微波—热泵联合干燥硫酸铵特性及新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,为了有效解决火电、冶金等行业排放的大量低浓度SO2,大多数企业采用氨法脱硫工艺实现SO2的回收利用。氨法脱硫工艺中经离心脱水后的硫酸铵一般含水率较高,而国标(GB535-1995)中对硫酸铵的含水率具有严格要求,其中优等品的含水率≤0.2%,所以其后续的干燥工艺就很重要。由于现有硫酸铵干燥方式的能耗较高,本研究将微波和热泵技术应用于硫酸铵的干燥,深入研究硫酸铵的微波干燥特性,建立硫酸铵微波干燥的动力学模型,并研究不同干燥工艺能效比的变化规律,通过系统实验确定硫酸铵热泵-微波联合干燥的优化工艺条件,为实现硫酸铵微波干燥的产业化应用提供了理论依据。具体工作如下:
     首先,开展了微波干燥硫酸铵的研究。通过系统实验分析了硫酸铵微波干燥特性,并采用薄层干燥模型进行数值分析。结果表明,修正page模型(Ⅱ)较之其他模型更适于薄层硫酸铵微波干燥的模拟。应用Fick第二定律得到微波功率230-700W,物料质量150-300g条件下薄层硫酸铵微波干燥的有效扩散系数的变化范围分别为:1.48×10-7~4.33×10-7m2/s,3.61×10-7-6.59×10-7m2/s。
     其次,为实现微波基础条件下的节能降耗,探索微波控温干燥硫酸铵的工艺。探讨了干燥温度、微波干燥时间、物料质量、物料厚度等因素对硫酸铵相对脱水率的影响;以硫酸铵的相对脱水率为响应值采用响应曲面中心组合设计,对硫酸铵的微波干燥工艺参数进行了优化。所获得的优化实验条件为:干燥温度86.05℃,微波干燥时间190.50s,物料质量102.59g,物料厚度20.55mm,此时物料的相对脱水率为99.29%,验证实验的实验值与预测值的偏差仅为-0.43%,可靠性高。与常规干燥的对比研究表明,在相同条件下(相同物料质量、干燥温度以及物料厚度,达到相同相对脱水率)微波控温干燥较之常规干燥节时77.14%。
     另外,为进一步降低硫酸铵的干燥能耗,开展热泵干燥硫酸铵的工艺研究。探讨了物料质量、干燥时间、物料厚度对相对脱水率和能效比的影响;并以硫酸铵的相对脱水率和能效比为响应值采用响应曲面中心组合设计,对硫酸铵的热泵干燥工艺参数进行了优化。所获得的优化实验条件为:物料质量598.9g,热泵干燥时间56.75min,物料厚度15mm,此时物料的相对脱水率为91.79%,能效比为0.304kg/kwh。回归分析和验证试验表明了该响应面法的合理性与可行性。与常规干燥的对比研究表明,在相同条件下热泵干燥不仅具有明显的节能优势还具有一定的节时优势(24.33%)。
     在以上系统实验的基础上,通过对微波、热泵干燥条件下相对脱水率与能效比的对比分析,确定了可行的热泵-微波联合干燥工艺的水平范围;并以硫酸铵的相对脱水率和能效比为响应值采用响应曲面中心组合设计,对硫酸铵的联合干燥工艺参数进行了优化。所获得的优化实验条件为:物料质量600g,热泵干燥时间37.26min,微波干燥时间1min,此时物料的相对脱水率为91.7%,能效比为0.316kg/kwh。与单独热泵、微波干燥实验的比较分析表明:联合干燥较之热泵干燥在能效比方面提高9.93%,节时32.58%;较之微波干燥能效比提高45.91%。
At present, in order to deal with massive low concentration SO2 exhausted by thermal power and metallurgy industry, majority enterprises adopt the ammonia desulphurization technology to realize the recycle of SO2. In the ammonia desulphurization technology, centrifugal dewatered ammonium sulfate usually contains high water ratio. However, in national standard (GB535-1995), there is a strict provision of the ammonium sulfate's moisture content, in which the moisture content of premium grades is less than 0.2%. For the reasons above, the following drying process is significant and necessary. Because of the high energy consumption in current ammonium sulfate drying process, the microwave and heat-pump drying technology is applied to ammonium sulfate drying in this research. In this article, ammonium sulfate's microwave drying characteristic was in-depth studied, and the drying dynamics model was established. Meanwhile under the study of the energy efficiency compared to different drying process, the heat pump-microwave combined drying craft of ammonium sulfate and the best technological conditions were determined, providing the important theory basis to realize the industrial production application of ammonium sulfate's microwave drying.
