助老助残四足并联腿步行机器人机构设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文将并联机构作为四足步行机器人的腿机构,结合模块化、可重构思想,提出一种助老助残四足/两足可重构并联腿步行机器人,旨为老人和下肢残障者提供一种更加便利的乘用步行机器人。研究成果一方面将拓展并联机构应用的新领域,具有较高的学术价值;另一方面将提高老年人和下肢残障者的生活质量,具有重要的社会意义。
     首先,基于模块化、可重构思想,完成了四足/两足可重构并联腿步行机器人、并联腿及可重构装置的机构设计。
     其次,以四足并联腿步行机器人为研究对象,分析了机器人的运动特征;将机器人的运动学问题转化为单个并联腿的运动学问题,完成了四足并联腿步行机器人的位置分析;从机构学角度,将机器人等效为分支数不同的并联机构,利用并联机构理论和影响系数理论,完成机器人的速度、加速度分析,用MATLAB软件进行运动学数值算例分析。
     再次,进行了单个摆动腿的动力学建模分析,并用MATLAB软件进行运动学、动力学数值算例分析;建立了四足并联腿步行机器人超确定输入下的协调方程;按加权最小二乘法进行了机器人动载最优协调分配。随后,采用复合摆线轨迹规划方法,规划了有效的机器人单腿足底运动轨迹;在不同运动方式(动态步行、静态步行、四足站立)下,分析了多种冗余输入组合及其优劣性。
     最后,对单个摆动腿和四足步行机器人分别进行了ADAMS仿真。仿真结果一方面证明运动学、动力学模型的正确性和有效性,另一方面按照预先规划好的足底轨迹,可以得到驱动器位移、速度、加速度及驱动力曲线,为机器人样机的研制奠定基础。
Using the parallel mechanism as leg mechanism, combined the advantage of the modular robot and reconfigurable robot, a novel reconfigurable quadruped /bipedal walking robot with parallel mechanism for the elderly and the disabled is proposed in this paper. It is intended to provide a more convenient walking robot for the elderly and the disabled. The research results not only have high academic value that will develop a new application field of parallel mechanism, but also have important social significance that will improve the quality of life of the elderly and the disabled.
     Firstly, the concrete application condition of manned robot is analyzed. The mechanical design of quadruped /bipedal reconfigurable walking robot, parallel leg mechanisms, and reconfigurable device is accomplished.
     Secondly, taking the quadruped parallel walking robot as the object of study, the movement characters of robot are analyzed. The kinematics problem of the robot can be transformed into the kinematics problem of one parallel leg mechanism. The position analysis of the quadruped parallel walking robot is accomplished. From the mechanisms point of view, the robot is equivalent to the parallel mechanism with different branch number. Using the parallel mechanism theory and influence coefficients theory, the velocity and acceleration of robot is analyzed. Using MATLAB program, kinematics numerical example is analyzed.
     Thirdly, the dynamics modeling of the single swing leg is analyzed. Using MATLAB program, numerical examples of the kinematics and dynamics are analyzed. The compatibility equation of the quadruped parallel walking robot is established under the actuation redundancy. Using the weighted least square method, the optimal coordination distribution of the dynamic loading is achieved.
     Fourthly, an effective foot trajectory of the single leg mechanism is planned by the method of composite cycloid trajectory planning. Under different motion mode (such as: dynamic walking, static walking, four feet standing), multiple combinations of the redundant inputs and their superiority-inferiority are analyzed.
     Lastly, both the single swinging leg and the quadruped walking robot with parallel mechanism were simulated by ADAMS. On the one hand, the simulation results proved the accuracy and validity of the kinematics and dynamics model. On the other hand, according to planned foot trajectory, we can gain the curves of the actuator displacement, velocity, acceleration and driving force. It lays a foundation for the drive motor selection and robot control.
