基于模糊逻辑的图像处理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先概要地介绍了数字图像处理的基本概念、基本理论、基本方法以及它们在实际中的应用;然后介绍了模糊数学理论的基本概念与基本理论;在此基础上提出了一些基于模糊逻辑的图像处理新方法和新思想,并取得了良好的效果。
     主要包括以下六个方面内容:
     第一,为克服单一使用中值滤波方法去除脉冲噪声会造成图像细节信息丢失,使图像变模糊的缺陷,本文第三章提出一种基于模糊逻辑的图像去噪算法。该算法通过分析像素不同方向邻域像素灰度值分布情况来检测脉冲噪声点,为更好地保持图像边缘等细节特征,使用改进MMEM(maximum-minimum exclusive median)算法对噪声像素点的灰度值进行估计。最后,新算法通过引入模糊逻辑规则,更加合理地进行噪声污染像素点的灰度值复原。仿真实验表明,与其它改进中值滤波算法相比该算法在去除脉冲噪声时能取得更好的效果。
     第二,在研究图像噪声过滤时,为了既有效地去除噪声,又能够较好地保持图像边缘和重要的细节信息,本文第四章将模糊逻辑思想与Perona-Malik方法相结合,提出了一种对噪声图像更有效更有适应性的基于模糊逻辑的偏微分方程去噪算法。该算法把PM方法中扩散方程的扩散系数看作像素梯度对于图像平滑区域的模糊隶属度函数,并通过定义合理的模糊隶属度函数,使得对不同的像素梯度大小采用不同的扩散系数。实验结果表明,该算法在去除噪声的同时,能更好地保持图像的边缘细节,具有较好的处理效果。
     第三,本文第五章将粒子群优化算法与模糊C—均值聚类算法相结合,应用于图像边缘检测,以期解决标准FCM算法在图像边缘检测中对初始值敏感及容易陷入局部极小的两大缺陷。首先,基于数学测度概念构造一个描述边缘点信息的特征向量,将灰度图像中的每一个像素点看成是一个数据样本,将该点灰度值处理后构成其边缘点信息特征向量,形成具有三维特征的数据集,然后对这个数据集应用粒子群模糊聚类算法进行分类,自适应地检测出图像的边缘点,达到提取边缘的目的。仿真实验表明,此算法具有良好的抗噪性能,能够得到较好的边缘效果,提高了边缘定位的精度。
     第四,本文第六章在分析Pal模糊边缘提取算法的基础上,为克服Pal算法图像增强区域单一、图像增强后造成低灰度信息损失且没有做抑噪处理的缺陷,提出一种新的基于模糊增强的图像边缘提取算法。新算法通过引入模糊熵,进行有目的选取不同灰度层次的阈值,同时增强图像中不同灰度层次的边缘信息,通过定义新的隶属函数和一种新的模糊增强算子,结合图像平滑滤波处理进行图像边缘提取,有效地克服了Pal算法速度慢且损失图像部分灰度信息的缺陷,取得了优于基于传统Pal算法进行图像边缘提取的效果。
     第五,在第七章为确定图像分割的最佳阈值,本文提出了一种新的有效的图像阈值分割方法。该方法首先给出一个新模糊熵的定义,这个模糊熵定义不仅考虑到图像在模糊域中划分区域时随隶属函数变化而变化的情况,同时也考虑到图像在空域中划分区域时随隶属函数变化而变化的情况,这样就使得图像依照最大熵准则变换到模糊域更能够有效地反映图像的固有信息。然后,采用自适应粒子群优化算法寻求隶属函数的最优参数,得到分割的最佳阈值,并用该阈值对图像进行分割。将新算法应用于图像分割中,取得了优于现有大多数阈值分割算法的效果。
     第六,本文第八章提出了一种新的图像阈值分割方法,该方法首先给出模糊连通度定义。然后,采用图像划分测度作为区分目标和背景的阈值分割准则,计算图像划分测度时采用基于灰度级的权值矩阵来代替通常所用的基于像素的权值矩阵来描述图像中各像素之间的关系,从而减少算法实现的复杂性,提高算法运算速度。仿真实验结果表明:与现有大多数模糊阈值分割方法相比,本章提出的方法更具优越性。
The basic concepts, basic theorys and basic methods of digital image processing are summarily introduced firstly. Then the basic concepts and basic theorys of fuzzy logic are introduced. At last, new ideas and methods based on fuzzy logic processing technique are proposed. The research results mainly include the following six aspects:
     (1) A new adaptive image de-noising algorithm based on fuzzy logic is proposed by analyzing the deficiencies of median filter when it is used to eliminate impulsive noise. The new algorithm based on grayscale distribution of neighboring pixels in different directions detections noise points, and it uses the improved algorithm of maximum-minimum exclusive median method to estimate the gray level of current noisy pixels. Finaly, introducing the fuzzy logic rules into the new algorithm, the gray level of noisy pixels will be restored more reasonably. Simulation results show that the new algorithm may bring better effect in eliminating impulsive noise in comparison with the improved medium filter methods.
     (2) In research of image denoising, in order to remove noise effectively and preserve edges and key details, an effective image denoising algorithm based on fuzzy logic PDEs is proposed. This algorithm combines the fuzzy logical with the Perona-Malik method. This algorithm builds a new diffusion coefficient in partial derivative equation with the fuzzy membership between the image gradient and the corresponding smooth regions.By defining reasonable fuzzy membership function, the algorithm bases on a selective and improved diffusion coefficient and performes adaptively towards different gradients. Simulated experiments show the algorithm can effectively reduce the noises of the image, and its results needn't to be adjusted, which can enhancement the precision of edge orientation.
     (3) An effective PSO fuzzy clustering edge detection algorithm is proposed. PSO (particle swarm optimization) algorithm and Fuzzy C-Mean (FCM) algorithm are combined to overcome two shortcomings, namely the initialization sensitivity and the local minimum of standard FCM algorithm in image edge detection. At first, a vector is constructed to describe edge point informations, which includes neighborhood homogeneity information measure, orientation information measure, and gradient strength. Then we regard a pixel point in a gray image as a data sample, and its gray values which are worked by our defined vector's operator as the feature vectors of this data sample, in this way we can obtain a data set with three-dimensional features. Then we use the PSO fuzzy clustering algorithm on this data set, it can detect out the edge points adaptively. Simulated experiments show the algorithm can effectively reduce the noises of the image, and its results needn't to be adjusted, which can enhance the precision of edge orientation.
     (4) A novel image edge extraction algorithm based on fuzzy enhancement is proposed by analyzing the deficiencies of Pal fuzzy edge extraction algorithm (Pal algorithm). This algorithm introduces fuzzy entropy and selects the threshold value in different gray levels. Defining a new membership function and a new fuzzy enhancement function, the new algorithm can enhance image edges of different gray levels. In addition, the new algorithm simplifies the complex transformation calculation. We can get a better result than that of the traditional Pal image edge extraction algorithm.
     (5) To determine the optimal thresholds in image segmentation, an effective image threshold segmentation method is presented that base on Fuzzy logic. A new fuzzy entropy is defined, that is not only related to the membership (fuzzy domain) but also related to the probability distribution (space domain), it can respond to the variety of image input information. In addition, by introducing a novel particle swarm optimization (PSO) algorithm, the optimal threshold can be gotten to find the optimization parameters of the membership, so that one image can be segmented by using the threshold. Using our novel algorithm to segment images, we can get a better result than that of most threshold segmentation algorithm.
     (6) A novel thresholding algorithm is presented. At first, a definition of fuzzy connectedness is proposed. Then the algorithm uses image cut measure as the thresholding principle to distinguish an object from background, the weight matrices are used in evaluating the image cuts measure based on the gray levels of an image, rather than image pixels, for most images, the complexity of the algorithm can be reduced and the speed of the calculation can be improved. Simulation results show that the new algorithm may bring better segmentation effect in comparison with lots of other image thresholding method.
引文
1. S.K.Pal, R.A.King. Image Enhancement Using Fuzzy Sets [J]. Electron. Lett.,1980,16(9): 376-378.
    2. S.K.Pal, R.A.King. Image Enhancement Using Smoothing with Fuzzy Sets [J]. IEEE Trans. Syst. Man. Cybern.,1981, 11(7):494-501.
    3. S. K. Pal. Fuzzy set theory in grey tone image processing. Ph. D./D.1. C. dissertation, Imperial College, University of London, London, England,1982.
    4. F. Russo. A user-friendly research tool for image processing with fuzzy rules [J]. IEEE International Conference on Fuzzy Systems,1992a,561-568.
    5. F. Russo. A fuzzy approach to digital signal processing concepts and applications[C].9th IEEE Conference on Instrumentation and Measurement Technology,1992b.
    6.贾永红.计算机图像处理与分析[M].武汉:武汉大学出版社,2001,1-26.
    7. A. Rosenfeld, A. C. Kak. Digital picture processing [M]. New York: Academic Press,1982, 10-37.
    8.蔡浩然,马万禄.视觉的分子生理学基础[M].北京:科学出版社,1979,35-47.
    9.王保平.基于模糊技术的图像处理方法研究.博士学位论文,西安电子科技大学,2004.
    10. F. Russo. A new class of fuzzy operators for image processing: design and implementation [J]. IEEE International Conference on Fuzzy Systems,1993,815-820.
    11. F. Russo, G. Ramponi.A new operators for the enhancement of blurred and noisy images [J]. IEEE Transactions on Image Processing,1995,4(8):1169-1174.
    12. F. Russo. Fuzzy systems in instrumentation:fuzzy signal processing [J]. IEEE Transactions on Instrumentation and Measurement,1996,45(2):683-689.
    13.孙红星,赵楠楠,徐心和.基于SVM的模糊推理在图像降噪中的建模与仿真[J].系统仿真学报,2006,18(11):3276-3330.
    14.谢胜利,余庆军.一种基于人类视觉的模糊边缘敏感去噪方法[J].控制理论与应用,2005,22(3):377-380.
    15.刘涵,刘丁,李琦.一种遗传—模糊神经网络图像滤波器[J].仪器仪表学报2004,25(3):310-312.
    16. S.K.Pal, R.A.King, Histogram Egualization With S and n Detecting X-Ray Edge[J]. Electron Letter,1981,17:302-304.
    17. S.K.Pal, R.A.King, On Edge Detection of X-Ray Images Using Fuzzy Sets [J]. IEEE Trans. Patt. Anal and MachineIntell.,1983, PAMI-5(1):69-77.
    18. T. Law, H. Itoh, H. Seki. Image filtering, edge detection, and edge tracing using fuzzy reasoning [J]. IEEE Trans. Pattern Analysis and Machine Intelligence.1996,18(5):481-491.
    19. X. Li, Z. Zhao, H. D. Cheng. Fuzzy entropy threshold approach to breast cancer detection [J]. Inform. Sci.,1995,4:49-56.
    20.徐蔚然,孔祥维.基于语法、语义信息的多滤波器集成边缘检测[J].模式识别和人工智能,2001,14(4):481-485.
    21.宗晓萍,徐艳,董江涛.多信息融合的模糊边缘检测技术[J].物理学报,2006,55(7):3223-3228.
    22.薛丽霞,王佐成,李永树.基于云模型的模糊边缘检测[J].西南交通大学学报,2006,41(1):85-90.
    23. N. Giordana, W. Pieczynski. Estimation of gener-alized multisensor hidden markov chains and unsupervised image segmentation [J]. IEEE Trans on PAMI,1997,19(5):465-475.
    24.詹劲峰,戚飞虎,王海龙.基于时空马尔可夫随机场的运动目标分割技术[J].通信学报,2000,21(11):63-68.
    25.汪祖媛,庄镇泉,汪炳权.红外热图像分割中的二维灰度直方图小波变换方法[J].红外技术,2000,22(4):1-3.
    26.龚炜,石青云,程民德.数字空间中的数学形态学[M].北京:科学出版社,1997.
    27. B. Bhanu, S. Lee, J. Ming. Adaptive Image segmentation Using a Genetic Algorithm [J]. IEEE Trans, on System, Man and Cybermetics,1995,5(12):1543-1565.
    28.吴薇.基于最大模糊熵原理的多阈值图像分割新算法[J].系统工程与电子技术,2005,27(2):357-360.
    29. Milan Sonka, Vaclav Hlavac, Roger Boyle著,艾海舟,武勃等译.图像处理、分析与机器视觉[M],北京:人民邮电出版社,2003.
    30. D. Ballard, C. Brown. Computer vision [M]. Prentice-Hall,1982,86-135.
    31. R. Brooks. Model-based computer vision [M]. UMI Research Press,1984.
    32. A. Hanson, E. Riseman. Computer vision system [M]. New York: Academic,1978,96-137.
    33. A. Rosenfels, A. C. Kak. Digital picture processing [M]. Beijing: Science Press,2003,57-190.
    34. Pasaltis. Image normalization by complex moments [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1985,7(1),46-55.
    35.孙兆林.图像处理[M].清华大学出版社,2002,213-263.
    36. C.S Lin, C.L. Hwang. New forms of shape invariance form elliptic Fourier descriptors [J], Pattern Recognition,1990, Vol.23 (11),1155-1166.
    37. H. Park, V. K. Prasanna. Modular VLSI architectures for computation Fourier transform algorithm [J]. TEEE Transaction on Signal Processing,1993. Vol.41(8),2233-2242.
    38. E. Feig, S. Winograd. Fast algorithm for the discrete cosine transform [J]. IEEE Transaction on Signal Processing,1992, Vol.40(9),2174-2193.
    39.周卫东,冯其波,匡萃方.图像描述方法的研究[J].应用光学,2005,Vol.26(3),27-31.
    40. D. Marr, E. Hildreth. Theory of edge detection [J]. Proceeding Roy. