanisms for complete compensatory growth in juvenile tongue sole could be attributed to an improved energetic efficiency resulted from reduced metabolic expenditure during the period of recovery.
     4. The effects of previous food restriction on compensatory growth, body composition, metabolism and energy budget were examined in juvenile tongue sole at 22℃for 56 days. Fish were divided into five groups including control group (continuously fed ad libitum group, C), and the other four groups expressed as Group R0 (starvation group), R25, R50 and R75 were first fed at 0%,25%,50% and 75% of satiation, respectively for 14 days, and were then fed ad libitum for a recovery period of 42 days. There was no significant difference in body weight among R25, R50, R75 and the control group at the 6th,7th and 8th week. After re-feeding, the specific growth rate decreased with the increasing ration, but feeding rate increased with increasing ration. Food conversion efficiency of R0 fish was significantly higher than the control group in the 4th week to the 7th week(P<0.05). In the 4th week to the end of the experiment, there was no significant difference in the apparent digestion rate among all groups (P> 0.05). The oxygen consumption of R0 and R25 fish peaked after re-feeding, and then recovered to the level of the control group. The oxygen consumption of R50 and R75 fish were similar with that of the control fish. The moisture content of fish decreased with the increasing ration, which was similar with the ash content. The energy parameters in the control group were highest among all groups, but the proportions of food energy were not. It showed that the R25, R50 and R75 fish showed complete compensatory growth and the R0 fish showed incomplete compensatory growth. The growth compensation is mainly dependent on the different food restriction.
     5. A feeding experiment was conducted to examine the effects of repetitive periods of fasting and satiation feeding on the growth, body composition, metabolism and energy budget of juvenile tongue sole at 22℃for 72 days. There were five groups:the control fed ad libitum throughout the experiment (C); the treatment groups were subjected to repetitive periods of fasting and satiation feeding (2:4,4:8,8:16 and 12:24 days for group S2F4, S4F8, S8F16 and S12F24). The specific growth (SGR including SGRw, in terms of weight, and SGRe, in terms of energy) of C fish was significantly higher than those of other groups (P<0.05). There was no significant difference in body weight between S2F4 and C fish (P>0.05), and both of them were significantly higher than that of other groups. The apparent digestion rate of C fish was significantly lower than that of other groups (P<0.05). The energy digestion rate of C fish was not significantly different with S12F24 fish (P>0.05), but was significantly lower than the other three groups (P<0.05). The food conversion efficiency of S4F8 fish was significantly lower than that of S12F24 fish (P< 0.05). The feeding rate of control fish was the lowest (P<0.05). The protein content of fish decreased with the increasing cycle period. There was no significant difference in protein content between S2F4 and C fish (P>0.05). The oxygen consumption and ammonia excretion were lower in S2F4. The food energy of the control group was the highest (P<0.05). The food energy assimilated to metabolism in S2F4 fish was higher than that in C fish (P<0.05). It showed that the juvenile tongue sole of S2F4 showed complete compensatory growth. During the repetitive periods of fasting and satiation feeding, the juvenile tongue sole used protein as the first energy source.
     6. The effects of high and low water temperatures stress on the growth, body composition, blood physiology and energy budget of juvenile tongue sole was detected during 56 d experiment. There were seven groups:the control fed ad libitum throughout the experiment at 22℃(C); the other six treatments were reared at 16℃and 28℃for 1,2 and 3 weeks, respectively. Recorded as:A1, A2, A3, B1, B2, B3. The body weight of A1 and B1 were significantly higher than that of the control group (P<0.05). The SGRw of Al and B1 were significantly higher than those of other groups (P<0.05). The food conversion efficiency of fish underwent temperature stress increased and then decreased during compensatory growth. At the end of the experiment, there was no significant difference among treatments involved. Apparent digestion rate of fish suffered stress was higher than that of C fish at the later period of the experiment. At the end of the experiment, the moisture, lipid, ash and the body energy content of the fish was not significantly different with each other (P>0.05) except for the protein content. There was no significant difference of the food energy allocated to growth among C, B3 and B2 fish (P>0.05) which were significantly lower than that in other treatments (P<0.05). The food energy allocated to exertion and feces were highest in C. There were more FT3 at 16℃and 28℃in serum than at 22℃. In the fish at 16℃, the FT4 increased with the progress of the experiment. When the temperature returned to 22℃, the levels of the FT3 and FT4 in the serum clamed down to the level of the control group soon. It suggested that the fish in A1 and B1 showed over compensatory growth. The fish underwent temperature stress had reduced the metabolism and lifted the food conversion efficiency to complete their compensatory growth.
     7. The effects of high water temperatures and 25% ration stress on the growth, body composition and energy budget of juvenile tongue sole was detected during 56 d experiment. There were seven groups:the control fed ad libitum throughout the experiment at 22℃(C); the other six treatments were reared at 28℃and 25% ration for 1,2 and 3 weeks, respectively. Recorded as:B1, B2, B3, R1, R2, R3. The body weight of B1 was significantly higher than that of the control group (P<0.05) which was not significant with that of R1 (P>0.05). The SGRW of B1 were significantly higher than those of other groups (P<0.05). The food conversion efficiency of fish underwent temperature stress was superior to that of fish underwent food restriction. Apparent digestion rate of fish suffered stress was higher than that of C fish at the later period of the experiment. At the end of the experiment, the moisture, lipid, protein, ash and the body energy content of the fish were not significantly different with each other (P>0.05). There was no significant difference of the food energy allocated to growth among all treatments (P<0.05) except for B1 which was significantly higher than that of B3 and C. The energy lost in feces was higher in C than that in other treatments (P<0.05). There was no significant difference among all treatments of food energy allocated to exertion which was lowest in B1 (P<0.05). There was no significant difference among all treatments of food energy allocated respiration (P>0.05). It suggested that the fish suffered high temperature for 1 week showed over compensatory growth. And the fish in R1 showed complete compensatory growth. The fish underwent temperature stress had reduced the metabolism and lifted the food conversion efficiency to complete their compensatory growth. But the fish underwent food restriction lifted the feeding rate and food conversion efficiency more to achieve the compensatory growth.
引文
Ali, M., Cui, Y., Zhu, X., Wootton, R.J. Dynamics of appetite in three fish species (Gasterosteus aculeatus, Phoxinus phoxinus and Carassius auratus gibelio) after feed deprivation. Aquaculture Research,2001,32:443-450.
    Ali, M., Przybylski, M., Wootton, R.J. Do random fluctuations in daily ration affect the growth rate of juvenile three-spined sticklebacks? Journal of Fish Biology,1998,52:223-229.
    Ali, M., Wootton, R.J. Capacity for growth compensation in juvenile three-spined sticklebacks experiencing food deprivation. Journal of Fish Biology,2001,58:1531-1544.
    Ali, M., Wootton, R.J. Do random fluctuations in the intervals between feeding affect growth rate in juvenile three-spined sticklebacks? Journal of Fish Biology,1998,53:1006-1014.
    Alvarez, D. Implicaciones del comportamiento y fisiologia individuales en el ciclo de vida y dinamica poblacional de la trucha comun (Salmo trutta L.). Doctoral Thesis, University of Oviedo, Spain,2002:109 pages.
    Aranyakananda, P., Moore, N., Singhagraiwan, T. Effect of feeding frequency on compensatory growth of Asian sea bass, Lates calcarifer. Arri Newsletter,1996,3:11-13.
    Atchley, R.W. Ontogeny, timing of development, and genetic variance-covariance structure. American Naturalist,1984,123:519-540.
    Basiao, Z.U., Doyle, R.W., Arago, A.L. A statistical power analysis of the'internal reference' technique for comparing growth and growth depensation of tilapia strains. Journal of Fish Biology,1996,49:277-286.
    Beamish, F.W.H. Influence of starvation on standard and routine oxygen consumption. Transactions of the American Fisheries Society,1964,50:153-164.
    Bertram, D.F., Chambers, R.C., Leggett, W.C. Negative correlations between larval and juvenile growth rates in winter flounder- implications of compensatory growth for variation in size-at-age. Marine Ecology Progress in Series,1993,96:209-215.
    Bilton, H.T. and Robins, G.L. The effects of starvation and subsequent feeding on survival and growth of Fulton Channel Sockeye Salmon fry (Oncorhynchus nerka). Journal of the Fisheries Research Board of Canada,1973,30:1-5.
    Bjornsson, B., Sigurthorsson, G., Hemre, G.I., Lie, O. Growth rate and feed conversion factor on young halibut (Hippoglossus hippoglossus L.) fed six different diets. Fiskeridirektoratets Skrifter Ernaering,1992,5:25-35.
    Blaxter, J.H.S., Ehrlich, K.F. Change in behaviour during starvation of herring and plaice larvae. In:The Early Life History of Fish (ed:J.H.S. Blaxter), Springer Verlag, Heidelberg,1974, pp.575-588.
    Blaxter, J.H.S., Hempel, G. The influence of egg size on herring larvae (Clupea harengus L.). Journal du Conseil international pour l'Exploration de la Mer,1963,28:211-240.
    Boujard, T., Burel, C., Medale, F., Haylor, G., Moisan, A. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. Aquatic Living Resources,2000,13:129-137.
    Broekhuizen, N., Gurney, W.S.C., Jones, A., Bryant, A.D. Modelling compensatory growth. FunctionalEcology,1994,8:770-782.
    Brown, M.E. Experimental studies on growth. In:The Physiology of Fishes, Vol. I (ed:M.E. Brown), Academic Press, New York,1957, pp.361-400.
    Brown, M.E. The growth of brown trout(Salmo trutta Linn.) Ⅱ The growth of two-year-old trout at constant temperature of 11.5℃. Journal of Experimental Biology,1946,22:130-144.
    Bull, C.D., Metcalfe, N.B., Mangel, M. Seasonal matching of foraging effort to anticipated energy requirements in anorexic juvenile salmon. Proceedings of the Royal Society of London B, 1996,263,13-18.
    Chambers, R.C Leggett, W.C., Brown, J.A. Variation in and among early life history traits of laboratory reared winter flounder Pseudopleuronectes americanus. Marine Ecology Progress in Series,1988,47:1-15.
    Chatakondi, N.G., Yant, R.D. Application of compensatory growth to enhance production in channel cat-fish Ictalurus punctatus. Journal of World Aquaculture Society,2001,32: 278-285.
    Chmilevskii, D.A. Vliyanie ponizhennoj temperatury na on oogenez tilapii Oreochromis mossambicus 2. Vozdejstvie na ryb v vozraste dvadtsati dvukh sutok posle vylupleniya. Voprosy Ikhtiologii,1994,34:675-680 [In Russian].
    Christensen, S.M., McLean, E. Compensatory growth in Mozambique tilapia (Oreochromis mossambicus) fed a sub-optimal diet. Ribarstvo,1998,56:3-19.
    Cutts, C.J. Metcalfe, N.B., Taylor, A.C. Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have smal metabolic scopes. Functional Ecology,2002,16: 74-78.
    Dabrowski, K., Takashima, F., Strussmann, C. Does recovery growth occur in larval fish. Bulletin of the of Japanese Society of Science,1986,52:1869.
    Damsgard, B., Amesen, A.M. Feeding, growth and social interactions during smolting and seawater acclimation in Atlantic salmon, Salmo salar L. Aquaculture,1998,168:7-16.
    Dobson, S.H., Holmes, R.M. Compensatory growth in the rainbow trout, Salmo gairdneri Richardson.1984.
    Dou, S. Food habits and seasonal variation of stomach contents of tongue sole Cynoglossus semilaevis (Ginther) in the Bohai Sea. Chin. J. Oceanol. Limnol.1993,11 (1),89-96.
    Dou, S. Food utilization of adult flatfish co-occurring in the Bohai Sea of China. Neth. J. Sea Res. 1995b,34 (1-3),183-193.
    Dou, S. Life history cycles of flatfish species in the Bohai Sea, China. Neth. J. Sea Res.1995a,34 (1-3),195-210.
    Du Preez, H.H. Laboratory studies on the oxygen consumption of the marine teleost, Lichia amia (Linnaeus,1758). Comparative Biochemistry and Physiology,1987,88A,523-532.
    Du Preez, H.H. Strydom,W., Winter, P.E.D. Oxygen consumption of two teleosts Lithognathus mormyrus (Linnaeus,1758) and Lithognathus lithognathus (Cuvier,1830) (Teleosti: Sparidae). Comparative Biochemistry and Physiology,1986b,85A,313-331.
    Du Preez, H.H., McLachlan, A., Marais, J.K.F. Oxygen consumption of a shallow water teleost, the spotted grunter, Pomadasys commersonii (Lacepede,1802). Comparative Biochemistry and Physiology,1986a,84A,61-70.
    Du W., Meng Z.J., Xue Z.Y., Jiang Y.W., Zhuang Z.M., Wan R.J. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. J. Fish. Sci. Chin. 2004,11 (1),48-52 (in Chinese, with English abstract).
    Emerson, S.B. Heterochrony and frogs:the relationship of a life history trait to morphological form. AmericanNaturalist,1986,127,163-183.
    Ferreri, C.P., Taylor, W.W. Compensation in individual growth-rates and its influence on lake trout population- dynamics in the Michigan waters of Lake Superior. Journal of Fish Biology, 1996,49:763-777.
    Foss, A., Imsland, A.K. Compensatory growth in the spotted wolfish Anarhichas minor (Olafsen) after a period of limited oxygen supply. Aquaculture Research,2002,33:1097-1101.
    Gaylord, T.G. MacKenzie, D.S., Gatlin, D.M. Ⅲ Growth performance, body composition and plasma thyroid hormone status of channel catfish(Ictalurus punctatus) in response to short-term feed deprivation and refeeding. Fish Physiology and Biochemistry,2001,24: 73-79.
    Gaylord, T.G., Gatlin, D.M. Ⅲ Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture,2001,194: 337-348.
    Hayward, R.S., Noltie, D.B., Wang, N. Use of compensatory growth to double hybrid sunfish growth rates. Transactions of American Fisheries Society,1997,126:316-322.
    Hayward, R.S., Wang, N. Failure to induce over compensation of growth in maturing yellow perch. Journal of Fish Biology,2001,59:126-140.
    Hayward, R.S., Wang, N., Noltie, D.B. Group holding impedes compensatory growth of hybrid sunfish. Aquaculture,2000,183:299-305.
    Hepher, B., Liao, I.C., Cheng, S.H., Hsieh, C.S. Food utilization by tilapia-effect of diet composition, feeding level and temperature on utilization efficiency for maintenance and growth. Aquaculture,1983,32:255-275.
    Hubbell, S.P. Of sowbugs and systems:the ecological bioenergetics of a terrestrial isopod. In: Systems Analysis and Simulation in Ecology (ed:B.C. Patten), Academic Press, London, 1971, pp.269-323.
    Jobling, M. Bioenergetics:feed intake and energy partitioning. In:Fish Ecophysiology (eds:J.C. Rankin and F.B. Jensen), Chapman & Hall, London,1993, pp.1-44.
    Jobling, M. Effects of starvation on proximate chemical composition and energy utilization of plaice, Pleuronectes platessa L. Journal of Fish Biology,1980,17:325-334.
    Jobling, M. Fish Bioenergetics. Chapman & Hall, London,1994.
    Jobling, M. Jorgensen, E.H., Siikavuopio, S.I. The influence of previous feeding regime on the compensatory growth response of maturing and immature Arctic charr, Salvelinus alpinus. Journal of Fish Biology,1993,43:409-419.
    Jobling, M. Some observations on the effects of feeding frequency on the food intake and growth of plaice, Pleuronectes platessa L. Journal of Fish Biology,1982,20:431-444.
    Jobling, M., Koskela, J. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in subsequent period of compensatory growth. Journal of Fish Biology, 1996,49:658-667.
    Jobling, M., Meloy, O.H. dos Santos, J., Christiansen, B. The compensatory growth response of the Atlantic cod:effects of nutritional history. Aquaculture International,1994,2:75-90.
    Johnston, LA. Quantitative analysis of muscle breakdown during starvation in the marine flatfish Pleuronectes platessa. Cell and Tissue Research,1981,214:369-386.
    Karlsen, O., Holm, J.C., Kjesbu, O.S. Effects of periodic starvation on reproductive investment in 1st-time spawning Atlantic cod(Gadus morhua L). Aquaculture,1995,133,159-170.
    Kim, M.K., Lovell, R.T. Effect of feeding regimes on compensatory weight gain and body tissue changes in channel catfish, Ictalurus punctatus in ponds. Aquaculture,1995,135:285-293.
    Koppe, W., Pockrandt, J., Meyer-Burgdorff, K.H., Gunther, K.D. Effects of realimentation after a period of restricted feeding on food intake, growth and body composition in Piaractus brachypomus (Cuvier1818), a South American characoid fish. In Fish Ecotoxicology and Ecophysiology (eds:T. Braunbeck, W. Hanke and H. Segner), VCH, New York,1993, pp. 263-268.
    Letcher, B.H., Rice, J.A., Crowder, L.B. Size-dependent effects of continuous and intermittent feeding on starvation time and mass loss in starving yellow perch larvae and juveniles. Transactions of the American Fisheries Society,1996,125:14-26.
    Liao, X., Shao, C.W., Tian, Y.S., Chen, S.L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Mol. Eco. Notes,2007,7 (6):1147-1149.
    Liu, X.Z., Zhuang, Z.M., Ma, A.J., Chen, S.Q., Sun, Z.Z., Liang, Y., Xu, Y.J. Reproductive biology and breeding technology of Cynoglossus semilaevis Guther. Mar. Fish. Res.2005,26 (5):7-14 (in Chinese, with English abstract).
    Liu, Y.G., Bao, B.L., Liu, L.X., Wang, L., Lin, H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Mol. Eco. Resources,2008,8 (1):202-204.
    Liu, Y.G., Sun, X.Q., Gao, H., Liu, L.X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Mol. Eco. Notes,2007,7 (6):1242-1244.
    Love, R.M. The Chemical Biology of Fishes, Vol.2. Academic Press, London,1980.
    Love, R.M. The Chemical Biology of Fishes. Academic Press, London,1970.
    Ma, A.J., Liu, X.Z., Xu, Y.J., Liang, Y., Zhuang, Z.M., Zhai, J.M., Li, B. Study on feeding behavior and growth of tongue sole Cynoglossus semilaevis in early development stage. Oceanol. Limnol. Sin.2005,36 (2),130-138 (in Chinese, with English abstract).
    Ma, A.J., Wang, X.A., Zhuang, Z.M., Liu, X.Z. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Guther. Oceanol. Limnol. Sin.2007,38 (3), 240-245 (in Chinese, with English abstract).
    Mackas, D.L. Denman, K.L. and Abbott, M.R. Plankton patchiness:biology in the physical vernacular.Bulletin of the ofMarine Science,1985,37:652-674.
    Maclean, A., Metcalfe, N.B. Social status, access to food and compensatory growth in juvenile Atlantic salmon. Journal of Fish Biology,2001,58:1331-1346.
    McMillan, D.N., Houlihan, D.F. Protein synthesis in trout liver is stimulated by both feeding and fasting. Fish Physiology and Biochemistry,1992,10:23-34.
    Metcalfe, N.B., Bull, C.D., Mangel, M. Seasonal variation in catch-up growth reveals state-dependent somatic allocations in salmon. Evolutionary Ecology Research,2002,4: 871-881.
    Miglavs, I., Jobling, M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth. Journal of Fish Biology,1989b,34:947-957.
    Miglavs,I., Jobling, M. The effect of feeding regime on proximate body composition and patterns of energy deposition in juvenile Arctic charr, Salvelinus alpinus. Journal of Fish Biology, 1989a,35:1-11.
    Miller, T.J., Crowder, L.B., Rice, J.A., Marshall, E.A Larval size and recruitment mechanisms in fishes:toward a conceptual framework. Canadian Journal of Fisheries and Aquatic Science, 1988,45:1657-1670.
    Mommsen, T.P. Growth and metabolism. In:The Physiology of Fishes,2nd edn. (ed:D.H. Evans), CRC Press, Boca Raton,1998, pp.65-97.
