基于物化结构特征的生物质与煤共气化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质资源丰富,且可再生。将生物质与煤共气化不仅可有效减少SOx、NOx等有害物排放,还可促进碳的完全转化,提高生物质和煤气化效率。开展生物质与煤共气化技术研发对实现煤的高效清洁利用意义重大。由于生物质与煤共气化过程中产生协同作用的机理尚不明确,尤其是关于共气化过程中气相产物的形成释放机理及固体焦样表面物化结构特征的演变规律的研究并不深入,本文在对生物质与煤气化半焦微观形貌及官能团的变化规律进行分析的基础上,从理论和试验两个方面系统的开展褐煤与生物质流化床共气化特性的研究,考察了生物质掺混比、空气当量比等对流化床共气化的影响规律,揭示了生物质与煤共气化的协同作用机制。本文主要从以下几方面开展研究工作:
     进行了生物质和煤共气化的热分析实验研究,详细研究了升温速率、反应气氛、掺混比例对共气化特性的影响。采用C-R法及DAEM法对生物质与煤共气化动力学特性进行研究,建立了共气化的反应动力学模型,获得了共气化动力学参数,并分析了关键反应阶段活化能的变化趋势,确定了生物质与煤共气化过程协同效应发生的反应阶段。结果表明,褐煤与生物质共气化过程由干燥、预热、挥发分析出和焦炭气化四个阶段组成,共气化在挥发分析出阶段没有表现出明显的协同作用,而在焦炭气化阶段,协同效应明显,且松木屑掺混比为50%时,协同作用最显著。共气化过程的热解段可用均相反应模型描述,气化段的反应机理符合未反应收缩核模型。焦炭气化段的活化能明显高于热解段。
     在热分析实验的基础上,利用TG-FTIR联用技术开展了生物质与煤共气化气相产物析出规律的实验研究,考察了升温速率等因素对气相产物析出的影响,并结合气化半焦的微观形貌(SEM-EDX)及官能团(FTIR)分析,揭示了可燃气组分CO和CH4的析出机理。结果表明,CH4、CO口H20是褐煤气化过程中的主要气相产物,松木屑气化除之外CO、CH4、H2O之外,还还用大量醇类、醛类、酸类和酚类等有机物。共气化过程,CH4的析出归因于褐煤和松木屑的甲基、亚甲基、甲氧基中C-H键的断裂、重组,且贯穿于挥发分析出和焦炭气化的全过程;CO的析出集中于挥发分析出段和焦炭气化段,在挥发分析出段主要归因于羧基、甲氧基、羰基和醚键的断裂,气化段CO的析出主要是由于CO2参与焦炭的气化反应。升温速率对可燃气体析出有一定影响,较低的升温速率有利于CO和CH4的生成。随气化反应的进行,半焦孔隙结构经历了先增多、至逐渐塌陷、后闭合的过程。
     在自行设计搭建的流化床反应器上,开展了生物质与煤共气化的试验研究,系统的研究了掺混比例、空气当量比ER、水蒸汽/燃料比S/F等操作条件对共气化特性的影响,优化了生物质与煤流化床共气化的关键参数。结果表明,松木屑的加入,有利于气体产物CO生成,对CH4无明显影响,在掺混比例为50%时,二者的协同效应最显著。气化气热值在空气当量比为0.26时达到最大值。共气化中加入水蒸汽有利于H2的生成,在S/F=0.28时,气化气热值、碳转化率和气化效率均达到最大值。
     以生物质与煤流化床共气化试验数据为基础,以化工计算软件Aspen Plus为模拟平台,结合气化过程的反应动力学及流体动力学模型,采用嵌入FORTRAN气化动力学及流体动力学子程序的连续搅拌釜式反应器来表征流化床的气化反应过程,构建了流化床生物质与煤共气化的气化反应模型,模拟了掺混比例、空气当量比、水蒸汽/物料质量比对气化气组分、热值和气化效率等参数的影响,并与试验数据进行了比较,结果表明,所建模型能够准确地模拟生物质和煤的流化床气化过程。
Biomass is an abundant and renewable source of energy. Co-gasification of biomass with coal could not only reduce the harmful gases emissions such as SOx and NOx, but also obtain the complete transformation of carbon and improve the efficiency of co-gasification. Therefore, the study of the co-gasification of biomass with coal process is one of the crucial areas of the clean utilization of coal. However, the mechanism of the synergistic effect in the co-gasification of biomass with coal process remains unclear. Further studies are necessary to understand the formation of gas products, dissociation mechanisms and the evolution of physical and chemical structure characteristics occurd on the surface of coke. In this paper, the physicochemical properties of biomass and coal and the change of microstructure in gasification process were analyzed. Based on these results, co-gasification characteristic of biomass and coal in fluidized bed was systematically studied in both theory and experiment, and from the effects of various factors such as biomass blending ratio and equivalence ratio(ER), the synergistic effect mechanism of co-gasification of biomass and coal was revealed. The following investigations are made in this thesis:
     The thermal analysis of co-gasification of biomass with coal was performed. The effects from heating rate, reaction atmosphere, mixing proprotion were studied on in details. The C-R and DAEM method were applied to theatrically analyze the co-gasification kinetics characteristic. A co-gasification reaction kinetics model was established, and parameters were acquired. The trend of activation energy in the critical reaction stage was analyzed. The reaction stage where co-gasification compensation effect happened was confirmed. The results showed that the co-gasification of biomass with coal process included four stages:drying, preheating, volatile precipitation and coke gasification. There was no significant synergistic effect in the volatile precipitation stage. However, a significant synergistic effect was observed in the coke gasification stage.This effect got the maximum, when mixing proprotion was50%. The pyrolysis stage of co-gasification can be described by a homogeneous reaction model. The reaction mechanism of the gasification matched the unreacted shrinking core model. The activation energy of coke gasification stage was significantly higher than that of the volatile precipitation stage.