     Firstly, the research on microwave drying of ammonium sulfate technique was initiated.The drying behavior of ammonium sulfate was investigated and the thin-layer drying models are used for data processing. The results show that the modified page model (II) is more suitable than other models for simulation of microwave drying of ammonium sulfate. Under the condition of microwave power of 230-700W or material mass being 150-300g, application of Fick's second law results in an effective diffusion coefficient of thin-layer sludge subjected to microwave drying ranging from 1.48×10-7 to 4.33×10-7m2/s or from 3.61×10-7 to 6.59×10-7m2/s, respectively.
     Secondly, for realizing the low energy consumes under the basic conditions of microwave drying, ammonium sulfate technique is investigated, using the temperature-controlled microwave technology. It is indicate that the key factors, like drying temperature, microwave drying time, material weight and thickness, have an affect on the relative dehydration rate of ammonium sulfate. On the basis of single-factor experiment, the response surface central composite design was adopted to optimize microwave drying parameters of ammonium sulfate, by taking the relative dehydration rate of ammonium sulfate as response value. The obtained optimized technology parameters were:temperature of 86.05℃, the radiation time of 190.50s, material weight of 102.59g, thickness of 20.55mm. The corresponding relative dehydration rate of material is 99.29%. The deviation of experimental values and predicted values is only-0.43%, showing high reliability. The results show that the response surface central composite design plays good optimization and prediction roles. The technology of microwave drying of ammonium sulfate used is reasonable and feasible, which can provide reference and guide for future research. The contrast research with the conventional drying indicated that under the condition of the same temperature, material weight, thickness and achieves the same relative dehydration rate, The temperature-controlled microwave drying compared with the conventional drying save the time of 77.14%, and can obvious guarantee the quality of the product at the same time.
     Besides, the heat-pump drying experiment of ammonium sulfate was carried out to further reduce the energy consumption. The effects of material quality, drying time, material thickness on the relative dehydration rate and the energy efficiency ratio of ammonium sulfate were investigated. On the basis of single-factor experiment, the response surface central composite design was adopted to optimize heat-pump drying parameters of ammonium sulfate, by taking the relative dehydration rate and the energy efficiency of ammonium sulfate as response value. The obtained optimized technology parameters were: material quality 598.9g, heat pump drying time 56.75min, material thickness 15mm. The corresponding relative dehydration rate of material is 92.1%, the energy efficiency ratio is 0.292kg/kw·h. The regression analysis and the verification test have indicated the rationality and the feasibility of the response surface method. The contrast research with the conventional drying shows that under the condition of the same temperature, material weight, thickness and achieves the same relative dehydration rate, the heat pump drying not only has the obvious energy conservation superiority and also has certain timing superiority.
     On the basis of experiments above, the feasible horizontal extent of heat pump microwave combined drying craft was determined through the contrastive analysis of relative dehydration rate and energy efficiency ratio. And the response surface central composite design was adopted to optimize heat pump-microwave combined drying parameters of ammonium sulfate, by taking the relative dehydration rate and the energy efficiency of ammonium sulfate as response value. The obtained optimized technology parameters were:Material quality of 600g, heat pump time of 37.26min, microwave time of lmin. The corresponding relative dehydration rate of material is 91.7%, the energy efficiency ratio is 0.316kg/kw-h. The contrast research with The separate experiments of heat-pump and microwave drying shows that compared with the heat-pump drying, compared drying can enhances by 12.9% in the energy efficiency ratio, saving the time by 36.2%; Compared to microwave drying, can enhances 43.6% in energy efficiency ratio, simultaneously can guarantee the quality of the product.
引文
[1]王超,谭鹤群.我国干燥技术的研究进展及展望[J].农机化研究,2009,(12):221-224.
    [2]柴本银,彭丽华,李选友,等.干燥过程节能技术的研究与新进展[J].石油和化工设备,2009,(12):8-11.