引文
1王田苗.全力推进我国机器人技术.机器人技术与应用, 2007, (2): 17-22
    2中华人民共和国科学技术部.国家中长期科学和技术发展规划纲要(2006-2020). http://www.most.gov.cn/kjgh/
    3邓志东,程振波.我国助老助残机器人产业与技术发展现状调研.机器人技术与应用, 2009, (2): 20-24
    4 S. Hirose, K. Kato. Study on Quadruped Walking Robot in Tokyo Institute of Technology-past, present and future. IEEE International Conference on Robotics and Automation, San Francisco, USA, 2000, 1: 414-419
    5 R. S. Mosher. Test and Evaluation of a Versatile Walking Truck. In Proc. of the Cornell Aeronautic Lab/ISTVS Off-road Mobility Research Symposium, Washington, USA, 1968: 359-379
    6 http://www-robot.mes.titech.ac.jp/research/paper_e.html
    7 K. Arikwa, S. Hirose. Development of Quadruped Walking Robot TITAN-VIII. IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996, 1: 208-214
    8 K. Kato, S. Hirose. Development of the Quadruped Walking Robot,“TITAN- IX”. IEEE/ IECON International Conference on Industrial Electronics Society, Nagoya, Japan, 2000, 1:40-45
    9 A. Takanishi, J. Yamaguchi, M. Iwata. Dynamic Quadruped Walking Stabilized with Trunk Motion. Proceedings of the IEEE/RSJ Intelligent Conference on Intelligent Robots and Systems, Pittsburgh, USA, 1995, 3: 165-172
    10 Y. Fukuoka, H. Kimura. Biologically Inspired Adaptive Dynamic Walking of a Quadruped on Irregular Terrain: Proposal of the Design of Coupled Neuro-Mechanical System and Evaluation of the Mutual Entrainment among Pitching Motion. CPG and Rolling Motion. Journal of the Robotics Society of Japan, 2003, 21(5): 569-580
    11郑浩峻.基于CPG原理的机器人运动控制方法.高技术通讯, 2003, (7): 64-67
    12 Y. Fukuoka, H. Katabuti, H. Kimura. Dynamic Locomotion of Quadrupeds“Tekken3&4”Using Simple Navigation System. Journal of Robotics and Mechatronics, 2010, 22(1): 36-42
    13 http://www.bostondynamics.com/robot_bigdog.html
    14 http://tech.sina.com.cn/d/2010-07-22/08024457702.shtml
    15 M. Buehler. Dynamic Locomotion with One, Four and Six-Legged Robots. Journal of the Robotics Society of Japan, 2002, 20, 3: 15-20
    16 K. Taehun, K. Hyungseok, S. Taeyoung, et al. Design of Quadruped Walking and Climbing Robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2003, 1: 619-624
    17 B. Huang, P. Wang, L. Sun. Behavior-based Control of a Hybrid Quadruped Robot. The Sixth World Congress on Intelligent Control and Automation (WCICA 2006), 2006, 2: 8997-9001
    18 http://www.pim.tsinghua.edu.cn/units/me/thsr/
    19马培荪,窦小红,刘臻.全方位四足步行机器人的运动学研究.上海交通大学学报, 1994, 28(2): 36-39
    20雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望.机械设计, 2006, 23(9): 1-4
    21徐小云,颜国正,丁国清.微型六足仿生机器人及其三角步态的研究.传动技术, 2002, 10(4): 11-15
    22袁鹏,孟庆鑫,王沫楠,等.两栖仿生机器蟹的单足路径规划和生成.哈尔滨工程大学学报, 2003, 24(3):297-301
    23 Y. Ota, K. Yoneda, F. Ito, et al. Design and Control of 6-DOF Mechanism for Twin-frame Mobile Robot. Autonomous Robots, 2001, 10(3): 297-316
    24 Y. Sugahara, G. Carbone, K. Hashimoto, et al. Experimental Stiffness Measurement of WL-16RII Biped Walking Vehicle during Walking Operation. Journal of Robotics and Mechatronics, 2007, 19(3): 272-280
    25藤井康夫.危险场所作业的关西最大2足步行机器人. Robot Laboratory, 2005, (19): 7-12
    26范顺成,韩书葵,谷慧茹.两足步行机器人并联腿机构的稳定性分析.河北工业大学学报, 2004, 33(1): 27-30
    27中野荣二,中岛秀明.室外自然地形散步机器人Chari.Be.日本机器人学会杂志, 2006, 24(2): 179-180
    28 Y. Wu, H. Nakamura, T. Yukio, et al. Development of a Power Assist System of a Walking Chair Based on Human Arm Characteristics. Journal of Advance Mechanical Design, System and Manufacturing, 2007, 1(1): 141-154
    29 K. Yoneda. Light Weight Quadruped with Nine Actuators. Journal of Robotics and Mechatronics, 2007, 19(2): 160-165
    30 K. Stefan. On the Anticipation of Ethical Conflicts between Humans and Robots in Japanese Mangas. International Review of Information Erhics, 2006, 6(12): 63-68
    31 J. Lee, J. Y. Kim, I. W. Park, et al. Development of a Humanoid Robot Platform HUBO FX-1. International Joint Conference, Busan, South Korea, 2006: 1190-1194
    32 J. Tang, Q. Zhao, R. Yang. Stability Control for a Walking-chair Robot with Human in the Loop. International Journal of Advanced Robotic Systems, 2009, 6(2): 115-120
    33 M. Thomas, D. Tesar. Dynamic Modeling of Serial Manipulator Arms. Journal of Dynamic Systems, Measurement, and Control, 1982, 104(9): 218-227
    34 Z. Huang. Modeling Formulation of 6-DOF Multi-Loop Parallel Manipulators, Part-1: Kinematic Influence Coefficients. Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, Bucharest, Romania, 1985: 155-162
    35 Z. Huang. Modeling Formulation of 6-DOF Multi-Loop Parallel Manipulators, Part-2: Dynamic Modeling and Example. Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, Bucharest, Romania, 1985: 163-170
    36 Z. Huang. Error Analysis of Position and Orientation in Robot Manipulator. Mechanism and Machine Theory, 1987, 22(6): 577-581
    37黄真,曲义远.空间并联多环机构的特殊位形分析.全国第五届机构学学术会议.庐山, 1987: 1-7
    38 H. B. Wang, Z. Huang. Kinematic Influence Coefficient Method of Kinematic and Dynamic Analysis. Mechanism and Machine Theory, 1990, 25(2): 167-173
    39 Z. Huang, Y. S. Zhao. The Accordance and Optimization-Distribution Equations of the Over-Determinate Inputs of Walking Machines. Mechanism and Machine Theory, 1994, 29(2): 327-332
    40黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997: 29-35 65-118
    41 R. Ball. A Treatise on the Theory of Screws. England: Cambridge University Press, 1900: 1-200
    42 F. M. Dimentberg. Determination of the Motion of Spatial Mechanisms. Russian: Akad Nauk, Moscow, 1950: 1-250
    43 F. M. Dimentberg. The Screw Calculus and Its Application in Mechanics. U.S. Department of Commerce, Translation No AD680993,1968
    44 M. G. Mohamed, J. Duffy. A Direct Determination of Instantaneous Kinematics of Fully Parallel Robot Manipulators. ASME J. Mech. Transmiss. Aut. Des., 1985,107(2): 226-229
    45 Z. Huang, J. F. Liu, Q. C. Li. Unified Methodology for Mobility Analysis Based on Screw Theory, Springer-Verlag, 2008: 49-78
    46 G. Jaime, R. A. Carlos, C. Luis, et al. Kinematics and Dynamics of 2(3-RPS) Manipulators by Means of Screw Theory and the Principle of Virtual Work. Mech. Mach. Theory, 2008, 43(10): 1281-1294
    47 J. Gallardo, J. M. Rico, A. Frisoli, et al. Dynamics of Parallel Manipulators by Means of Screw Theory. Mechanism and Machine Theory, 2003, 38:1113-1131
    48韩书葵,方跃法,槐创锋. 4自由度并联机器人刚度分析.机械工程学报, 2006,42(增刊): 31-34
    49刘延龙,金建新,汪法根.基于螺旋理论的并联机构构型设计.中国机械工程, 2003, 14(24): 2096-2098
    50 Q. C. Li, Z. Huang, J. M. Herve. Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacement. IEEE Trans. on Robotics and Automation, 2004, 20(2): 173-180
    51 Z. Huang, Q. C. Li. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators. International Journal of Robotics Research, 2002, 21(2): 131-145
    52 X. W. Kong, C. Gosselin. Type Synthesis of Parallel Mechanisms with Multiple Operation Modes. ASME Journal of Mechanical Design, 2007, 129(6): 595-601
    53王一治,常德功.四足机器人研究综述.中国科技论文在线, http://www.paper.edu.cn
    54郭鸿勋.多足步行机器人机械系统模型的研究与设计. [华中科技大学硕士论文]. 2003: 13-24
    55钱涛,张融甫.可用作步行机腿的机构研究.机器人, 1989, (3): 47-51
    56徐轶群.四足步行机器人腿部机构及其稳定性步态控制.机械科学与技术, 2003, 22(1): 86-87
    57王吉岱,卢坤媛,徐淑芬,等.四足步行机器人研究现状及展望.制造业自动化, 2009, 31(2): 6-6
    58 L. W. Tsai. Multi-degree-of-freedom Mechanisms for Machine Tools and the Like. U. S. Patent, 5,656,905, August 12, 1997
    59黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006: 115-138 170-195 277-309 365-368
    60杨建新.并联机器人及其协调操作的运动学和动力学研究. [北京工业大学博士后论文]. 2006: 7-12
    61赵永生.多机器人系统的动力协调及性能研究. [燕山大学工学博士论文]. 1999: 9-23
    62邵华,关立文,王立平,等.冗余并联机床驱动力优化解析.清华大学学报(自然科学版), 2007, 48(7): 1325-1329
    63赵永生,冯运.多机器人系统关节驱动力矩调节的加权系数法.中国机械工程, 2001, 12(11): 1288-1290
    64雷静桃,高峰,崔莹.六足步行机足端轨迹规划及仿真研究.机械设计与研究, 2006, 22(4): 42-45
    65闰尚斌,韩宝玲,罗庆生.仿生六足步行机器人步态轨迹的研究与仿真.计算机仿真, 2007, 24(10): 156-160
    66高建设,刘德平,杨杰伟,等.一种新型并联机床的驱动输入选择.机器人, 2009, 31(6): 529-534
    67陈学东,孙翊,贾文川.多足步行机器人运动规划与控制.武汉:华中科技大学出版社, 2006: 126-129
    68杨洪义,宋伟刚,彭兆行.控制步行机足运动的一种方法—修正组合摆线法.机器人, 1994, 16(6): 350-356
    69 H. Kimura, I. Shimoyama, H. Miura. Dynamics in the Dynamic Walk of a Quadruped Robot. Advanced Robrics, 1990, 4(3):283-301
    70 D. Kang. A Study on a Adaptive Gait for a Quadruped Walking Robot under External Forces. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997, 2777-2782
    71 K. Inagaki, H. Kobayashi. A Gait Transition for Quadruped Walking Machine. Proceedings of the IEEE/RSJ International Conference on Intelligence Robots and Systems, Yokohama, Japan, 1993, 1: 525-531
    72 A. Sano, J. Furusho. Static-Dynamic Transitional Gait from Crawlto Pace. Proceedings of JSME Annual Conference on Robotics and Mechatronics, 1992, 239-246
    73 Y. Sakakibara, K. Kan, Y. Hattori, et al. Foot Trajectory for a Quadruped Walking Machine. IEEE International Workshop on Intelligent Robots and Systems, Ibaraki, Japan, 1990, 1: 315-322
    74何冬青. JTUWM-Ⅲ四足机器人trot步态运动特性研究. [上海交通大学博士论文]. 2006: 77-85
    75郑仁成. 5-UPS/PRPU并联机床的冗余驱动研究. [燕山大学硕士论文]. 2006: 35-46
    76 J. S. Gao, H. San, Y. S. Zhao. The Primary Calibration Research of a Measuring Limb in 5-UPS/PRPU Parallel Machine Tool. Internafional Conference Oil Intelligent Mechatronics and Automation. Piscataway, USA, 2004: 304-308
    77 Z. Huang, Q. C. Li. Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using Constraint-Synthesis Method, Int. J. Rob. Res., 2003, 22(1): 59-79
    78陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社, 2005: 12-14
    79陈旭,邓亮,蔡光起.基于虚拟样机技术的3-UPS并联机床仿真研究.机械与电子, 2006, (7): 61-63
    80郑建荣. ADAMS—虚拟样机技术入门与提高.北京:机械工业出版社, 2002: 2-13
    81范成建,熊光明,周明飞. MSC.ADAMS应用与提高.北京:机械工业出版社, 2006: 294-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700