     Based on thermal analysis experiments, a TG-FTIR was employed to study the gas products of co-gasification of biomass with coal. The effects of temperature-rising rate on the gas products were studied. By the analysis of the micro surface morphology/microstructure(SEM, EDX) and functional groups (FTIR) of gasification semicoke, a mechanism of formation of the flammable gas such as CO and CH4was proposed. The results showed the evolution of the surface morphology of semicoke in the gasification. Initially, the porous cannel structure formed. Then the poles collapsed and cannels were closed eventually. The main gas products of pine sawdust gasification were CO, CH4, H2O and organic matters such asalcohols, aldehydes, carboxylic acids, phenols and so on. In the co-gasification process, the formation of CH4was the results of the rupture and reformation of C-H bonds in the methyl, methylene and methoxy groups in lignite and pine sawdust, which throughout the process of volatiles releasing and coke gasification. CO is mostly released in volatile precipitation stage and coke gasification stage, which can be attributed to carboxyl, methoxy, carbonyl, ether bond rupture in volatile precipitation stage and the reduction of CO2in coke gasification. The gasification heating-rate affect the formation of the gas products. A lower gasification heating-rate might lead to more CO and CH4.
     The experimental investigation of co-gasification of biomass and coal was carried out on a self-designed fluidized bed reactor. The effects of biomass blending ratio, equivalence ratio(ER) as well as steam-to-fuel ratio(S/F) on co-gasification characteristic of biomass and coal were systematically studied, the above results provide a basis for selection and operation of co-gasification system of biomass and coal. The test results showed that when the blending ratio of pine sawdust increases, the volume concentration of CO incereased, the change of CH4was not notable, the heating value reached a maximum at a blending ratio of50%. The gasification efficiency reached a maximum at an ER of0.26. The results showed that the introduction of steam resulted in more hydrogen production. When the steam-to-fuel ratio(S/F) was0.28, the heating value, the carbon conversion ratio and the gasification efficiency all reached the maximum.
     Based on the bed test of the co-gasification of biomass with coal, the ASPEN PLUS was applied to simulate the co-gasification of biomass with coal in a fluidized bed gasifier by considering the hydrodynamic and reaction rate kinetics simultaneously, the external FORTRAN subroutines for hydrodynamics and kinetics nested in ASPEN PLUS simulate the gasification process, the model was developed to study the co-gasification of biomass with coal in fluidized bed gasifier was employed to studied the effects of equivalence ratio(ER), blending ratio as well as steam-to-fuel ratio(S/F) on the gas composition, heating value and gasification efficiency, and the results were compared with the experimental results. Above results show that the co-gasification of biomass with coal in fluidized bed gasifier could be simulated accurately with the model developed in this thesis.
引文
[1]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2012
    [2]Jos G. J. Olivier. Trends in Global CO2 Emissions 2012 Report[R]. The Hague:PBL Netherlands Environmental Assessment Agency,2012
    [3]应浩,蒋剑春.生物质气化技术及开发应用研究进展[J].林产化学与工业,2005,25(S1):151-155
    [4]Bridgwater A. V. The Technical and Economic Feasibility of Biomass Gasification for Power Generation[J]. Fuel,1995,74(5):631-653
    [5]秦育红.生物质气化过程中焦油形成的热化学模型[D].太原:太原理工大学,2009
    [6]宋新朝,王志锋,孙东凯,等.生物质与煤混合颗粒流化特性的实验研究[J].煤炭转化,2005,28(1):74-77
    [7]王立群,张俊如,朱华东,等.在流化床气化炉中生物质与煤共气化的研究(Ⅰ)——以空气—水蒸汽为气化剂生产低热值燃气[J].太阳能学报,2008,29(2):246-251
    [8]Mclendon T. R., Lui A. P., Pineault R. L., et al. High-Pressure Co-Gasification of Coal and Biomass in a Fluidized Bed[J]. Biomass and Bioenergy,2004,26(4): 377-388.
    [9]Brage C., Yu Q., Cheng G., et al. Tar Evolution Profiles Obtained from Gasification of Biomass and Coal[J]. Biomass and Bioenergy,2000,18(1):87-91
    [10]宋新朝,李克忠,王锦凤,等.流化床生物质与煤共气化特性的初步研究[J].燃料化学学报,2006,34(3):303-308
    [11]赵向富.生物质流化床气化实验研究与模拟[D].武汉:华中科技大学,2006
    [12]张晓东,许敏,孙荣峰,等.玉米秸热解动力学研究[J].燃料化学学报.2006,34(1):123-125
    [13]杨海平.油棕废弃物热解的实验及机理研究[D].武汉:华中科技大学,2005
    [14]涂德浴,董红敏,丁为民,等.畜禽粪便的热解特性和动力学研究[J].农业环境科学学报,2007,26(4):1538-1542
    [15]林木森,蒋剑春.杨木屑热解过程及动力学研究[J].太阳能学报,2008,29(9):1135-1138
    [16]Chen H., Dou B., Song Y., et al. Pyrolysis Characteristics of Sucrose Biomass in a Tubular Reactor and a Thermogravimetric Analysis[J]. Fuel,2012,95:425-430
    [17]Biagini E., Fantei A., Tongotti L. Effect of the Heating Rate on the Devolatilization of Biomass Residues[J]. Thermochimica Acta,2008,472(1-2):55-63
    [18]付鹏,胡松,向军,等.谷壳热解/气化的热重—红外联用分析[J].太阳能学报,2008,29(11):1399-1405
    [19]米铁,陈汉平,唐汝江,等.生物质半焦气化的反应动力学[J].太阳能学报,2005,26(6):34-39
    [20]吴亭亭,闻望.生物质的气化反应动力学研究[J].同济大学学报(自然科学版),1996,24(4):433-438
    [21]吕当振,姚洪,王泉斌,等.纤维素、木质素含量对生物质热解气化特性影响的实验研究[J].工程热物理学报,2008,29(10):1771-1774
    [22]李雪瑶.紫茎泽兰茎干的热解气化研究[D].北京:中国林业科学研究院,2009
    [23]李社锋,方梦祥,舒立福,等.利用分布活化能模型研究木材的热解和燃烧机理[J].燃烧科学与技术,2006,12(6):535-539
    [24]Wang G., Li W., Li B., et al. TG Study on Pyrolysis of Biomass and Its Three Components under Syngas[J]. Fuel,2008,87(4-5):552-558
    [25]Shen D. K., Gu S., Jin B., Fang W. X. Thermal Degradation Mechanisms of Wood under Inert and Oxidative Environments Using DAEM Methods[J]. Bioresource Technology,2011,102(2):2047-2052
    [26]Sonobe T., Worasuwannarak N. Kinetic Analyses of Biomass Pyrolysis Using the Distributed Activation Energy Model[J]. Fuel,2008,87(3):414-421
    [27]陈平,谢军,阴秀丽,等.木屑在鼓泡流化床和循环流化床中气化特性的对比研究[J].燃料化学学报,2006,34(4):35-39
    [28]赵先国,常杰,吕鹏梅,等.生物质流化床富氧气化的实验研究[J].燃料化学学报,2005,33(2):72-77
    [29]吕鹏梅,常杰,熊祖鸿,等.生物质在流化床中的空气—水蒸气气化研究[J].燃料化学学报,2003,32(4):18-23
    [30]王铁军,常杰,吕鹏梅,等.生物质热化学转化合成二甲醚[J].过程工程学报,2005,5(3):48-51
    [31]董长青,杨勇平,倪景峰,等.木屑和聚乙烯流化床共气化实验研究[J].中国电机工程学报,2007,27(5):55-60
    [32]涂德浴,董红敏,丁为民.当量比对猪粪空气气化效果的影响[J].农业工程学 报,2009,25(5):167-171
    [33]孙洋,杨天华,刘耀鑫,等.气化介质对生物质多孔床料流化床气化产气特性的影响[J].燃料化学学报,2009,37(1):119-123
    [34]原晓华,马隆龙,陈平,等.生物质在隔板式内循环流化床中的气化[J].太阳能学报,2005,26(6):11-14
    [35]苏学泳,王智微,程从明,等.生物质在流化床中的热解和气化研究[J].燃料化学学报,2000,28(4):298-305
    [36]Xiao X., Meng X., Le D. D., et al. Two-Stage Steam Gasification of Waste Biomass in Fluidized Bed at Low Temperature:Parametric Investigations and Performance Optimization[J]. Bioresource Technology,2011,102(2):1975-1981
    [37]Sheth P. N., Babu B. V. Experimental Studies on Producer Gas Generation from Wood Waste in a Downdraft Biomass Gasifier[J]. Bioresource Technology,2009, 100(12):3127-3133
    [38]Zhou Z. Q., Ma L. L., Yin X. L., et al. Study on Biomass Circulation and Gasification Performance in a Clapboard-Type Internal Circulating Fluidized Bed Gasifier[J]. Biotechnology Advances,2009,27(5):612-615
    [39]Li X. T., Grace J. R., Lim C. J., et al. Biomass Gasification in a Circulating Fluidized Bed[J]. Biomass and Bioenergy,2004,26(2):171-193
    [40]Velez J. F., Chejne F., Valdes C. F., et al. Co-Gasification of Colombian Coal and Biomass in Fluidized Bed:An Experimental Study[J]. Fuel,2009,88(3):424-430.
    [41]Sjostrom, K., Chen G., Yu Q., et al. Promoted Reactivity of Char in Co-Gasification of Biomass and Coal:Synergies in the Thermochemical Process[J]. Fuel,1999, 78(10):1189-1194
    [42]De Jong W., Andries J., Klaus R. G. Hein. Coal/Biomass Co-Gasification in a Pressurised Fluidised Bed Reactor[J]. Renewable Energy,16(1-4):1110-1113
    [43]Kumabe K., Hanaoka T., Fujimoto S., et al. Co-Gasification of Woody Biomass and Coal with Air and Steam[J]. Fuel,86(5-6):684-689
    [44]Pinto F., Franco C., Andro Rui N., et al. Effect of Experimental Conditions on Co-Gasification of Coal, Biomass and Plastics Wastes with Air/Steam Mixtures in a Fluidized Bed System[J]. Fuel,82(15-17):1967-1976
    [45]王立群,李伟振,宋旭,等.生物质与煤共气化制取氢气的试验[J].江苏大学学报(自然科学版),2009,30(5):496-500
    [46]王立群,宋旭,周浩生,等.在流化床气化炉中生物质与煤共气化研究(Ⅱ)—— 以水蒸汽为气化剂生产中热值燃气[J].太阳能学报,2008,29(3):354-359
    [47]Pan Y. G., Velo E., Roca X., et al. Fluidized-Bed Co-Gasification of Residual Biomass/Poor Coal Blends for Fuel Gas Production[J]. Fuel,2000,79(11): 1317-1326
    [48]Pan Y. G., Velo E., Puigjaner L. Pyrolysis of Blends of Biomass with Poor Coals[J]. Fuel,1996,75(4):412-418
    [49]任海君,张永奇,房倚天,等.生物质与煤共气化的反应动力学研究(英文)[A].中国可再生能源学会2008年生物质能源技术国际会议论文集[C].2008:130-133
    [50]任海君,张永奇,房倚天,等.煤焦与生物质焦共气化反应特性研究[J].燃料化学学报,2012,40(2):143-148
    [51]李克忠,张荣,毕继诚.煤和生物质共气化制备富氢气体的实验研究[J].燃料化学学报,2010,38(6):660-665
    [52]Li K., Zhang R., Bi J. Experimental Study on Syngas Production by Co-Gasification of Coal and Biomass in a Fluidized Bed[J]. International Journal of Hydrogen Energy,2010,35(7):2722-2726
    [53]宋新朝,王芙蓉,赵霄鹏,等.生物质与煤共气化特性研究[J].煤炭转化,2009,32(4):44-46
    [54]Di Nola G., De Jong W., Spliethoff H. TG-FTIR Characterization of Coal and Biomass Single Fuels and Blends under Slow Heating Rate Conditions:Partitioning of the Fuel-Bound Nitrogen[J]. Fuel Processing Technology,2010,91(1):103-115
    [55]陈吟颖.生物质与煤共热解试验研究[D].保定:华北电力大学,2007
    [56]Brown R. C., Liu Q., Norton G. Catalytic Effects Observed during the Co-Gasification of Coal and Switchgrass[J]. Biomass and Bioenergy,2000,18(6): 499-506
    [57]杨天华,贺业光,李润东,等.秸秆与煤混燃过程中碱金属钾对氮迁移转化的影响[J].燃料化学学报,2009,37(3):373-376
    [58]杨毅栎.煤与生物质共气化的特性研究[D].保定:华北电力大学,2009
    [59]Sharma S., Ghoshal A. K. Study of Kinetics of Co-Pyrolysis of Coal and Waste LDPE Blends under Argon Atmosphere[J]. Fuel,2010,89(12):3943-3951
    [60]Fermoso J., Arias B., Gil M. V., et al. Co-Gasification of Different Rank Coals with Biomass and Petroleum Coke in a High-Pressure Reactor for H2-Rich Gas Production[J]. Bioresource Technology,2010,101(9):3230-3235
    [61]Aigner I., Pfeifer C., Hofbauer H. Co-Gasification of Coal and Wood in a Dual Fluidized Bed Gasifier[J]. Fuel,2011,90(7):2404-2412
    [62]Collot A. G., Zhuo Y., Dugwell D. R., et al. Co-Pyrolysis and Co-Gasification of Coal and Biomass in Bench-Scale Fixed-Bed and Fluidised Bed Reactors[J]. Fuel, 1999,78(6):667-679
    [63]阎维平,鲁许鳌.生物质和褐煤的掺混比例对共气化特性的影响[J].中国电机工程学报,2009,29(S1):150-155
    [64]鲁许鳌,阎维平.空气当量比对生物质和煤共气化影响的研究[J].可再生能源,2009,27(5):42-47
    [65]尚琳琳,程世庆,张海清.生物质与煤共热解特性研究[J].太阳能学报,2006,27(8):120-124
    [66]杜海清.木质类生物质催化热解动力学研究[D].哈尔滨:黑龙江大学,2008
    [67]Idris S. S., Rahman N. A., Ismail K., et al. Investigation on Thermochemical Behaviour of Low Rank Malaysian Coal, Oil Palm Biomass and Their Blends during Pyrolysis via Thermogravimetric Analysis (TGA)[J]. Bioresource Technology,2010,101(12):4584-4592
    [68]Vamvuka D., Kakaras E., Kastanaki E. Pyrolysis Characteristics and Kinetics of Biomass Rediduels Mixtures with Lignite[J]. Fuel,2003,82:1949-1960
    [69]Li Z., Liu C., Chen Z., et al. Analysis of Coals and Biomass Pyrolysis Using the Distributed Activation Energy Model[J]. Bioresource Technology,2009,100(2): 948-952
    [70]李啸颖,王静松,陈瑞泷,等.生物质焦与煤共气化特性研究[J].有色金属科学与工程,2012,3(1):37-42
    [71]张科达,步学朋,王鹏,等.生物质与煤在CO2气氛下共气化特性的初步研究[J].煤炭转化,2009,32(3):9-12
    [72]Fasina O., Littlefield B. TG-FTIR Analysis of Pecan Shells Thermal Decomposition[J]. Fuel Processing Technology,2012,102:61-66
    [73]Bassilakis R., Carangelo R. M., Wojtowicz M. A. TG-FTIR Analysis of Biomass Pyrolysis[J]. Fuel,2001,80(12):1765-1786
    [74]Wojtowicz M. A., Bassilakis R., Smith W. W., et al. Modeling the Evolution of Volatile Species during Tobacco Pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):235-261
    [75]Serio M. A., Charpenay S., Bassilakis R., et al. Measurement and Modeling of Lignin Pyrolysis[J]. Biomass and Bioenergy,1994,7(1-6):107-124
    [76]Liu Q., Wang S., Zheng Y., et al. Mechanism Study of Wood Lignin Pyrolysis by Using TG-FTIR Analysis[J]. Journal of Analytical and Applied Pyrolysis,2008, 82(1):170-177
    [77]Cao J., Xiao G., Xu X., et al. Study on Carbonization of Lignin by TG-FTIR and High-Temperature Carbonization Reactor[J]. Fuel Processing Technology,2013, 106:41-47
    [78]Guo X. J., Wang S. R., Wang K. G., et al. Influence of Extractives on Mechanism of Biomass Pyrolysis[J]. Journal of Fuel Chemistry and Technology,2010,38(1): 42-46
    [79]Granada E., Egu A. P., Vilan J. A., et al. FTIR Quantitative Analysis Technique for Gases. Application in a Biomass Thermochemical Process[J]. Renewable Energy, 2012,41:416-421
    [80]De Jong W., Pirone A., Wojtowicz M. A. Pyrolysis of Miscanthus Giganteus and Wood Pellets:TG-FTIR Analysis and Reaction Kinetics[J]. Fuel,2003,82(9): 1139-1147
    [81]Bassilakis R. TG-FTIR Analysis of Biomass Pyrolysis[J]. Fuel and Energy Abstracts, 2002,43(4):1765-1786
    [82]Lee S. B., Fasina O. TG-FTIR Analysis of Switchgrass Pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):39-43
    [83]Han L., Wang Q., Ma Q., et al. Influence of CaO Additives on Wheat-Straw Pyrolysis as Determined by TG-FTIR Analysis[J]. Journal of Analytical and Applied Pyrolysis,2010,88(2):199-206
    [84]Holstein A., Bassilakis R., Wojtowicz M. A., et al. Kinetics of Methane and Tar Evolution during Coal Pyrolysis[J]. Proceedings of the Combustion Institute,2005, 30(2):2177-2185
    [85]Xu T., Huang X. Study on Combustion Mechanism of Asphalt Binder by Using TG-FTIR Technique[J]. Fuel,2010,89(9):2185-2190
    [86]Giuntoli J., De Jong W., Arvelakis S., et al. Quantitative and Kinetic TG-FTIR Study of Biomass Residue Pyrolysis:Dry Distiller's Grains with Solubles (DDGS) and Chicken Manure[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 301-312
    [87]Ren Q., Zhao C., Wu X., et al. TG-FTIR Study on Co-Pyrolysis of Municipal Solid Waste with Biomass[J]. Bioresource Technology,2009,100(17):4054-4057
    [88]Duan L., Zhao C., Zhou W., et al. Sulfur Evolution from Coal Combustion in O2/CO2 Mixture[J]. Journal of Analytical and Applied Pyrolysis,2009,86(2): 269-273
    [89]Wang C., Wu Y., Liu Q., et al. Analysis of the Behaviour of Pollutant Gas Emissions during Wheat Straw/Coal Cofiring by TG-FTIR[J]. Fuel Processing Technology, 2011,92(5):1037-1041
    [90]De Jong W., Di Nola G., Venneker B. C., et al. TG-FTIR Pyrolysis of Coal and Secondary Biomass Fuels:Determination of Pyrolysis Kinetic Parameters for Main Species and NOx Precursors[J]. Fuel,2007,86(15):2367-2376
    [91]徐朝芬,向军,孙路石,等.热解温度对淮南煤热解与CO2气化特性的影响[J].华中科技大学学报(自然科学版),2010,38(11):100-103
    [92]石金明,孙路石,向军,等.兖州煤气化半焦表面官能团特征试验研究[J].中国电机工程学报,2010,30(5):17-22
    [93]杨海平,陈汉平,鞠付栋,等.热解温度对神府煤热解与气化特性的影响[J].中国电机工程学报,2008,28(8):40-45
    [94]Liu H., Luo C., Toyota M., et al. Kinetics of CO2/Char Gasification at Elevated Temperatures. Part II:Clarification of Mechanism Through Modelling and Char Characterization[J]. Fuel Processing Technology,2006,87(9):169-774
    [95]Kasaoka S., Sakata Y. Sulfur Tolerance of Various Catalysts for the Gasification of Coal Char[J]. Iniemational Chemieal Engineering,1986,26(4):705-715
    [96]Liu H., Luo C., Kato S., et al. Kinetics of CO2/Char Gasification at Elevated Temperatures:Part Ⅰ:Experimental Results[J]. Fuel Processing Technology,2006, 87(9):775-781
    [97]王贤华,徐健,杨海平,等.加压热解对煤焦理化结构特性的影响[J].华中科技大学学报(自然科学版),2011,39(7):123-127
    [98]李庆钊,林柏泉,赵长遂,等.基于傅里叶红外光谱的高温煤焦表面化学结构特性分析[J].中国电机工程学报,2011,31(32):46-52
    [99]Xu Q., Pang S., Levi T. Reaction Kinetics and Producer Gas Compositions of Steam Gasification of Coal and Biomass Blend Chars, Part I:Experimental Investigation[J]. Chemical Engineering Science,2011,66(10):2141-2148
    [100]Feng B., Bhatia S. K. Variation of the Pore Structure of Coal Chars during Gasification[J]. Carbon,2003,41(3):507-523
    [101]段伦博,赵长遂,李英杰,等.不同热解气氛煤焦结构及燃烧反应性[J].东南 大学学报(自然科学版),2009,39(5):988-991
    [102]杨帆,周志杰,王辅臣,等.氢气存在下的煤焦水蒸气气化:Ⅰ反应特性研究[J].燃料化学学报,2009,37(1):36-41
    [103]陈登宇,朱锡锋.生物质热反应机理与活化能确定方法Ⅱ.热解段研究[J].燃料化学学报,2011,39(9):670-674
    [104]肖瑞瑞,陈雪莉,周志杰,等.温度对生物质热解产物有机结构的影响[J].太阳能学报,2010,31(4):491-496
    [105]曹俊,肖刚,许啸,等.木质素热解/炭化官能团演变与焦炭形成[J].东南大学学报(自然科学版),2012,42(1):83-87
    [106]尹建军,段钰锋,王运军,等.生物质焦的表征及其吸附烟气中汞的研究[J].燃料化学学报,2012,40(4):390-396
    [107]Sofialidis D., Faltsi O. Simulation of Biomass Gasification in Fluidized Beds using Computational Fluid Dynamics Approach[J]. Thermal Science,2001,5(2):95-105
    [108]Baekreedy R., Fletcher L. M., Jones J. M., et al. Co-firing Pulverized Coal and Biomass:a Modeling Approach[J]. Proceeding of the Combustion Institute,2005, 30:2955-2964
    [109]Ghenai C., Janajreh I. CFD Analysis of the Effects of Co-firing Biomass with Coal[J]. Energy Conversion and Management,2010,51(8):1694-1701
    [110]吴志斌.生物质与煤气化过程热力学分析[D].太原:太原理工大学,2007
    [111]范志林,张军,林晓芬,等.生物质气再燃还原NOx的数值模拟[J].能源研究与利用,2007,1(1):7-10
    [112]李鸣扬.煤加氢气化化学反应动力学模型及汞的形态演化机理研究与数值模拟[D].北京:北京交通大学,2009
    [113]Vitasari C. R., Jurascik M., Ptasinski K. J. Exergy Analysis of Biomass-to-Synthetic Natural Gas (SNG) Process Via Indirect Gasification of Various Biomass Feedstock[J]. Energy,2011,36(6):3825-3837
    [114]Li H., Hong H., Jin H., et al. Analysis of a Feasible Polygeneration System for Power and Methanol Production Taking Natural Gas and Biomass as Materials[J]. Applied Energy,2010,87(9):2846-2853
    [115]He J., Zhang W. Techno-economic Evaluation of Thermo-Chemical Biomass-to-Ethanol[J]. Applied Energy,2011,88(4):1224-1232
    [116]Kumar A., Demirel Y., Jones D. D., et al. Optimization and Economic Evaluation of Industrial Gas Production and Combined Heat and Power Generation from Gasification of Corn Stover and Distillers Grains[J]. Bioresource Technology,2010, 101(10):3696-3701
    [117]Pihl E., Heyne S., Thunman H., et al. Highly Efficient Electricity Generation from Biomass by Integration and Hybridization with Combined Cycle Gas Turbine (CCGT) Plants for Natural Gas[J]. Energy,2010,35(10):4042-4052
    [118]Damartzis T., Michailos S., Zabaniotou A. Energetic Assessment of a Combined Heat and Power Integrated Biomass Gasification-Internal Combustion Engine System by using Aspen Plus[J]. Fuel processing technology,2012,95:37-44
    [119]Paduream A., Cormos C. C., Agachi P. S. Pre-combustion Carbon Dioxide Capture by Gas-Liquid Absorption for Integrated Gasification Combined Cycle Power Plants[J]. International Journal of Greenhouse Gas Control,2012,7:1-11
    [120]Backham L., Croiset E., Douglas P. L., et al. Simulation of a Coal Hydrogasification Process with Integrated CO2 Capture[A]. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies[C]. Vancouver: Elsevier Science Ltd,2005:1941-1945
    [121]Lee H. G., Kim C., Han S. H., et al. Coal Gasification Simulation using ASPEN PLUS[J]. Coal Utilization Technology,1992,28:447-474
    [122]沈玲玲,姜秀民,王辉等.IGCC示范工程煤气化炉的数值模拟[J].煤炭转化,2009,32(1):14-19
    [123]栗冬,王辅臣,陈雪莉,等.稻草快速热解产物气流床气化工艺流程模拟[J].化工进展,38(1):147-153
    [124]Ramzan N., Ashraf A., Naveed S., et al. Simulation of Hybrid Biomass Gasification using Aspen plus:a Comparative Performance Analysis for Food, Municipal Solid and Poultry Waste[J]. Biomass and Bioenergy,2011,35(9):3962-3969
    [125]Doherty W., Reyonlds A., Kennedy D. The Effect of Air Preheating in a Biomass CFB Gasifier using Aspen Plus Simulation[J]. Biomass and Bioenergy,2009,33(9): 1158-1167
    [126]沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究[J].中国电机工程学报,2006,26(11):7-11
    [127]张亚男,肖军,沈来宏.串行流化床稻秸气化合成甲醇的模拟[J].中国电机工程学报,2009,29(32):103-111
    [128]Shen L., Gao Y., Xiao J. Simulation of Hydrogen Production from Biomass Gasification in Interconnected Fluidized Beds[J]. Biomass and Bioenergy,2008, 32(2):120-127
    [129]Mathieu P., Dubuisson R. Performance Analysis of a Biomass Gasifier[J]. Energy Conversion and Management,2002,43(9):1291-1299
    [130]陈汉平,赵向富,米铁,等.基于ASPEN PLUS平台的生物质气化模拟[J].华中科技大学学报(自然科学版),2007,35(9):49-52
    [131]张伟鹏,孙培勤,王世磊,等.使用ASPEN PLUS模拟煤与生物质共气化制费托油[J].化工时刊,2011,25(7):11-15
    [132]周金豪,陈雪莉,郭强等.基于ASPEN PLUS模拟生物质与煤气流床共气化工艺[J].太阳能学报,31(9):1112-1116
    [133]Nikoo M. B., Mahinpey N. Simulation of Biomass Gasification in Fluidized Bed Reactor using ASPEN PLUS[J]. Biomass and Bioenergy,2008,32(12):1245-1254
    [134]杨海平,陈汉平,杜胜磊,等.碱金属盐对生物质三组分热解的影响[J].中国电机工程学报,2009,29(17):70-75
    [135]Haykiri-Acma H., Yaman S. Interaction Bbetween Biomass and Different Rank Coals during Co-pyrolysis[J]. Renewable Energy,2010,35(1):288-292
    [136]武宏香,李海滨,赵增立.煤与生物质热重分析及动力学研究[J].燃料化学学报,2009,37(5):538-545
    [137]严帆帆,朱予东,徐培培,等.掺混生物质焦和煤焦共气化的热重分析[J].能源技术,2009,30(4):205-208
    [138]阎维平,陈吟颖.生物质混合物与煤共热解的协同特性[J].中国电机工程学报,2007,27(2):80-86
    [139]Arenillas A., Rubiera F., Parra J B., et al. Influence of Char Structure on Reactivity and Nitric Oxide Emissions[J]. Fuel processing technology,2002,77:103-109
    [140]Cetin E., Moghtaderib B., Gupta R., et al. Influence of Pyrolysis Conditions on the Structure and Gasification Reactivity of Biomass Chars[J]. Fuel,2004,83(16): 2139-2150
    [141]贾相如,金保升,肖睿,等.污水污泥热解和燃烧特性的实验研究[J].锅炉技术,2005,36(6):39-42
    [142]宋长忠,方梦祥,余春江,等.杉木热解及燃烧特性热天平模拟试验研究[J].燃料化学学报,2005,33(1):68-73
    [143]Wang Q., Zhao W., Liu H., et al. Interactions and Kinetic Analysis of Oil Shale Semi-coke with Cornstalk during Co-combustion[J]. Applied Energy,2011,88(6): 2080-2087
    [144]Biagini E., Lippi F., Petarca L., et al. Devolatilization Rate of Biomasses and Coal-Biomass Blends:an Experimental inVestigation[J]. Fuel,2002,81(8): 1041-1050
    [145]车德勇,李健,李少华,等.生物质掺混比例对煤气化特性影响的试验研究[J].中国电机工程学报,2013,33(5):35-40
    [146]李美芬,曾凡桂,孙蓓蕾,等.低煤级煤热解H2生成动力学及其与第一次煤化作用跃变的关系[J].物理化学学报,2009,25(12):2597-2603
    [147]付鹏,胡松,孙路石,等.稻草和玉米秆热解气体产物的释放特性及形成机理[J].中国电机工程学报,2009,29(2):113-118
    [148]马爱玲,谌伦建,黄光许,等.生物质与煤混烧的热重—红外试验研究[J].煤炭学报,2011,36(1):124-128
    [149]朱孔远.生物质与煤共热解实验研究[D].焦作:河南理工大学.2010.
    [150]付鹏.生物质热解气化气相产物释放特性和焦结构演化行为研究[D].武汉:华中科技大学,2010
    [151]胡荣祖,高胜利,赵凤起.热分析动力学(第2版)[M].科学出版社,2008:2-3
    [152]Popescu C., Segale E. Critical Considerations on the Methods for Evaluating Kinetic Parameters from Non-isothermal Experment [J]. University of Bucharest, 1998,5 (30):313-327
    [153]Coats A., Redfern J. Kinetics Parameters from Thermogravimetric Data[J]. Nature, 1964,201:68-69
    [154]Vladimir Vand. A Theory of the Irreversible Electrical Resistance Changes of Metallic Films Evaporated in Vacuum[J]. Proceedings of the Physical Society,1943, 55(3):222-246
    [155]刘旭光,李保庆.分布活化能模型的理论分析及其在半焦气化和模拟蒸馏体系中的应用[J].燃料化学学报,2001,29(1):54-59
    [156]G6mez-Barea A., Ollero P. An Approximate Method for Solving Gas-solid Non-catalytic Reactions[J]. Chemical Engineering Science,2006,61(11): 3725-3735
    [157]向银花,王洋,张建民等.煤气化动力学模型研究[J].燃料化学学报,2002,30(1):21-26
    [158]Molina A., Mondragon F. Reactivity of Coal Gasification with Steam and CO2[J]. Fuel,1998,77(15):123-129
    [159]王新运.生物质热解动力学研究[D].淮南:安徽理工大学,2006
    [160]Vassilev S. V., Baxter D., Andersen L. K., et al. An Overview of The Organic and Inorganic Phase Composition of Biomass[J]. Fuel,2012,94:1-33
    [161]Cumming J. W. Reactivity Assessment of Coals Via a Weighted Mean Activation Energy[J]. Fuel,1984,63(10):1436-1440
    [162]赵淑蘅.生物质与煤炭共热解特性及协同作用的研究[D].北京:中国林业科学研究院,2012
    [163]王明敏,张建胜,张守玉等.热解条件对煤焦结构及气化反应活性的影响[J].煤炭转化,2007,30(3):21-24
    [164]石金明.典型煤种热解气化特性研究[D].武汉:华中科技大学,2010
    [165]杨海平,陈汉平,鞠付栋,等.热解条件及煤种对煤焦气化活性的影响[J].中国电机工程学报,2009,29(2):30-34
    [166]杨海平,陈汉平,陈应泉,等.热解过程中棕榈壳焦的物化结构演变特性[J].中国电机工程学报,2008,28(32):106-110
    [167]谭洪,张磊,韩玉阁.不同种类生物质热解炭的特性实验研究[J].生物质化学工程,2009,43(5):31-34
    [168]李美芬.低煤级煤热解模拟过程中主要气态产物的生成动力学及其机理的实验研究[D].太原:太原理工大学,2009
    [169]Lis G. P., Mastalerz M., Schimmelmann A., et al. FTIR Absorption Indices for Thermal Maturity in Comparison with Vitrinite Reflectance Ro in Type-Ⅱ Kerogens from Devonian Black Shales[J]. Organic Geochemistry,2005,36(11):1533-1552
    [170]Chen C., Gao J. S., Yan Y. J. Observation of the Type of Hydrogen Bonds in Coal by FTIR[J]. Energy and Fuels,1998,13(2):446-449
    [171]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原:太原理工大学,2004
    [172]刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究[D].太原:太原理工大学,2004
    [173]范晓旭,贤建伟,初雷哲,等.生物质鼓泡流化床和循环流化床气化对比试验[J].农业机械学报,2011,42(4):96-99
    [174]Song T., Wu J., Shen L., et al. Experimental Investigation on Hydrogen Production from Biomass Gasification in Interconnected Fluidized Beds[J]. Biomass and Bioenergy,2012,36:258-267
    [175]苏德仁,刘华财,周肇秋,等.生物质流化床氧气—水蒸气气化实验研究[J].燃料化学学报,2012,40(3):309-314
    [176]贤建伟,范晓旭,韩中合,等.床料对生物质流化床气化影响的初步试验研究[J].可再生能源,2011,29(1):45-48
    [177]向夏楠,顿玉环,李伟振,等.稻壳与木屑气化制取富氢燃气的试验研究[J].可再生能源,2010,28(2):26-29
    [178]杨建蒙,孙学峰.生物质鼓泡流化床气化特性的空气当量比影响分析[J].应用能源技术,2009,7:1-4
    [179]李伟振.生物质流化床气化制取富氢燃气试验系统设计与试验结果[D].镇江:江苏大学,2009
    [180]马文超,胡艳军,刘方金,等.生物质循环流化床气化的实验[J].煤气与热力,2007,27(7):31-34
    [181]蒋剑春,应浩,戴伟娣,等.锥形流化床生物质气化技术和工程[J].农业工程学报,2006,22(S1):211-216
    [182]陈平.生物质流化床气化机理与工业应用研究[D].合肥:中国科学技术大学,2006
    [183]吕鹏梅,常杰,付严,等.生物质流化床催化气化制取富氢燃气[J].太阳能学报,2004,25(6):769-775
    [184]米铁,张春林,刘武标,等.流化床作为生物质气化反应器试验研究[J].化学工程,2003,31(5):26-30
    [185]Howaniec N., Smolinski A., Stanczyk K., et al. Steam Co-gasification of Coal and Biomass Derived Chars with Synergy Effect as an Innovative Way of Hydrogen-rich Gas Production[J]. International Journal of Hydrogen Energy,2011,36(22): 14455-14463
    [186]Kumar A., Eskridge K., Jones D. D., et al. Steam-Air Fluidized Bed Gasification of Distillers Grains:Effects of Steam to Biomass Ratio, Equivalence Ratio and Gasification Temperature[J]. Bioresource Technology,2009,100(6):2062-2068
    [187]Smolinski A., Howaniec N., Stanczyk K. A Comparative Experimental Study of Biomass, Lignite and Hard Coal Steam Gasification[J]. Renewable Energy,2011, 36(6):1836-1842
    [188]Fermoso J., Arias B., Plaza M. G., et al. High-pressure Co-gasification of Coal with Biomass and Petroleum coke[J]. Fuel Processing Technology,2009,90(7-8): 926-932
    [189]Lapuerta M., Hernandez J. J., Pazo A., et al. Gasification and Co-gasification of Biomass Wastes:Effect of the Biomass Origin and the Gasifier Operating Conditions[J]. Fuel Processing Technology,2008,89(9):828-837
    [190]Yang H., Yan R., Chen H., et al. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis[J]. Fuel,2007,86(12-13):1781-1788
    [191]Aznar M. P., Caballero M. A., Sancho J. A., et al. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant[J]. Fuel Processing Technology,2006,87(5):409-420
    [192]Sudiro M., Pellizzaro M., Bezzo F., et al. Simulated Mmoving Bed Technology Applied to Coal Gasification[J]. Chemical Engineering Research and Design,2010, 88(4):465-475
    [193]韩玉杰.气化炉中生物质—煤共同气化的模拟研究[J].应用能源技术,2009,12(7):16-18
    [194]Lee J. M., Kim Y. J., Lee W. J., et al. Coal-gasification Kinetics Derived from Pyrolysis in a Fluidized-bed Reactor[J]. Energy,1998,23(6):475-488
    [195]Matsui I., Kunii D., Furusawa T. Study of Fluidized Bed Ssteam Gasification of Char by Thermogravimetrically Obtained Kinetics[J]. Journal Chem Eng Japan, 1985,18:105-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700