    [3]王箴.化工词典(第四版)[M].北京:化学工业出版社,2000:602.
    [4]韦飞.氨-硫酸铵法烟气脱硫实验研究[D].江苏:南京理工大学,2008.
    [5]殷萍,卫宏远.pH值对硫酸铵溶解度及结晶介稳区的影响[J].化学工业与工程,2009,26(2):137-140.
    [6]谢良商.标记硫酸铵和元素硫在稻田土壤中的转化[J].中国农业科学,1995,28(5):58-67.
    [7]胡为工.硫酸铵市场相对稳定[J].国际化工信息,2003,9:34.
    [8]史元芝,倪春林,刘峰等.浅谈氨法脱硫中硫酸铵的干燥工艺[J].电力环境保护,2009,25(6):25-26.
    [9]Schiffmann, R.F. Microwave and Dielectric Drying[C]. In Handbook of Zndusttial Drying. Mujumdar Marcel Dekker, New York.1987.
    [10]Owusu-Ansah, Y.J. Advances in microwave drying of foods and food ingredients[J]. Inst.Can.Sci.Technol. Aliment,1991,24(3/4):102-107.
    [11]李志刚.城市污水厂污泥微波干燥效能研究[D].重庆:重庆大学,2007.
    [12]祝圣远.微波干燥过程二维传热传质理论分析与数值模拟[D].辽宁:东北大学,2004.
    [13]王薇.加速微波技术在食品工业中的应用推广[J].食品与发酵工业.1996(2):59-62.
    [14]王邵林.微波食品工程[M].北京:机械工业出版社,1997:27.
    [15]祝圣远,王国恒.微波干燥原理及其应用[J].工业炉,2003,25(3):42-45.
    [16]J. Suhm. Rapid wave microwave technology for drying sensitive products[J]. Am.Ceram.Soc.Boll, 2000, (5):69-71.
    [17]S.Kocakusak, H.J.Koroglu, R.Tolun. Drying of boric acid by microwave heating[J]. Chemical Engineering and Processing,1998,37:197-201.
    [18]Mcloughlin C.M. Microwave drying pharmaceutical powder[J]. Food and Bioproducts Processing, 2000,78(c2):90-96.
    [19]于秀荣.微波干燥稻谷的研究[J].郑州粮食学院学报,1997,18(1):63-67.
    [20]朱艳丽,彭金辉,张世敏,等.微波干燥闪锌矿试验研究[J].有色金属(冶炼部分),2005,(5):21-24.
    [21]范兴祥,彭金辉,张利波,等.微波辐射干燥硫酸钠的工艺研究[J].云南化工,2002,29(6):5-7.
    [22]张世敏,彭金辉,杨卜,等.食盐脱水新工艺研究[J].中国井矿盐,2006,37(3):14-16.
    [23]和进娜,徐庆,苏伟光等.微波干燥技术的应用研究[J].应用交流,2006,(29:55-56.
    [24]江辉民,王洋,赵丽莹,等.国内外热泵发展与新技术[J].建筑热能通风空调,2003,4:7-9.
    [25]Chua,k J., Chou,S.k., Ho,J.C., et al. Heat pump drying:recent developments and future trends [J]. Drying Technology,2002,20(8):1579-1610.
    [26]陈红,谢继红.热泵干燥装置[M].北京:化学工业出版社,2007.
    [27]张绪坤.热泵干燥热力学分析及典型物料干燥性能研究[D].北京:中国农业大学,2005.
    [28]高广春,王剑峰.热泵干燥机组性能研究进展[J].食品科学,1999,20(5):59-62.
    [29]Lai F.S., Foster GH. Improvement in grain-dryer fuel efficient through heat recovery[J]. Transactions of the ASAE,1977,20(3):579-584.
    [30]Hogan M.R., Ayers D.L., Muller J.R.E., et al. Heat pump for low-temperature grain drying[J]. Transactions of the ASAE,1983,26 (4):1234-1238.
    [31]Gabas A.L., Bemardi M., Telis-Romero, et al. Application of heat pump in drying of apple cylinders. Drying 2004-Proceedings of the 14th International Drying Symposium(1DB 2004)[M], Sao Paulo, Brazil, August 22-25,2004, Vol C., PP 1922-1929.