    Monteiro, L.S., Falconer, D.S. Compensatory growth and sexual maturity in mice. Animal Production,1966,8:179-192.
    Mortensen, A., Damsgard, B. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon(Salmo salar L.) and Arctic charr (Salvelinus alpinus L.). Aquaculture,1993,114:261-272.
    Nicieza, A.G., Brana, F. Compensatory growth and optimum size in one-year-old smolts of Atlantic salmon(Salmo salar). In:Production of Juvenile Atlantic Salmon, Salmo salar, in Natural Waters (eds:R.J. Gibson and R.E. Cutting), Canadian Special Publications in Fisheries and Aquatic Sciences No.1993b,118:225-237.
    Nicieza, A.G., Brana, F. Relationships among smolt size, marine growth, and sea age at maturity of Atlantic salmon(Salmo salar) in Northern Spain. Canadian Journal of Fisheries and Aquatic Science,1993a,50,1632-1640.
    Nicieza, A.G., Metcalfe, N.B. Growth compensation in juvenile Atlantic salmon:Responses to depressed temperature and food availability. Ecology,1997,78:2385-2400.
    Nicieza, A.G., Reiriz, L., Brana, F. Variation in digestive performance between geographically disjunct populations of Atlantic salmon:counter gradient in passage time and digestion rate. Oecologia,1994b,99:243-251.
    Nicieza, A.G., Reyes-Gavilan, F.G. and Brana, F. Differentiation in juvenile growth and bimodality patterns between northern and southern-populations of Atlantic salmon(Salmo salar L). Canadian Journal of Zoology,1994a,72:1603-1610.
    Owen, R.W. Microscale and finescale variations of small plankton in coastal and pelagic environments. Journal of Marine Research,1989,47:197-240.
    Paul, A.J., Paul, J.M. and Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. Journal of Fish Biology,1995,46:442-448.
    Pedersen, B.H. Growth and mortality in young larval herring(Clupea harengus); effect of repetitive changes in food availability. Marine Biology,1993,117:547-550.
    Pedersen, B.H., Ugelstad, I., Hjelmeland, K.Effects of transitory, low food supply in the early life of larval herring(Clupea harengus) on mortality, growth and digestive capacity. Marine Biology,1990,107:61-66.
    Pirhonen, J., Forsman, L. Effect of prolonged feed restriction on size variation, feed consumption, body composition, growth and smolting of brown trout, Salmo trutta. Aquaculture,1998,162: 203-217.
    Priede, I.G. Metabolic scope in fishes. In:Fish Energetics New Perspectives (eds:P. Tytler and P. Calow), Croom-Helm, London,1985, pp.33-64.
    Purchase, C.F., Brown, J.A. Stock-specific changes in growth rates, food conversion efficiencies, and energy allocation in response to temperature change in juvenile Atlantic cod. Journal of Fish Biology,2001,58:36-52.
    Ramanathan, T., Vijaya, P. On the biology of large-scaled tongue sole Cynoglossus macralepidotus. Indian J. Fish.1977,24(1-2):83-89.
    Ricker, W.E. Computation and interpretation of biological statistics of fish populations. Bulletin of the of the Fisheries Research Board of Canada,1975,191:1-382.
    Riska, B., Atchley, W.R., Rutledge, J.J. A geneticanalysis of targeted growth in mice. Genetics, 1984,107:79-101.
    Russell, N.R., Wootton, R.J. Appetite and growth compensation in the European minnow, Phoxinus phoxinus (Cyprinidae) following short term of food restriction. Environmental Biology of Fishes,1992,34:277-285.
    Saether, B.-S., Jobling, M. The effects of ration level on feed intake and growth, and compensatory growth after restricted feeding, in turbot Scophthalmus maximus L. Aquaculture Research,1999,30:647-653.
    Schwarz, F.J., Plank, J., Kirchgessner, M. Effects of protein or energy restriction with subsequent realimentation on performance of carp (Cyprinus carpio L.). Aquaculture,1985,48:23-33.
    Seshappa, G. Some observations on the size distribution and the occurrence of growth rings in the sceled of three species of Cynoglossus at Calicut. Indian J. Fish.1978,25(1-2):185-192.
    Sibly, R.M., Calow, P. Physiological Ecology of Animals. Blackwell Scientific, Oxford,1986.
    Sogard, S.M., Olla, B.L. Contrasts in the capacity and underlying mechanisms for compensatory growth in two pelagic marine fishes. Marine Ecology:Progress Series,2002,243:165-177.
    Speare, D.J., Arsenault, G.J. Effects of intermittent hydrogen peroxide exposure on growth and columnaris disease prevention of juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Science,1997,54:2653-2658.
    Takagi, Y. Effects of starvation and subsequent refeeding on formation and resorption of acellular bone in tilapia, Oreochromis niloticus. Zoological Science,2001,18:623-629.
    Tanner, J.M. Regulation of growth in size in mammals. Nature,1963,199:845-850.
    Teskeredzic, Z., Teskeredzic, E., Tomec, M., Hacmanjek, M., Mclean, E. The impact of restricted rationing upon growth food conversion efficiency and body-composition of rainbow-trout. Water Science and Technology 1995,31:219-223.
    Thorpe, J.E., Miles, M.S., Keay, D.S. Developmental rate, fecundity and egg size in Atlantic salmon, Salmo salar L. Aquaculture,1984,43:289-305.
    Tyler, A.V., Dunn, R.S. Ration, growth and measures of somatic and organ condition in relation to the meal frequency in winter flounder, Pseudopleuronectes americanus, with hypotheses regarding population homeostasis. Journal of Fisheries Research Board of Canada,1976,33: 63-75.
    Van Dijk, P.L.M., Staaks, G., Hardewig, I. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia,2002,130:496-504.
    Vera-Cruz, E.M., Mair, G.C. Conditions for effective androgen sex reversal in Oreochromis niloticus (L.). Aquaculture,1994,122:237-248.
    Weatherley, A.H., Gill, H.S. Recovery growth following periods of restricted rations and starvation in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology,1981,18: 195-208.
    Weatherley, A.H., Gill, H.S. The Biology of Fish Growth. Academic Press, London,1987.
    Wieser, W., Krumschnabel, G., Ojwang-Okwor, J.P. The energetics of starvation and growth after refeeding in juveniles of three cyprinid species. Environmental Biology of Fishes,1992,33: 63-71.
    Wilson, P.N., Osbourn, D.F. Compensatory growth after under nutrition in mammals and birds. Biological Review,1960,35:324-363.
    Wootton, R.J. Ecology of Teleost Fishes,2nd edn. Kluwer, Dordrecht,1998.
    Wootton, R.J. Environmental factors in fish reproduction. In:Reproductive Physiology of Fish (eds:C.J.J. Richter and H.J.T. Goos), Pudoc, Wageningen,1982, pp.201-219.
    Wootton, R.J., Allen, J.R.M., Cole, S.J. Effect of body weight and temperature on the maximum daily food consumption of Gasterosteus aculeatus L. and Phoxinus phoxinus (L.):selecting an appropriate model. Journal of Fish Biology,1980,17:695-705.
    Wu, L., Xie, S., Cui, Y., Wootton, R.J. Effects of cycles of feed deprivation on growth and food consumption of immature three-spined sticklebacks and European minnows. Journal of Fish Biology,2003,62:184-194.
    Wu, L., Xie, S., Zhu, X., Cui, Y., Wootton, R.J. Feeding dynamics in fish experiencing cycles of feed deprivation:a comparison of four species. Aquaculture Research,2002,33:481-489.
    Xie, S., Zhu, X., Cui, Y., Lei, W., Yang, Y., Wootton, R.J. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition. Journal of Fish Biology,2001,58:999-1009.
    Zhu, X., Cui, Y., Ali, M., Wootton, R.J. Comparison of compensatory growth responses of juvenile three-spined stickleback and minnow following similar food deprivation protocols. Journal of Fish Biology,2001,58:1149-1165.
    Zhu, X., Wu, L., Cui, Y., Yang, Y., Wootton, R.J. Compensatory growth in three-spined stickleback in relation to feed-deprivation protocols. Journal of Fish Biology,2003,62: 195-205.
    Zhuang, Z.M., Wu, D., Zhang, S.C., Pang, Q.X., Wang, C.L., Wan, R.J. G-banding patterns of the chromosomes of tongue fish Cynoglossus semilaevis Gunther,1873. J. Appl. Ichthyol.2006, 22 (5):437-440.
    Zivkov, M.T. Critique of proportional hypotheses and methods for back-calculation of fish growth. Environmental Biology of Fishes,1996 46:309-320.
    Zivkov, M.T., Raikova-Petrova, G.N. Growth compensation of pike-perch, Stizostedion lucioperca (L.), in the Batak and Ovcharitsa dams. Comptes Rendus de l'Acadamie Bulgare des Science,1991,44:45-58.
    窦硕增,杨纪明.渤海南部半滑舌鳎(Cynolossus semilaevis Gunther)的食性及摄食的季节性变化.生态学报,1992,12(4):368-376.
    倪海儿,龚方祥,郑忠明等.东海宽体舌鳎年龄与生长的研究.浙江水产学院学报,1995,14(4):255-259.
    倪海儿,刘亮,龚方祥等.短吻舌鳎个体生殖力和雌雄个体性状差异的研究.浙江水产学院学报,1989,8(1):9-13.
    万瑞景,姜言伟,庄志猛.半滑舌鳎早期形态及发育特征.动物学报,2004,50(1):91-102.
    王资生,黄金田,彭斌.半滑舌鳎的生存临界盐度与适宜生长盐度.现代渔业信息,2003,18(2):18-19.
    郑忠明,倪海儿.东海半滑舌鳎的生长与形态参数研究.宁波大学学报(理工版),2000,13(2):21-24.
    郑忠明,倪海儿.几种舌鳎的形态和生长特性的比较.海洋科学,2002,26(12):61-64.
