基于摄动法的电力系统负荷模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的日益进步,电力系统稳定运行逐渐成为关系国民经济健康发展和人们正常生活重要的前提,为满足人们对电能不断增长的需求,电力系统本身发生了很多相应的变化,对电力系统的各种合理性研究就越来越重要。
     电力负荷是电力系统稳定运行中较为重要的一部分,综合负荷建模又是电力系统分析研究的重要课题,合理的负荷模型的建立逐渐成为系统仿真和计算结果可信度和准确度的关键,但是由于负荷模型复杂多变的特点,对其建模相当复杂,因此,在进行电网电压稳定性的研究中负荷特性的研究和适用于电压稳定分析的负荷模型的建立是一项重要的工作。电力系统是由发电、输电、配电、用电等几个重要部分组成的具有强非线性的大规模的动力系统,描述系统的数学模型也是具有强非线性的微分代数方程组,系统中的物理量的变化速率也有很大差异。为了减少这种强非线性以及速率的差异性带来的计算和分析的难度,在研究过程中需要舍弃一些次要因素来降低所分析系统模型的阶数。随着电网规模的扩大,电压敏感负荷的增多以及负荷水平的加重,电压不稳定事故成为一个威胁电网安全并且亟待解决的问题,有必要研究负荷模型对电压稳定的影响。
     本文首先介绍负荷模型研究的必要性,分析讨论比较两种建模方法,基于本课题的需求及研究背景条件,确定较为适合也较容易实现的方法。概括介绍电压稳定性研究对负荷模型的要求,以及负荷模型的确定对电力系统仿真的不同影响,列出常见的几种静态和动态负荷数学模型,引出静态特征系数以及本课题将采用的动态负荷模型。在讨论稳定问题时,通常会采用静态负荷模型作为考虑对象,这对研究电力系统动态特性存在较大制约,需要综合考虑静态负荷和动态负荷。感应电动机负荷是动态负荷的主要成分,运用集结法将静态负荷和感应电动机负荷等值为一个综合结构的负荷。分析比较几种降阶方法,重点介绍摄动法理论、研究现状及其相关研究方法,详细介绍多重时间尺度法的数学依据,对感应电动机负荷的五阶模型以及摄动降阶的三阶模型进行详细的推导。介绍小干扰稳定的定义及研究方法,分析比较几种常见的静态和动态分析方法。针对感应电动机静特性对小干扰稳定临界电压的数学模型进行推导,采用小干扰特征值分析法研究三种模型的特征值随参数变化而变化的情况。
     一系列分析后得到的综合模型使后续研究分析过程变到简化,得到适用于课题研究的数据。对摄动法的运用避免了降阶的盲目性和不合理性,基于实际算例仿真进行比较分析,验证了摄动降阶模型的合理性和时效性,为判断元件快慢属性找到了一条较为合理的途径,为日后研究更为复杂的系统模型奠定了基础。通过分析模型参数对小干扰稳定临界电压的影响,为进一步研究负荷动态建模及其对小干扰电压失稳的预防及校正提供了有利依据,并验证摄动法引用的合理性。
Stable operation of the power system is an important prerequisite for the healthy development of national economy and people's normal life. With the increasing advances in science and technology, to meet people's growing demand for power, the power system itself has undergone many changes, and all kinds of rationality of power system is becoming increasingly important.
     Power load is a more active part of the stable operation of the power system. The composite load modeling is an important issue for power system analysis, and reasonable load model is becoming the key of the credibility and accuracy of system simulation results. But load modeling is quit difficult for its characteristics of complexity and variability. Power system is a strongly nonlinear large-scale power system which consists of several important parts such as the generation, transmission, distribution, electricity, etc. The mathematical models of the system are also the strongly nonlinear differential algebraic equations, and the change rates of its physical quantities are quit different too. In order to reduce the difficulties of calculation and analysis brought by strongly nonlinear and rate differences, it is need to give up some minor factors to reduce the order of system model within the study, and the perturbation method avoid the blindness and irrationality of reduced-order. With the expansion of the grid-scale, the addition of the sensitive loads, the acceleration of the load growth and the aggravation of the load level, voltage instability incident is becoming a threat that must to be solved to the security of power system.
     In the first, this thesis introduces the necessity of the load model, discusses and compares two modeling methods, determines a more appropriate and more easily achieved method based on the research background conditions and the needs of this subject. Then it introduces the requirements of voltage stability to load models and the impacts of the load model on power system simulation, lists several common static and dynamic load mathematical models, and leads to the static characteristic coefficients and the dynamic load model which is adopted by this subject. While discussing the problem of voltage stability, the static load model has a big constraint for the study of power system dynamic characteristics. It is needed to both consider the static load and dynamic load, and the main component of dynamic load is induction motor load. At last, we value the static load and the induction motor load to a load with integrated structure by aggregation. This thesis analyzes several reduced-order approaches, and focuses on perturbation theory, its research status, and its associated research methods. Then it describes the mathematical basis of the multiple time scale method, and the original model and the reduced-order model based on the perturbation of induction motor load in detail is derived. This thesis presents the definition, research methods of voltage stability, analyzes and compares several static and dynamic analytical methods, and derives a mathematical model of the threshold voltage of the small signal stability in connection with the static characteristics of the induction motor. It elaborates the indicators of small disturbance voltage stability analysis and their response characteristics based on three models and the eigenvalue analysis method.
     The comprehensive model that through a series of analyzes simplifies the subsequent analysis process, and receives the data for this research. After the simulation, compare and analyze three models based on the actual examples, and verify the reasonable and timeliness of the perturbation model. All of these help to find a more suitable way to determine the component speed attribute, and would lay foundation for the more complex system model in future studies. The impact of the induction motor parameter changes to the small disturbance stability is given by using the practical examples. It is a useful reference for the further study of dynamic load modeling and prevention and correction to the system signal instability. And these verify the reference of the perturbation method is reasonable.
引文
[1]贺仁睦.电力系统精确仿真与负荷模型实用化[J].电力系统自动化,2004,28(16):4-7.
    [2]李晨霞,康积涛.基于动态负荷模型的电压稳定性研究[J].电气开关.2009,(6):26-31.
    [3]李培强.基于实际电网的负荷建模理论与方法研究[D].湖南:湖南大学,2004.
    [4]章键.电力系统负荷建模方法的研究[D].北京:华北电力大学电力系,1997.
    [5]陈凤,李欣然,陈辉华等.电动机模型结构及参数对暂态稳定仿真的影响[J].电力自动化设备,2004,24(8):29-33.
    [6]贺仁睦.电力系统动态仿真准确度的探究[J].电网技术.2000,24(12):1-4.
    [7]祝晶.基于统计综合法的负荷建模理论和方法研究[D].湖南:湖南大学,2006.
    [8]李成.电力负荷建模的在线统计综合方法研究及应用[D].南京:河海大学,2007.
    [9]张会贤.电力系统负荷统计学特性的研究[D].北京:华北电力大学,2007.
    [10]郭金川.电力系统负荷聚合方法研究[D].天津:天津大学,2008.
    [11]李晨霞.基于负荷模型分析的电力系统电压稳定性研究[D].河北:西南交通大学,2009.
    [12]周鹏.统计综合法负荷建模的研究[D].河南:郑州大学,2010.
    [13]徐翠娟.负荷特性聚类分析方法的研究[D].北京:华北电力大学,2007.
    [14]张磊.统计综合法电力系统负荷建模平台的开发[D].湖南:湖南大学,2009.
    [15]周玉光.电力系统动态负荷建模与负荷动静比例的提取[D].上海:上海交通大学,2006.
    [16]Carson W.Taylor.电力系统电压稳定[M].北京:中国电力出版社,2002.12.
    [17]曹亚龙.考虑负荷特性的电力系统电压稳定控制[D].南京:东南大学,2006.
    [18]Demarco, C.L, Overbye, TJ. An energy based security measure for assessing vulnerability to voltage collapse, IEEE Trans, Power Systems,1990,5(2):419-4279.
    [19]戴琦.电力系统分行业负荷构成建模研究[D].南京:河海大学,2005.
    [20]倪剑.电力系统负荷建模理论的研究及ANN负荷模型的应用[D].山东:山东大学,2005.
    [21]鞠平.电力系统负荷建模[M].北京:中国电力出版社,2008.
    [22]贺仁睦,王卫国,蒋德斌等.广东电网动态负荷实测建模及模型有效性的研究[J].中国电机工程学报.2002,22(3),78~82.
    [23]韩祯祥.电力系统稳定[M].北京:中国电力出版社,1995.
    [24]鞠平,金艳,吴峰等.综合负荷特性的分类综合方法及其应用[J].电力系统自动化,2004,28(1):64-68.
    [25]李力,朱守真,沈善德等.负荷动态模型集结[J].电力自动化设备.1999,19(4):1-11.
    [26]鞠平.电力系统负荷建模理论与实践[J].电力系统自动化.1999.10,23(19):1-7.
    [27]周海强,峁超,鞠平等.考虑配电网络的综合负荷模型可辨识性分析[J].电力系统自动化.2008.8,32(16):16-19.
    [28]陈谦,孙建波,蔡敏等.考虑配电网络综合负荷模型的参数确定[J].中国电机工程学报.2008.6,28(16):45-50.
    [29]孙辉,李卫东,马昭彦等.灵敏度关系求取的多变量摄动法及其应用研究[J].统仿真学报.2001,13(4):414-419.
    [30]黄用宾,冯懿治,裘子秀等.摄动法简明教程[M].上海:上海交通大学出版社,1986.
    [31]和萍,王克文.几种大系统降阶方法的研究与比较[J].中原工学院学报.2006,17(2):1-4.
    [32]Prabha Kunder. Power system stability and control [M]. New York:McGraw-Hill,1994.
    [33]何仰赞.电力系统分析[M].武汉:华中理工大学出版社,1985.
    [34]刘华平,孙富春,何克忠等.奇异摄动控制系统:理论与应用[J].控制理论与应用.2003,20(1):1-7.
    [35]陈怀琛,吴大正MATLAB及在电子信息课程中的应用(第3版)[M].北京:电子工业出版社,2006.9.
    [36]汤涌,宋新立,刘文焯等.电力系统全过程动态仿真中的长过程动态模型[J].电网技术.2002,26(11):20-25.
    [37]王晓蔚,张承学,胡志坚等.基于MATLAB的复杂电力系统动态仿真[J].继电器.2002,30(10):21-24.
    [38]潘雪萍.电力系统数字仿真研究综述[J].江苏电机工程.2005.24(1):80-84.
    [39]刘永强,严正,倪以信等.双时间尺度电力系统动态模型降阶研究[J].电力系统自 动化.2002,26(19):1-6.
    [40]李先允.基于多时间尺度模型的大型风电场直流并网运行特性研究[D].南京:东南大学,2009.
    [41]雷文,刘永强,吴捷等.慢动态对电力系统中长期失稳机理的影响[J].华南理工大学学报(自然科学报).2003,31(7):6-9.
    [42]刘海涛,李焕,徐波等.基于改进型模态分析法的电力系统动态等值分析[J].南京工程学院学报(自然科学版).2008,6(1):27-30.
    [43]文志武,肖爱国.多刚性奇异摄动问题Rosenbrock方法的定量误差分析[J].计算数学.2006,28(4):421-432.
    [44]李华,曹新军.复杂电力系统的鲁棒降阶方法研究[J].兰州交通大学学报.2009,28(3):36-40.
    [45]程友良,牛东晓,刘力丰等.摄动法及其在电力系统中的应用[J].华北电力学院学报.1994,21(3):79-84.
    [46]刘海涛,龚乐年.多机系统利用模态最有线性组合法的降阶分析[J].电力系统保护与控制.2010,38(15):1-11
    [47]王梅义,吴竞昌,蒙定中.大电网系统技术(第二版)[M].北京:中国电力出版社,1995.6.1.
    [48]CIGRE Task Force 38-02-10, Modelling of Voltage Collapse Including Dynamic Phenomena,1993.
    [49]DL 755-2001.电力系统安全稳定导则[S].北京:中国电力出版社,2001
    [50]IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and Classification of Power System Stability. IEEE Transactions on Power Systems,2004.5, 19(2):1387-1401.
    [51]蔡晔.基于PSS/E的电力系统静态电压稳定性研究[D].浙江:浙江大学,2003.
    [52]包黎昕.电压稳定动态分析及预防电压崩溃措施的研究[D].武汉:华中理工大学,1999.
    [53]Venikov V A, Stroev V A, Idelchick V I and Tarasov V I. Estimation of Electrical Power System Steady-State Stability in Load Flow Calculations. LEE Trans, PAS,1975,94(3): 1034-1041.
    [54]F. John Meyer, Kwang Y. Lee, "Improved Dynamic Load Model for Power Systems Stability Studies" IEEE Trans on PAS-101,1982, (4):3303-3309.
    [55]Hill D J. Nonlinear Dynamic Load Models with Recovery for Voltage Stability Studies. IEEE Trans on Power Systems,1993,8(1):166-176.
    [56]Tamura, Y, Mori, H, Iwamoto, S. Relationship between Voltage Instability and Multiple Load Flow Solutions in Electric Power Systems. IEEE Trans, PAS,1983.5,102(5): 1115-1125.
    [57]谢丽.一种实用的综合灵敏度计算法[J].辽宁工学院学报.2001,21(1):60-68.
    [58]孙华东,周孝信,李若梅.计及感应电动机负荷的静态电压稳定性分析[J].中国电机工程学,2005,25(24):1-7.
    [59]Xu W, Mansour Y. Voltage Stability Analysis Using Generic Dynamic Load Models, IEEE Trans, PWRS,1994.2,9(1):479-493.
    [60]He Renmu, Ma Jin, David J. Hill. Composite Load Modeling via Measurement Approach. IEEE Trans on Power Systems,2006,21(2):663-672.
    [61]徐浩.电力系统电压稳定研究[D].南京:东南大学,2005.
    [62]汤涌,侯俊贤,刘文焯等.电力系统数字仿真负荷模型中配电网络及无功补偿与感应电动机的模拟[J].2005,25(3):8-12.
    [63]夏道止.电力系统分析[M].北京:中国电力出版社,2004.9.
    [64]辜承林,陈乔夫,熊永前.电机学(第二版)[M].武汉:华中科技大学出版社,2004.8.
    [65]毛承熊,樊俊.电力系统动态仿真计算的改进算法[J].华中理工大学学报.1994,22(10):41-44.
    [66]毛承熊,陆继明,樊俊.电力系统动态仿真的新模型[J].电力系统及其自动化学报.1996,8(1):1-7.
    [67]Overbye, T.J, Demarco, C.L. Voltage security enhancement using energy based sensitivities, IEEE Trans, Power Systems,1991,6(3):1196-1202.
    [68]Tripathy S C, Induldar C S, Visw anatha B, Voltage Collapse at the load End of a Series Compensated EHV Transmission Line, Electrical Power & Energy Systems,1993,15(4): 251-253.
    [69]李晓蕾.基于详细模型的多机电力系统小扰动稳定降阶分析方法研究[D].河南:郑州大学,2003.
    [70]刘海涛.线性系统降阶处理及其在电力系统分析中的应用[D].南京:东南大学,2003.
    [71]孙华东,周孝信.计及感应电动机负荷的电力系统在线电压稳定指标[J].中国电机工程学报.2006,26(6):1-7.
    [72]孙华东,周孝信,李若梅等.感应电动机负荷参数对电力系统暂态电压稳定性的影响[J].电网技术.2005,29(3):1-6.
    [73]蔡泽祥,王明秋,雷亚洲等.电力系统长期动态仿真中的统一负荷模型[J].东北电力学院学报.1998,18(1):9-13.
    [74]曹国云,王强,刘丽霞等.电压稳定分析中降阶潮流雅可比矩阵的研究[J].中国电机工程学报.2008,28(4):42-47.
    [75]林舜江,李欣然,刘杨华等.考虑负荷动态模型的在线小干扰电压稳定指标[J].电力系统自动化.2008,32(9):25-29.
    [76]郑敏玲,武坤.利用非线性方程组求解矩阵特征值特征向量[J].桂林工学院学报.2002,22(1):85-88.
    [77]陈亚民.电力系统计算程序及其实现[M].北京:水利电力出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700