    [32]Fatouh M., Metwally M.N., Helali A.B., et al. Herbs drying using heat pump dryer[J]. Energy conversion and management,2006,47(5):2629-2643.
    [33]张璧光,李延军.热泵干燥木材的技术现状与发展趋势[C].全国干燥会议论文集,杭州:中国化工学会,2003,310-313.
    [34]王元凯.热泵在农副业等方面的应用[J].新能源,1985,5:43-44.
    [35]田晓亮,孙晖,王兆俊,等.热泵系统干燥软胶丸的工艺[J].中国医药工业杂志,1998,29(9):418-419.
    [36]田晓亮,孙晖,王兆俊,等.软胶丸干燥机的研究与开发[J].化工进展,1998,6:4143.
    [37]张慜,成刚.蔬菜热风干燥过程的节能技术[J].食品与生物技术学报,2007,26(6):6-8.
    [38]Fito PJ., Betoret N, Segura I. Use of Khraisheh MAM, Magee TRA. Modelling the mass transfer during convective,microwave and combined microwave-convective drying of solid slabs and cylinders [J]. Food Research International,2003,36(9,10):977-983.
    [39]Torringa Abhijit K., Pitam C., Rajender P.. Comparison of different methods of drying for banana (Dwarf Cavendish) slices[J]. Journal of Food Science and Technology,2003,40(4):378-381.
    [40]D.GPrabhanjan, H.S.Ramaswamy, GS.V. Raghavan. Microwave-assisted convective air drying of thin layer carrots[J]. Journal of Food Engineering,1995,25(2):283-293.
    [41]Khraisheh M. Shrinkage characteristics of potatoes dehydrated under combined microwave and convective air conditions[J]. Drying Technology,1997,15(3&4):1003-1020.
    [42]T.N. Tulasidas. Combined convective and microwave drying of grapes[J]. Drying Technology,1995, 13(3):1029-1031.
    [43]Tomas Funebo, Thomas Ohlsson. Microwave-assisted air dehydration of apple and mushroom[J]. Journal of Food Engineering,1998,38(6):353-367.
    [44]Szabo G., Rajko R., Nemenyi M., et al. Modelling of combined hot-air convection drying of mushroom[M]. Drying 2002-Proceedings of the 13th International Drying Symposium. Beijing, China, 2002, A:319-326.
    [45]G Ruiz Diaz, J. Martinez-Monzo, P. Fito, et al. Modelling of dehydration-rehydration of orange slices in combined microwave/air drying[J]. Innovative Food Science and Emerging Technologies,2003, 4(2):203-209.
    [46]Dariusz Piotrowski, Andrzej Lenart. Influence of osmotic dehydration on micro wave-con vective drying of frozen strawberries[J]. Journal of Food Engineering,2004,65(6):519-525.
    [47]Aylin Altan, Medeni Mashan. Microwave assisted drying of short-cut (ditalini) macaroni:drying characteristics and effect of drying processes on starch properties [J]. Food Research International,2005, 38(9):787-796.
    [48]W.A.M.McMinn, C.M.Mcloughlin, T.R.A.Magee. Microwave-convective drying characteristics of pharmaceutical powders[J]. Powder Technology,2005,153(6):23-33.
    [49]杨大伟,夏延斌.微波和热风联合干燥薄层黄花菜的方法研究[J].食品科技,2003,9:29-32.[50]彭增华,刘丽,罗萍等.采用微波-热风干制鲜姜的工艺研究[J].昆明理工大学学报,2002,27:24-35.
    [51]施明恒,余莉,刘雅琴.中药丸微波对流干燥的实验研究[J].南京林业大学学报,1997,21:147-151.
    [52]税安泽,王书媚,刘平安,等.微波辅助干燥技术的应用进展[J].中国陶瓷工业,2007,14(6):30-33.
    [53]R. Azargohar, A.K.Dalai. Production of activated carbon from Luscar char:experimental and modeling studies[J]. Micropor Mesopor Mater,2005,8(5):219-225.
    [54]R.H.Myers, D.C. Montgomery. Response Surface Methodology[M]. New York, Wiley and Sons, 1995:1-20.
    [55]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学),2005(8),14(3):237-239.
    [56]GUI Jin-song, LIU hong. An Intelligent Method for Structural Reliability Analysis Based on Response Surface[J]. China Ocean Engineering,2004,18(4):653-661.
    [57]杨文雄,高彦祥.响应面法及其在食品工业中的应用[J].中国食品添加剂,2005,2:69-71.
    [58]徐颖,李明利.响应曲面回归分析法-一种新的回归分析法在材料研究中的应用[J].稀有金属材料与工程,2001,30(6):428-432.
    [59]Montgomery D C.实验设计与分析(汪仁官,陈荣昭)(M),北京:中国统计出版社,1998.
    [60]潘向军.生物过程优化的研究进展[J].化工时刊,2006,20(3):54-57.
    [61]Box GE.P, Behnken D.W. Some New Three-Level Designs for the Study of Quantitative Variables [J]. Technometrics,1960,2(3):455-475.
    [62]徐长香.江南氨回收法烟气脱硫技术[C].中国环境科学学会2006年学术年会优秀论文集(下卷),中国江苏苏州,2006.
    [63]Maskan, M. Microwave/air and microwave finish drying of banana[J]. Journal of Food Engineering, 2000,44 (2),71-78.
    [64]Adnan Midilli, Haydar Kucuk. Mathematical modelling of thin layer drying of pistachio by using solar energy [J]. Energy Conversion and Management,2003,44(7):1111-1122.
    [65]Osman Yaldiz, Can Ertekin, H.1brahim Uzun. Mathematical modeling of thin layer solar drying of sultana grapes[J]. Energy Conversion and Management,2001,26(5):457-465.
    [66]肖旭霖.洋葱真空远红外薄层干燥模型[J].食品科学2002,23:40-43.
    [67]Feng H. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model[J]. Int. Comm. Heat Mass Transfer,2002,29(5):1021-1028.
    [68]Karathanos VT, Belessiotis VG. Application of a thin-layer equation to drying data of fresh and semi-dried fruits[J]. Journal of Agricultural Engineering Research.1999,74 (4):355-361.
    [69]Lewis W K. The rate of drying of solid materials[J]. Ind. Eng. Chem.,1921,13:427-432.
    [70]Pehlivan D, Togrul IT. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process[J]. Journal of Food Engineering 2004,65(3),413-425.
    [71]Ozdemir M, Devres Y O. The thin-layer drying characteristics of hazelnuts during roasting[J]. Journal of Food Engineering 1999,42(4),225-233.
    [72]Soysal Y. Microwave drying characteristics of parsley[J]. Biosystems Engineering,2004,89(2): 167-173.
    [73]Akpinar E K, Bicer Y, Yildiz C. Thin layer drying of red pepper[J]. Journal of Food Engineering, 2003,59(1):99-104.
    [74]Babalis S J, Papanicolaou E, Kyriakis N, et al. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica)[J]. Journal of Food Engineering,2006,75(3):205-214.
    [75]Ren G, Chen F. Drying of American ginseng (Panax quinquefolium) roots by microwave hot air combination [J]. Journal of Food Engineering,1998,35(2):433-43.
    [76]潘永康,王喜忠.现代干燥技术[M].北京:化学工业出版社,1998:14.
    [77]杨俊红,焦士龙,郭锦棠,等.菜豆种子薄层干燥物料内部水分扩散系数的确定[J].工程热物
    理学报,2001,22:211-214.
    [78]Mohammad Al-Harahsheh, Ala'a H., Al-Muhtaseb T.R.A. Magee et al. Microwave drying kinetics of tomato pomace:Effect of osmotic dehydration[J]. Chemical Engineering and Processing,2009,48(4): 524-531.
    [79]王永周,陈美,刘欢,等.天然橡胶微波干燥动力学模型研究[J].热带作物学报,2009,30(3):377-381.
    [80]林标声,张彭湃,杨生玉等.响应面分析法优化丙酮酸发酵中维生素水平[J].食品科技,2007(4):361-369.
    [81]Annadurai G, Sheeja R Y. Use of Box-Behken design of experiments for the adsorption of verofix-red using Biopolymer[J]. Bioprocess Engineering,1998,18(2):463-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700