    [I]Brett J R, Groves T D D.Physiological energetics. In:Hoar, W.S., et al. (Ed.), Fish Physiology, vol.8. Academic Press, New York,1979,279-352
    [2]Corey P D, Leith D A, English M J. A growth model for coho salmon including effects of varying ration allotments and temperature. Aquaculture,1983,30:125-143
    [3]Russell N R, Fish J D, Wootton R J. Feeding and growth of juvenile sea bass:the effect of ration and temperature on growth rate and efficiency. Journal of Fish Biology,1996,49: 206-220
    [4]Ruyet J P, Mahe K, Bayon N L, Delliou H L. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture,2004,237:269-280
    [5]孙耀,张波,郭学武,等.温度对真鲷(Pagrosomus major)能量收支的影响.海洋水产研究,1999,20(2):54-59
    [6]孙耀,张波,郭学武,等.温度对黑鲷(Sparus macrocephalus)能量收支的影响.生态学报,2001,21(2):186-190
    [7]丁爱侠.半滑舌鳎人工育苗技术.齐鲁渔业,2004,21(12):37
    [8]柳学周,徐永江,马爱军,等.温度、盐度、光照对半滑舌鳎胚胎发育的影响及孵化条件调控技术的研究.海洋水产研究,2004,25(6):1-6
    [9]柳学周,庄志猛,马爱军,等.半滑舌鳎繁殖生物学及繁育技术研究.海洋水产研究,2005,26(3):15-24
    [10]Du W, Meng Z J, Xue Z Y, Jiang Y W. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. Journal of Fishery Sciences of China,2004, 11(1):48-52
    [11]Zhuang Z M, Wu D, Zhang S C, Pang Q X, Wang C L, Wan R J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther,1873. Journal of Applied Ichthyology.2006,22 (5):437-440
    [12]Ma A, Wang X, Zhuang Z, Liu X. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Guther. Oceanologia et Limnologia Sinica, 2007,38 (3):240-245
    [13]Liao X, Shao C W, Tian Y S, Chen S L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Molecular Ecology Notes,2007,7 (6):1147-1149
    [14]Liu Y G, Sun X Q, Gao H, Liu L X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Molecular Ecology Notes,2007,7 (6):1242-1244
    [15]Liu Y G, Bao B L, Liu L X, Wang L, Lin H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Molecular Ecology Resources,2008,8(1):202-204
    [16]王兴强,顾夕章,阎斌伦,等.半滑舌鳎生物学及其养殖生态研究.渔业经济研究,2006,(4):15-17
    [17]Carfoot T H. Animal Energetics. New York Academic Press,1987:407-515
    [18]崔奕波.鱼类生物能量学的理论与方法.水生生物学报,1989,13(4):369-383
    [19]Shimeno S, Shikata T, Effects of acclimation temperature and feeding rate on carbohydrate-metabolizing enzyme activity and lipid content of common carp. Nippon Suisan Gakkaishi,1993,59:661-666
    [20]Parpoura A C. Nutritional requirements of Puntazzo puntazzo:influence of rearing conditions (diet composition and temperature) on growth and body composition. PhD thesis, Department of Biology, University of Athens,1998:350
    [21]邱炜韬.温度对倒刺鲅幼鱼能量收支的影响.暨南大学,2004
    [22]林祥日.几种生态因子影响漠斑牙鲆(Paralichthys lethostigmal)稚幼鱼生长率、生化组成和能值的研究.厦门:厦门大学,2007
    [23]Hasan M R, Maclntoch D J. Effect of environmental temperature and feeding rate on the growth, food utilization and body composition of common carp(Cyprinus carpio L.) fry. In: Kaushik, S.W., Luquet, P.Fish Nutrition in Practice. Les Colloques (Paris),1991,61: 767-778
    [24]李大鹏.环境因子对史氏鲟生长的影响及其调控机制的研究.武汉:华中农业大学,2003
    [25]李大鹏,庄平,严安生,等.施氏鲟幼鱼摄食和生长的最适水温.中国水产科学,2005,12(3):294-299
    [26]Sun L H, Chen H R, Huang L M. Effect of temperature on growth and energy budget of juvenile cobia(Rachycentron canadum). Aquaculture,2006,261:872-878
    [27]谢小军,孙儒泳.南方鲇的排粪量及消化率同日粮水平、体重和温度的关系.海洋与湖沼,1993,24(6):627-632
    [28]王瑁,丘书院.温度、体重和摄食水平对花尾胡椒鲷幼鱼粪便比能值及吸收率的影响.海洋学报,2002,24(3):142-146
    [29]Beamish F W H. Ration size and degistion in large bass, Micropterus salmoides Lacepede. Can J Zool,1972,50:153-164
    [30]任晓伟.环境因子和营养水平对半滑舌鳎消化酶活性的影响.青岛:中国海洋大学,2008
    [31]Cui Y, Wootton R J. Parrern of energy allocation in the minnow Phoxinus phoxinus (L.) (Pisces:Cyprinidae). Funct Ecol,1988,2:57-62
    [32]Xie X J, Sun R Y. The faecal production and degestibility of the Southern catfish(Silurus meridionalis Chen), in relation to ration level, body weight and temperature. Oceanol Limnol Sin,1993,24(6):627-632
    [33]崔奕波,陈少莲,王少梅.温度对草鱼能量收支的影响.海洋与湖沼,1995,26(2):169-174
    [34]孙耀,郑冰,张波,等.温度对黑鮶(Sebastodes fuscescens)能量收支的影响.海洋学报,2003,25(2):196-201
    [35]线薇薇,朱鑫华.摄食水平对梭鱼的生长和能量收支的影响.海洋与湖沼,2001,6:33-41
    [36]Cui Y, Liu J. Comparison of energy budget among six teleosts Ⅲ. Growth rate and energy budget. Comp Biochem Physiol,1990,97A:381
    [37]唐启升,孙耀,张波.7种海洋鱼类的生物能量学模式.水产学报,2003,27(5):443-449
    Azevedo, P.A., Cho, C.Y., Leeson, S., Bureau, D.P. Effects of feeding level and water temperature on growth, nutrient and energy utilization and waste outputs of rainbow trout (Oncorhynchus mykiss). Aquat. Living Resour.1998,11,227-238
    Baum, D., Laughton, R., Armstrong, J.D., Metcalfe, N.B. The effect of temperature on growth and early maturation in a wild population of Atlantic salmon parr. J. Fish Biol.2005,67,1370-1 380
    Brett, J.R., Groves, T.D.D. Physiological energetics, in:Hoar, W.S., Randall, D.J. (Eds.), Fish Physiology. Academic Press, New York,1979, pp.279-352
    Carfoot, T. H.,. Animal Energetics, Academic Press, New York, pp.407-515.
    Corey, P.D., Leith, D.A., English, M.J.1983. A growth model for coho salmon including effects of varying ration allotments and temperature. Aquaculture,1987,30,125-143
    Cox, D.K., Coutant, C.C. Growth dynamics of juvenile striped bass as functions of temperature and ration. Trans. Am. Fish. Soc.1981,110,226-238
    Cui, Y., Chen, S., Wang, S. Effect of ration size on the growth and energy budget of the grass carp, Ctenopharyngodon idella Val. Aquaculture 123,95-107
    Cui, Y., Chen, S., Wang, S.,1995. Effect of temperature on the energy budget of the grass carp, Ctenopharyngodon idella Val. Oceanol. Limnol. Sin.1994,26 (2),169-174 (in Chinese, with English abstract)
    Cui, Y., Liu, X., Wang, S., Chen, S. Growth and energy budget in young grass carp, Ctenopharyngodon idella Val., fed plant and animal diets. J. Fish Biol.1992,41 (2),231-238
    Cui, Y., Wootton, R.J. Bioenergetics of growth of a cyprinid, Phoxinus Phoxinus (L.):the effect of ration, temperature and body size on food consumption, fecal production and nitrogenous excretion. J. Fish Biol.1988a,33,431-443
    Cui, Y., Wootton, R.J. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus (L.):the effect of ration and temperature on growth rate and efficiency. J. Fish Biol.1988b,33,763-773
    Cui, Y., Wootton, R.J. Pattern of energy allocation in the minnow, Phoxinus phoxinus (L.) (Pisces: Cyprinidae). Func. Ecol.1988c,2 (1),57-62.
    Cui, Y.B. Bioenergetics of fishes:theory and methods. Acta Hydrobiologica Sinica,1989,13(4): 369-383.
    Dou S. Food habits and seasonal variation of stomach contents of tongue sole Cynoglossus semilaevis (Gunther) in the Bohai Sea. Chin. J. Oceanol. Limnol.1993,11 (1),89-96
    Dou S. Food utilization of adult flatfish co-occurring in the Bohai Sea of China. Neth. J. Sea Res. 1995b,34 (1-3),183-193
    Dou S. Life history cycles of flatfish species in the Bohai Sea, China. Neth. J. Sea Res.1995a,34 (1-3),195-210
    Du W., Meng Z.J., Xue Z.Y., Jiang Y.W., Zhuang Z.M., Wan R.J. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. J. Fish. Sci. Chin. 2004,11 (1),48-52 (in Chinese, with English abstract)
    Elliott, J. M. Energy losses in the waste products of brown trout (Salmo trutta L.). J. Anim. Ecol. 1976,45,561-580
    Han, D., Xie, S., Lei, W., Zhu, X., Yang, Y. Effect of ration on the growth and energy budget of Chinese longsnout catfish, Leiocassis longirostris Gunther. Aqua. Res.2004,35 (9),866-873
    Hasan, M.R., Macintosh, D.J. Effect of environmental temperature and feeding rate on the growth, food utilization and body composition of common carp(Cyprinus carpio L.) fry, in:Kaushik, S.J., Luquet, P. (Eds), Fish Nutrition in Practice. Les Colloques, Paris,1991, pp.767-778
    Hung, S.S.O., Conte, F.S., Hallen, E.F. Effects of feeding rates on growth, body composition and nutrient metabolism in striped bass (Morone saxatilis) fingerlings. Aquaculture,1993,112 (4), 349-361
    Jiang, Y.W., Wan, R.J. Tongue sole (Cynoglossus semilaevis) culture techniques, in:Lei, J.L. (Ed.), Marine Fish Culture Theory and Techniques. China Agricultural Press, Beijing,2005, pp. 663-665
    Jobling, M. Bioenergetics:feed intake and energy partitioning, in:Rankin, J.C., Jensen, F.B. (Eds), Fish Ecophysiology. Chapman & Hall, London,1993, pp.1-44
    Li, M., Lovell, R.T. Growth, feed efficiency, and body composition of second- and third-year channel catfish fed various concentrations of dietary protein to satiety in production ponds. Aquaculture,1992,103,153-163
    Liao, X., Shao, C.W., Tian, Y.S., Chen, S.L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Mol. Eco. Notes,2007,7 (6),1147-1149
    Liu X.Z., Zhuang Z.M., Ma A.J., Chen S.Q., Sun Z.Z., Liang Y., Xu Y.J. Reproductive biology and breeding technology of Cynoglossus semilaevis Guther. Mar. Fish. Res.2005,26 (5), 7-14 (in Chinese, with English abstract)
    Liu, Y.G., Bao, B.L., Liu, L.X., Wang, L., Lin, H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Mol. Eco. Resources,2008,8 (1),202-204
    Liu, Y.G., Sun, X.Q., Gao, H., Liu, L.X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Mol. Eco. Notes,2007,7 (6),1242-1244
    Ma A.J., Liu X.Z., Xu Y.J., Liang Y., Zhuang Z.M., Zhai J.M., Li B. Study on feeding behavior and growth of tongue sole Cynoglossus semilaevis in early development stage. Oceanol. Limnol. Sin.2005,36 (2),130-138 (in Chinese, with English abstract)
    Ma A.J., Wang X.A., Zhuang Z.M., Liu X.Z. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Guther. Oceanol. Limnol. Sin.2007,38 (3), 240-245 (in Chinese, with English abstract)
    Malloy, K.D., Targett, T.E. Effect of ration limitation and low temperature on growth, biochemical condition, and survival of juvenile summer flounder from two Atlantic coat nurseries. Trans. Am. Fish. Soc.1994,123,182-193
    Masuda, H., Amaoka, K., Araga, C., Uyeno, T., Yoshino, T. The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, Japan,1984
    Meyer-Burgdorff, K.H., Osman, M.F., Giinther, K.D. Energy metabolism in Oreochromis niloticus. Aquaculture,1989,79,283-291
    Nicieza, A.G., Reiriz, L., Brana, F. Variation in digestive performance between geographically disjunct populations of Atlantic salmon:countergradient in passage time and digestion rate. Oecologia,1994,99,243-251
    Niimi, A.J., Beamish, F.W.H. Bioenergetics and growth of largemouth bass (Micropterus salmoides) in relation to body weight and temperature. Can. J. Zoo.1974,52,447-456
    Niu, H.X., Chang, J., Ma, S., Wang, L. The Biology and Cultural Ecology of Cynoglossus semilaevis Gunther. Fish. Sci.2007,26 (7),425-426 (in Chinese)
    Parpoura, A.C. Nutritional requirements of Puntazzo puntazzo:influence of rearing conditions (diet composition and temperature) on growth and body composition. PhD thesis, Department of Biology, University of Athens,1998, pp.350
    Paul, A.J., Paul, J.M., Smith, R.L. Energy and ration requirements of flathead sole (Hippoglossoides elassodon Jordan and Gilbert,1880) based on energy consumption and growth. ICES J. Mar. Sci.1992,49,413-416
    Paul, A.J., Paul, J.M., Smith, R.L. Energy and ration requirements of juvenile Pacific halibut (Hippoglossus stenolepis) based on energy consumption and growth rates. J. Fish Biol.1994, 44,1023-1031
    Richter, H., Francis, G, Becker, K. A reassessment of the maintenance ration of red tilapia. Aqua. Int.2002,10,1-9
    Russell, N.R., Fish, J.D., Wootton, R.J. Feeding and growth of juvenile sea bass:the effect of ration and temperature on growth rate and efficiency. J. Fish Biol.1996,49,206-220
    Ruyet, J.P.L., Mahe, K., Bayon, N.L., Delliou, H.L. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture,2004,237,269-280
    Shimeno, S., Shikata, T. Effects of acclimation temperature and feeding rate on carbohydrate-metabolizing enzyme activity and lipid content of common carp. Nip. Sui. Gak. 1993,59 (4),661-666 (In Japanese with English abstract)
    Sogard, S.M., Spencer, M.L. Energy allocation in juvenile sablefish:effects of temperature, ration and body size. J. Fish Biol.2004,64 (3),726-738
    Staples, D.J., Nomura, M. Influence of body size and food ration on the energy budget of rainbow trout Salmo gairdneri Richardson. J. Fish Biol.1976,9,29-43
    Storebakken, T., Hung, S.S.O., Calvert, C.C., Plisetskaya, E.M. Nutrient partitioning in rainbow trout at different feeding rates. Aquaculture,1991,96,191-203
    Sun, L., Chen, H., Huang, L. Effect of temperature on growth and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture,2006a,261,872-878
    Sun, L., Chen, H., Huang, L. Growth, faecal production, nitrogenous excretion and energy budget of juvenile yellow grouper(Epinephelus awoara) relative to ration level. Aquaculture,2007, 264,228-235
    Sun, L., Chen, H., Huang, L., Wang, Z., Yan, Y. Growth and energy budget of juvenile cobia (Rachycentron canadum) relative to ration. Aquaculture,2006b,257 (1-4),214-220
    Sun, Y., Zhang, B., Guo, X., Wang J., Tang, Q. Effects of temperature on energy budget of Pagrosomus major. Mar. Fish. Res.1999,20 (2),54-59 (in Chinese, with English abstract)
    Sun, Y., Zhang, B., Tang, Q. Effects of temperature on energy budget of Sparus macrocephalus. Acta Ecol. Sin.2001,21 (2),186-190 (in Chinese, with English abstract)
    Sun, Y., Zheng, B., Zhang, B., Tang, Q. Effect of temperature on energy budget of a seafish Spexies, Sebastodes fuscescens. Acta Oceanol. Sin.2003,25,196-201 (in Chinese)
    Tang, Q., Sun, Y., Zhang, B. Bioenergetics models for seven species of marine fish. J. Fish. Chin. 2003,27 (5),443-449 (in Chinese, with English abstract)
    Tian, X., Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture,2003,224,169-179
    Van Ham, E.H., Berntssen M.H.G., Imsland A.K., Parpoura A.C., Wendelaar Bonga S.E., Stefansson S.O. The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture, 2003,217,547-558
    Wang, F., Dong, S., Huang, G., Wu, L., Tian, X., Ma, S. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,228,351-360
    Wang, X., Gu, X., Yan, B., Cao, M. Studies on biology and culture ecology of Cynoglossus semilaevis. Fish. Econ. Res.2006,4,15-17 (in Chinese, with English abstract)
    Williams, S.F., Caldwell, R.S. Growth, food conversion and survival of 0-group English sole (Parophrys vetulus Girard) at five temperatures and five rations. Aquaculture,1978,15, 129-139
    Wurtsbaugh, W.A., Davis, G.E. Effects of temperature and ration level on the growth and food conversion efficiency of Salmo gairdneri, Richardson. J. Fish Biol.1977,11,87-98
    Xie, S., Cui, Y., Yang, Y., Liu, J. Energy budget of Nile tilapia (Oreochromis niloticus) in relation to ration size. Aquaculture,1997,154,57-68
    Xie, X.J. and Sun, R. Pattern of energy allocation in the southern catfish (Silurus meridioalis Chen). J. Fish Biol.1993,42:197-207
    Xie, X.J., Sun, R. The bioenergetics of the southern catfish(Silurus meridionalis Chen):growth rate as a function of ration level, body weight, and temperature. J. Fish Biol.1992,40 (5), 719-730
    Yang, Y.O., Cui, Y.B., Xiong, B.X., Yang, Y.X., Xie, S.Q. Comparative studies on nitrogen budget and energy budget of Jian Carp (Cyprinus carpio var. jian) and Gibel carp (Carassius auratus gibelio) fed diets with different qualities. Acta Hydrobiol. Sin.2003,27 (6),572-579 (in Chinese, with English abstract)
    Zanuy, S., Carrillo, M. Annual cycles of growth, feeding rate, gross conversion efficiency and hematocrit levels of sea bass(Dicentrarchus labrax) adapted to two different osmotic media. Aquaculture,1985,44,11-25
    Zhuang, Z.M., Wu, D., Zhang, S.C., Pang, Q.X., Wang, C.L., Wan, R.J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther,1873. J. Appl. Ichthyol.2006, 22 (5),437-440
    Zoccarato, I., Benatti, G., Bianchini, M.L., Boccignone, M., Conti, A., Napolitano, R., Palmegiano, G.B. Differences in performance, flesh composition and water output quality in relation to density and feeding levels in rainbow trout, Oncorhynchus mykiss (Walbaum), farming. Aquac.Fish. Manage.1994,25,639-647
    Ali, M., Nicieza, A., Wootton, R.J. Compensatory growth in fishes:a response to growth depression. Fish Biol.2003,4:147-190
    Beamish, F.W.H. Infuence of starvation on standard and routine oxygen consumption. Tran. Amer. Fish. Soc.1964,50:153-164
    Blaxter, J.H.S., Ehrlich, K.F. Change in behavior during starvation of herring and plaice larvae. In: Blaxter, J.H.S. (ed), The Early Life History of Fish. Springer-Verlag Berlin Heidelberg,1974, pp:575-588
    Boujard, T., Burel, C., Medale, F., Haylor, G., Moisan, A. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. Aquat. Living Resour.2000,13:129-137
    Broekhuizen, N., Gurney, W.S.C., Jones, A., Bryant, A.D. Modelling compensatory growth. Funct. Eco.1994,8:770-782
    Cai, C., Jin, L. Determination of ammonia nitrogen in seawater by hypobomite oxidation method. Liaoning Chem. Indus.2009,38(5):350-352 (in Chinese, with English abstract)
    Calow, P. Biological Machines, Edward Arnold, London,1976.
    Carfoot, T. H. Animal Energetics, Academic Press, New York,1987, pp:407-515
    Dou, S. Food habits and seasonal variation of stomach contents of tongue sole Cynoglossus semilaevis (Giinther) in the Bohai Sea. Chin. J. Oceanol. Limnol.1993,11(1):89-96
    Dou, S. Life history cycles of flatfish species in the Bohai Sea, China. Neth. J. Sea Res.1995a,34 (1-3):195-210
    Dou, S. Food utilization of adult flatfish co-occurring in the Bohai Sea of China. Neth. J. Sea Res. 1995b,34 (1-3):183-193
    Du Preez, H.H. Laboratory studies on the oxygen consumption of the marine teleost, Lichia amia (Linnaeus,1758). Comp Biochem Physiol.1987,88A:523-532
    Du, W., Meng, Z.J., Xue, Z.Y., Jiang, Y.W., Zhuang, Z.M., Wan, R.J. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. J. Fish. Sci. Chin. 2004,11(1):48-52 (in Chinese, with English abstract)
    Foss, A., Imsland, A.K. Compensatory growth in the spotted wolffish Anarhichas minor (Olafsen) after a period of limited oxygen supply. Aquac. Res.2002,33:1097-1101
    Gaylord, T.G., GatlinⅢ, D.M. Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture,2001,194:337-348
    Gotthard, K. Growth strategies of ectothermic animals in temperate environments, in:Atkinson, D., Thorndyke, M., (Eds), Environment and animal development:genes, life histories and plasticity. BIOS, Oxford, UK,2001, pp:287-303
    Hayward, R.S., Noltie, D.B., Wang, N. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc.1997,126:316-322
    Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norberg, B., Roth, B., Jenssen, M.D., Nortvedt, R., Imsland, A.K. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture,2006, 261:109-117
    Hubbell, S.P. Of sowbugs and systems:the ecological bioenergetics of a terrestrial isopod, in: Patten, B.C. (Ed.), Systems Analysis and Simulation in Ecology. Academic Press, London, 1971, pp:269-323
    Jiang, Z., Jia, Z., Han, Y. The compensatory growth and its mechanismin of red drum, Sciaenops ocellatus, after food deprivation. J. Fish. Chin.2002,26 (1):67-72(in Chinese, with English abstract)
    Jiang, Y.W., Wan, R.J. Tongue sole (Cynoglossus semilaevis) culture techniques, in:Lei, J.L. (Ed.), Marine Fish Culture Theory and Techniques. China Agricultural Press, Beijing,2005, pp: 663-665
    Jobling, M. Elects of starvation on proximate chemical composition and energy utilization of plaice, Pleuronectes platessa L. J. Fish Biol.1980,17:325-334
    Jobling, M., Johansen, S.J.S. The lipostat, hyperphagia and catch-up growth. Aqua. Res.1999,30: 473-478
    Jobling, M. Fish Bioenergetics. Chapman and Hall, London,1994
    Johansen, S.J.S., Ekli, M., Stangnes, B., Jobling, M. Weight gain and lipid deposition in Atlantic salmon, Salmo salar, during compensatory growth:evidence for lipostatic regulation? Aqua. Res.2001,32:963-974
    Johnston, I.A. Quantitative analysis of muscle breakdown during starvation in the marine flat fish Pleuronectes platessa. Cell Tiss. Res.1981,214:369-386
    Liao, X., Shao, C.W., Tian, Y.S., Chen, S.L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Mol. Eco. Notes,2007,7 (6):1147-1149
    Liu, X.Z., Zhuang, Z.M., Ma, A.J., Chen, S.Q., Sun, Z.Z., Liang, Y., Xu, Y.J. Reproductive biology and breeding technology of Cynoglossus semilaevis Guther. Mar. Fish. Res.2005,26 (5):7-14 (in Chinese, with English abstract)
    Liu, Y.G, Bao, B.L., Liu, L.X., Wang, L., Lin, H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole(Cynoglossus semilaevis) and a test of cross-species amplification. Mol. Eco. Resources,2008,8 (1):202-204
    Liu, Y.G, Sun, X.Q., Gao, H., Liu, L.X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Mol. Eco. Notes,2007,7 (6):1242-1244
    Ma, A.J., Liu, X.Z., Xu, Y.J., Liang, Y., Zhuang, Z.M., Zhai, J.M., Li, B. Study on feeding behavior and growth of tongue sole Cynoglossus semilaevis in early development stage. Oceanol. Limnol. Sin.2005,36 (2):130-138 (in Chinese, with English abstract)
    Ma, A.J., Wang, X.A., Zhuang, Z.M., Liu, X.Z. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Giither. Oceanol. Limnol. Sin.2007,38 (3): 240-245 (in Chinese, with English abstract)
    Maclean, A., Metcalfe, N.B. Social status, access to food, and compensatory growth in juvenile Atlantic salmon. J. Fish Biol.2001,58:1331-1346
    Masuda, H., Amaoka, K., Araga, C., Uyeno, T., Yoshino, T. The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, Japan,1984, pp:1437.
    Miglavs, I., Jobling, M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinm alpinus, with particular respect to compensatory growth. J. Fish Biol.1989,34:947-957
    Montserrat N., Gomez-Requeni P., Bellini G., Capilla E., Perez-Sanchez J., Navarro I., Gutierrez J. Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of gilthead sea bream (Sparus aurata). Aquaculture 2007a:188-198
    Montserrat N., Gabillard J.C., Capilla E., Navarro M.I., Gutierrez J. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol.2007,150:462-472
    Nikki, J., Pirhonen, J., Jobling, M., Karjalainen J.,. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture,2004,235:285-296
    Oh, S.Y., Noh,.C.H., Kang, R.S., Kim, C.K., Cho, S.H., Jo, J.Y. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation. Fish. Sci.2008,74:846-852
    Picha M.E., Silverstein J.T., Borski R.J. Discordant regulation of hepatic IGF-I mRNA and circulating IGF-I during compensatory growth in a teleost, the hybrid striped bass (Morone chrysops×Morone saxatilis). Gen. Comp. Endocrinol.2006,147:196-205
    Paul, A.J., Paul, J.M., Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J. Fish Biol.1995,46:442-448
    Pirhonen J., Forsman L. Effect of prolonged feed restriction on size variation, feed consumption, body composition, growth and smolting of brown trout, Salmo trutta. Aquaculture,1998,162: 203-217
    Qian, X., Cui, Y., Xiong, B., Yang, Y. Compensatory growth, feed utilization and activity in gibe] carp, following feed deprivation. J. Fish Biol.2000,56:228-232
    Robert C.R., Millie B.W., Brien J.J. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture, 2006,254:506-516
    Russell, N.R., Wootton, R.J. Appetite and growth compensation in the European minnow, Phoxinus phoxinus (Cyprinidae), following short periods of food restriction. Environ. Biol. Fish.1992,34:277-285
    Saether, B-S., Jobling, M. The effects of ration level on feed intake and growth, and compensatory growth after restricted feeding, in turbot Scophthalmus maximus L.. Aqua. Res.1999,30: 647-653
    Schwarz, F.J., Plank, J., Kirchgessner, M. Effects of protein or energy restriction with subsequent realimentation on performance parameters of carp (Cyprinus carpio L.). Aquaculture,1985, 48:23-33
    Tian, X., Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture,2003,224:169-179
    Vidal, E.A.G., DiMarco, P., Lee, P. Effects of starvation and recovery on the survival, growth and RNA/DNA ratio in loliginid squid paralarvae. Aquaculture,2006,260:94-105
    Wang, A., Wang, W., Wang, Y., Shang, Y., Shang, L., Liu, Y., Sun, R. Effect of dietary vitamin C supplementation on the oxygen consumption, ammonia-N excretion and Na+/K+ATPase of Macrobrachium nipponense exposed to ambient ammonia. Aquaculture,2003,220:833-841
    Wang, Y., Cui, Y., Yang, Y., Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. niloticus, reared in seawater. Aquaculture,2000,189:101-108
    Weatherley, A.H., Gill, H.S. Recovery growth following periods of restricted rations and starvation in rainbow trout Salmo gairdneri Richardson. J. Fish Biol.1981,18:195-208
    Wieser, W., Krumschnabel, G., Ojwang-Okwor, J.P. The energetics of starvation and growth after refeeding in juveniles of three cyprinid species. Env. Biol. Fish.1992,33:63-71
    Wu, L., Dong, S. Effects of protein restriction with subsequent re-alimentation on growth performance of juvenile Chinese shrimp(Fenneropenaeus chinensis). Aquaculture,2002, 210:343-358
    Xie, S., Zhu, X., Cui, Y., Wootton, R.J., Lei, W., Yang, Y. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol.2001,58:999-1009
    Xie, Z.G., Niu C.J. Effects of partial and complete food deprivation on compensatory growth of juvenile soft-shelled turtle(Pelodiscus sinensis):temporal patterns in growth rate and changes in body composition. Acta Hydrobiol. Sin.2007,31(2):214-19 (in Chinese, with English abstract)
    Yang, H., Zhou, Y., Zhang, T., Yuan, X., Li, X., Liu, Y., Zhang, F. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol. 2006,330:505-510
    Zhang, B., Sun, Y., Tang, Q. The effects of starvation growth and biochemical composition in Pagrosomus major. J. Fish. Chin.2000,24(3):206-210 (in Chinese, with English abstract)
    Zhu, X., Xie, S., Lei, W., Cui, Y., Yang, Y., Wootton, R.J. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture,2005,248:307-314
    Zhuang, Z.M., Wu, D., Zhang, S.C., Pang, Q.X., Wang, C.L., Wan, R.J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther,1873. J. Appl. Ichthyol.2006, 22 (5):437-440
    Ali, M., Nicieza, A., Wootton, R.J. Compensatory growth in fishes:a response to growth depression. Fish Biol.,2003,4:147-190.
    Barclay, M.C., Dall, W., Smith, D.M. Changes in lipid and protein during starvation and the molting cycle in the tiger prawn, Penaeus esculentus (Haswell). J. Exp. Mar. Biol. Ecol., 1983,68:229-244.
    Carfoot T H. Animal Energetics. New York Academic Press,1987:407-515.
    Cui, Y.B. Bioenergetics of fishes:theory and methods. Acta Hydrobiologica Sinica,1989,13(4): 369-383.
    Du W, Meng Z J, Xue Z Y, Jiang Y W. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. Journal of Fishery Sciences of China,2004,11 (1): 48-52.
    Fang, J., Tian, X., Dong, S. The influence of water temperature and ration on the growth, body composition and energy budget of tongue sole (Cynoglossus semilaevis). Aquaculture,2010, 255:106-114.
    Gotthard, K. Growth strategies of ectothermic animals in temperate environments, in:Atkinson, D., Thorndyke, M., (Eds), Environment and animal development:genes, life histories and plasticity. BIOS, Oxford, UK,2001, pp:287-303.
    Hayward, R.S., Noltie, D.B., Wang, N. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc.,1997,126:316-322.
    Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norberg, B., Roth, B., Jenssen, M.D., Nortvedt, R., Imsland, A.K. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture,2006, 261:109-117.
    Ince, B.W., Thorpe, A. The effects of starvation and force-feeding on the metabolism of the northern pike, Esox lucius L. J. Fish Biol.,1976,8:79-88.
    Jobling, M., Koskela, J. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. J. Fish Biol.,1996,49: 658-667.
    Liao X, Shao C W, Tian Y S, Chen S L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Molecular Ecology Notes,2007,7 (6):1147-1149.
    Liu Y G, Bao B L, Liu L X, Wang L, Lin H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Molecular Ecology Resources,2008,8(1):202-204.
    Liu Y G, Sun X Q, Gao H, Liu L X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole(Cynoglossus semilaevis) and their application in other related fish species. Molecular Ecology Notes,2007,7 (6):1242-1244.
    Ma A, Wang X, Zhuang Z, Liu X. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Giither. Oceanologia et Limnologia Sinica,2007,38 (3): 240-245.
    Miglavs, I., Jobling, M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinm alpinus, with particular respect to compensatory growth. J. Fish Biol.,1989,34:947-957.
    Mommsen, T.P., French, C.J., Hochachka, P.W. Sites and patterns protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool.,1980,58:1785-1799.
    Nikki, J., Pirhonen, J., Jobling, M., Karjalainen J. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture,2004,235:285-296.
    Paul, A.J., Paul, J.M., Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. Journal of Fish Biology,1995,46:442-448.
    Paul, A.J., Paul, J.M., Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J. Fish Biol.,1995,46:442-448.
    Qian, X., Cui, Y., Xiong, B., Yang, Y. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. J. Fish Biol.,2000,56:228-232.
    Quinton, J.C., Blake, R.W. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J. Fish Biol.,1990,37:33-41.
    Reigh R.C., Williams, M.B., Jacob, B.J. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture,2006,254,506-516.
    Satoh, S., Takeuchi, T., Watanabe, T. Effect of starvation and environmental temperature on proximate and fatty acid composition of Tilapia nilotica. Bull. Jan. Soc. Sci. Fish,1984,50: 79-84.
    Soundarapandian, P., Kannupandi, T., Samuel, M.J. Effect of starvation on biochemical composition freshwater prawn juveniles of Macrobrachium malcolmsonii (H. Milne Edwards). Indian J. Exp. Biol.,1997,35:502-505.
    Tian, X., Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture,2003,224:169-179.
    Wang Y. Compensatory growth and related bioenergetic mechanism in hybridtidapia (Oreochomis mossambicus♀×O. niloticus♂). Post-doctor Research Paper. Wuhan:Institute of Hydrobiology, Chinese Academy of Science,1999.
    Wang, Y., Cui, Y., Yang, Y., Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. niloticus, reared in seawater. Aquaculture,2000,189:101-108.
    Webster, C.D., Tidwell, J.H., Goodgame, L.S., Yancey, D.H. Effects of fasting on fatty acid composition of muscle, liver and abdominal fat in channel catfish(Ictalurus punctatus). Journal of the World Aquaculture Society,1994,25:126-134.
    Wilson, P.N., Obsourn, D.F. Compensatory growth after undernutrition in mammals and birds. Biol. Rev.,1960,35:324-363.
    Xie, S., Zhu, X., Cui, Y., Wootton, R.J., Lei, W., Yang, Y. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol.,2001,58:999-1009.
    Zhu, X., Xie, S., Lei W., Cui, Y., Yang, Y., Wootton, R.J. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris, following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture,2005,248:307-314.
    Zhuang Z M, Wu D, Zhang S C, Pang Q X, Wang C L, Wan R J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther,1873. Journal of Applied Ichthyology.2006,22 (5):437-440.
    柴春艳,金丽莉.次溴酸盐氧化法测定海水中氨氮的研究.辽宁化工,2009,38(5):350-352.
    区又君,刘泽伟.千年笛鲷幼鱼的饥饿和补偿生长,水产学报,2007,31(3):323-328.
    吴蒙蒙,李吉方,高海涛.饥饿和补偿生长对红鲫幼鱼生长和体组分的影响.水生态学杂志,2009,2(5):80-84.
    Calow P. On the regulation nature of individual growth:some observations from freshwater snail. Zool.,1973, (170):415-428.
    Carfoot T H. Animal Energetics. New York Academic Press,1987:407-515.
    Cui, Y.B. Bioenergetics of fishes:theory and methods. Acta Hydrobiologica Sinica,1989,13(4): 369-383.
    Du W, Meng Z J, Xue Z Y, Jiang Y W. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. Journal of Fishery Sciences of China,2004,11 (1): 48-52.
    Hayward, R.S., Noltie, D.B., Wang, N. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc.,1997,126:316-322.
    Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norberg, B., Roth, B., Jenssen, M.D., Nortvedt, R., Imsland, A.K. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture,2006, 261:109-117.
    Ince, B.W., Thorpe, A. The effects of starvation and force-feeding on the metabolism of the northern pike, Esox lucius L. J. Fish Biol.,1976,8:79-88.
    Jiang Z., Jia Z., Han Y. The compensatory growth and its mechanismin of red drum, Sciaenops ocellatus, after food deprivation. J. Fish. Chin.,2002,26 (1):67-72(in Chinese, with English abstract).
    Kim M.K., Lovell R.T. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture,1995, (135): 285-293.
    Liao X, Shao C W, Tian Y S, Chen S L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Molecular Ecology Notes,2007,7 (6):1147-1149.
    Liu Y G, Bao B L, Liu L X, Wang L, Lin H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Molecular Ecology Resources,2008,8 (1):202-204.
    Liu Y G, Sun X Q, Gao H, Liu L X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Molecular Ecology Notes,2007,7 (6):1242-1244.
    Ma A, Wang X, Zhuang Z, Liu X. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Guther. Oceanologia et Limnologia Sinica,2007,38 (3): 240-245.
    Mommsen, T.P., French, C.J., Hochachka, P.W. Sites and patterns protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool.,1980,58:1785-1799.
    Nikki, J., Pirhonen, J., Jobling, M., Karjalainen J. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture,2004,235:285-296.
    Paul, A.J., Paul, J.M., Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J. Fish Biol.,1995,46:442-448.
    Qian, X., Cui, Y., Xiong, B., Yang, Y. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. J. Fish Biol.,2000,56:228-232.
    Reigh R.C., Williams, M.B., Jacob, B.J. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture,2006,254:506-516.
    Reigh, R.C., Williams, M.B., Jacob, B.J. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture,2006,254:506-516.
    Saether, B-S., Jobling, M. The effects of ration level on feed intake and growth, and compensatory growth after restricted feeding, in turbot Scophthalmus maximus L.. Aqua. Res.,1999,30: 647-653.
    Satoh, S., Takeuchi, T., Watanabe, T. Effect of starvation and environmental temperature on proximate and fatty acid composition of Tilapia nilotica. Bull. Jan. Soc. Sci. Fish,1984,50: 79-84.
    Tian, X., Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture,2003,224:169-179.
    Wang, Y., Cui, Y., Yang, Y., Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. niloticus, reared in seawater. Aquaculture,2000,189:101-108.
    Webster, C.D., Tidwell, J.H., Goodgame, L.S., Yancey, D.H. Effects of fasting on fatty acid composition of muscle, liver and abdominal fat in channel catfish (Ictalurus punctatus). Journal of the World Aquaculture Society,1994,25:126-134.
    Xie, S., Zhu, X., Cui, Y., Wootton, R.J., Lei, W., Yang, Y. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol.,2001,58:999-1009.
    Zhu, X., Xie, S., Lei W., Cui, Y., Yang, Y., Wootton, R.J. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture,2005,248:307-314.
    Zhuang Z M, Wu D, Zhang S C, Pang Q X, Wang C L, Wan R J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther,1873. Journal of Applied Ichthyology.2006,22 (5):437-440.
    柴春艳,金丽莉.次溴酸盐氧化法测定海水中氨氮的研究.辽宁化工,2009.38(5):350-352.
    丁爱侠.半滑舌鳎人工育苗技术.齐鲁渔业,2004,21(12):37.
    柳学周,徐永江,马爱军,等.温度、盐度、光照对半滑舌鳎胚胎发育的影响及孵化条件调控技术的研究.海洋水产研究,2004,25(6):1-6.
    柳学周,庄志猛,马爱军,等.半滑舌鳎繁殖生物学及繁育技术研究.海洋水产研究,2005,26(3):15-24.
    区又君,刘泽伟.千年笛鲷幼鱼的饥饿和补偿生长,水产学报,2007,31(3):323-328.
    王岩.海水养殖罗非鱼补偿生长的生物学能量学机制海洋与湖沼,2001,32(3):233-239.
    吴蒙蒙,李吉方,高海涛.饥饿和补偿生长对红鲫幼鱼生长和体组分的影响.水生态学杂志,2009,2(5):80-84.
    Ali, M., Nicieza, A., Wootton, R.J. Compensatory growth in fishes:a response to growth depression. Fish Biol.,2003,4:147-190.
    Carfoot T H. Animal Energetics. New York Academic Press,1987:407-515.
    Chmilevskij, D. A. Effect of low temperature on oogenesis in Oreochromis mossambicus.4. Exposure to low temperature of 106 day post-hatch fish. Voprosy Ikhtiologii,1996,36, 647-652.
    Cui, Y.B. Bioenergetics of fishes:theory and methods. Acta Hydrobiologica Sinica,1989,13(4): 369-383.
    Diana, J.S. The growth of largemouth bass, Micropterus salmoides (Lacepede), under constant and fluctuating temperatures. J. Fish Biol.,1984,24:165-172.
    Du W, Meng Z J, Xue Z Y, Jiang Y W. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. Journal of Fishery Sciences of China,2004,11 (1): 48-52.
    Gotthard, K. Growth strategies of ectothermic animals in temperate environments, in:Atkinson, D., Thorndyke, M., (Eds), Environment and animal development:genes, life histories and plasticity. BIOS, Oxford, UK,2001, pp:287-303.
    Hayward, R.S., Noltie, D.B., Wang, N. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc.,1997,126:316-322.
    Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norberg, B., Roth, B., Jenssen, M.D., Nortvedt, R., Imsland, A.K. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture,2006, 261:109-117.
    Jobling, M., Koskela, J. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. J. Fish Biol.,1996,49: 658-667.
    Liao X, Shao C W, Tian Y S, Chen S L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Molecular Ecology Notes,2007,7 (6):1147-1149.
    Liu Y G, Bao B L, Liu L X, Wang L, Lin H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole(Cynoglossus semilaevis) and a test of cross-species amplification. Molecular Ecology Resources,2008,8(1):202-204.
    Liu Y G, Sun X Q, Gao H, Liu L X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole(Cynoglossus semilaevis) and their application in other related fish species. Molecular Ecology Notes,2007,7 (6):1242-1244.
    Ma A, Wang X, Zhuang Z, Liu X. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Guther. Oceanologia et Limnologia Sinica,2007,38 (3): 240-245.
    Miglavs, I., Jobling, M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinm alpinus, with particular respect to compensatory growth. J. Fish Biol.,1989,34:947-957.
    Mortensen, A.& Damsgard, B. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus L.). Aquaculture,1993,114,261-272.
    Nicieza, A. G.& Metcalfe, N. B. Growth compensation in juvenile Atlantic salmon:responses to depressed temperature and food availability. Ecology,1997,78,2385-2400.
    Nikki, J., Pirhonen, J., Jobling, M., Karjalainen J. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture,2004,235:285-296.
    Oh, S.Y., Noh, C.H., Kang, R.S., Kim, C.K., Cho, S.H., Jo, J.Y. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation. Fish. Sci.,2008,74:846-852.
    Paul, A.J., Paul, J.M., Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J. Fish Biol.,1995,46:442-448.
    Purchase, C. F.& Brown, J. A. Stock-specific changes in growth rates, food conversion efficiencies, and energy allocation in response to temperature change in juvenile Atlantic cod. Journal of Fish Biology,2001,58,36-52.
    Qian, X., Cui, Y., Xiong, B., Yang, Y. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. J. Fish Biol.,2000,56:228-232.
    Quinton, J.C., Blake, R.W. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J. Fish Biol.,1990,37:33-41.
    Reigh R.C., Williams, M.B., Jacob, B.J. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture,2006,254,506-516.
    Tian, X., Dong, S., Wang, F., Wu, L. The growth of juvenile Chinese shrimp, Fenneropenaeus Chinensis Osbeck, at constant and diel fluctuating temperatures. J. Shel. Res.,2006,25(3): 1007-1011.
    Tian, X., Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture,2003,224:169-179.
    Wang, Y., Cui, Y., Yang, Y., Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. niloticus, reared in seawater. Aquaculture,2000,189:101-108.
    Weatherley, A. H.& Gill, H. S. Recovery growth following periods of restricted rations and starvation in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology,1981,18, 195-208.
    Wilson, P.N., Obsourn, D.F. Compensatory growth after undernutrition in mammals and birds. Biol. Rev.,1960,35:324-363.
    Xie, S., Zhu, X., Cui, Y., Wootton, R.J., Lei, W., Yang, Y. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol.,2001,58:999-1009.
    Zhu, X., Xie, S., Lei W., Cui, Y., Yang, Y., Wootton, R.J. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris, following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture,2005,248:307-314.
    Zhuang Z M, Wu D, Zhang S C, Pang Q X, Wang C L, Wan R J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Giinther,1873. Journal of Applied Ichthyology.2006,22 (5):437-440.
    李翠,王岩.异育银鲫经过低温下停食后的补偿生长.中国水产科学,2007,14(1),113-119.
    王丽华,黄国强,田思娟,张国政,韦柳枝,张秀梅.盐度对褐牙鲆幼鱼生长的影响及其在盐度胁迫后的补偿生长中国水产科学,2006,15(4):615-621.
    王晓杰,张秀梅,黄国强.低温胁迫对许氏平鲉补偿生长的影响.中国水产科学,2006,13(4),566-572.
    Ali, M., Nicieza, A., Wootton, R.J. Compensatory growth in fishes:a response to growth depression. Fish Biol.,2003,4:147-190.
    Carfoot T H. Animal Energetics. New York Academic Press,1987:407-515.
    Chmilevskij, D. A. Effect of low temperature on oogenesis in Oreochromis mossambicus.4. Exposure to low temperature of 106 day post-hatch fish. Voprosy Ikhtiologii,1996,36, 647-652.
    Cui, Y.B. Bioenergetics of fishes:theory and methods. Acta Hydrobiologica Sinica,1989,13(4): 369-383.
    Du W, Meng Z J, Xue Z Y, Jiang Y W. Embryonic development of Cynoglossus semilaevis and its relationship with incubation temperature. Journal of Fishery Sciences of China,2004,11 (1): 48-52.
    Gotthard, K. Growth strategies of ectothermic animals in temperate environments, in:Atkinson, D., Thorndyke, M., (Eds), Environment and animal development:genes, life histories and plasticity. BIOS, Oxford, UK,2001, pp:287-303.
    Hayward, R.S., Noltie, D.B., Wang, N. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc.,1997,126:316-322.
    Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norberg, B., Roth, B., Jenssen, M.D., Nortvedt, R., Imsland, A.K. Compensatory growth and fillet crude composition in juvenile Atlantic halibut:Effects of short term starvation periods and subsequent feeding. Aquaculture,2006, 261:109-117.
    Jobling, M., Koskela, J. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. J. Fish Biol.,1996,49: 658-667.
    Liao X, Shao C W, Tian Y S, Chen S L. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Molecular Ecology Notes,2007,7 (6):1147-1149.
    Liu Y G, Bao B L, Liu L X, Wang L, Lin H. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Molecular Ecology Resources,2008,8 (1):202-204.
    Liu Y G, Sun X Q, Gao H, Liu L X. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Molecular Ecology Notes,2007,7 (6):1242-1244.
    Ma A, Wang X, Zhuang Z, Liu X. Study on relationship of the special sense organ and feeding behaviour of Cynoglossus semilaevis Guther. Oceanologia et Limnologia Sinica,2007,38 (3): 240-245.
    Miglavs, I., Jobling, M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinm alpinus, with particular respect to compensatory growth. J. Fish Biol.,1989,34:947-957.
    Mortensen, A.& Damsgard, B. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus L.). Aquaculture,1993,114,261-272.
    Nicieza, A. G.& Metcalfe, N. B. Growth compensation in juvenile Atlantic salmon:responses to depressed temperature and food availability. Ecology,1997,78,2385-2400.
    Nikki, J., Pirhonen, J., Jobling, M., Karjalainen J. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture,2004,235:285-296.
    Oh, S.Y., Noh, C.H., Kang, R.S., Kim, C.K., Cho, S.H., Jo, J.Y. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation. Fish. Sci.,2008,74:846-852.
    Paul, A.J., Paul, J.M., Smith, R.L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J. Fish Biol.,1995,46:442-448.
    Purchase, C. F.& Brown, J. A. Stock-specific changes in growth rates, food conversion efficiencies, and energy allocation in response to temperature change in juvenile Atlantic cod. Journal of Fish Biology,2001,58,36-52.
    Qian, X., Cui, Y., Xiong, B., Yang, Y. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation. J. Fish Biol.,2000,56:228-232.
    Quinton, J.C., Blake, R.W. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J. Fish Biol.,1990,37:33-41.
    Reigh R.C., Williams, M.B., Jacob, B.J. Influence of repetitive periods of fasting and satiation feeding on growth and production characteristics of channel catfish, Ictalurus punctatus. Aquaculture,2006,254,506-516.
    Tian, X., Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture,2003,224:169-179.
    Wang, Y., Cui, Y., Yang, Y., Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicusxO. niloticus, reared in seawater. Aquaculture,2000,189:101-108.
    Weatherley, A. H.& Gill, H. S. Recovery growth following periods of restricted rations and starvation in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology,1981,18, 195-208.
    Wilson, P.N., Obsourn, D.F. Compensatory growth after undernutrition in mammals and birds. Biol. Rev.,1960,35:324-363.
    Xie, S., Zhu, X., Cui, Y., Wootton, R.J., Lei, W., Yang, Y. Compensatory growth in the gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol.,2001,58:999-1009.
    Zhu, X., Xie, S., Lei W., Cui, Y., Yang, Y., Wootton, R.J. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris, following feed deprivation:Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquaculture,2005,248:307-314.
    Zhuang Z M, Wu D, Zhang S C, Pang Q X, Wang C L, Wan R J. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther,1873. Journal of Applied Ichthyology.2006,22 (5):437-440.
    李翠,王岩.异育银鲫经过低温下停食后的补偿生长.中国水产科学,2007,14(1):113-119.
    王丽华,黄国强,田思娟,张国政,韦柳枝,张秀梅.盐度对褐牙鲆幼鱼生长的影响及其在盐度胁迫后的补偿生长中国水产科学,2006,15(4):615-621.
    王晓杰,张秀梅,黄国强.低温胁迫对许氏平鲉补偿生长的影响.中国水产科学,2006,13(4):566-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700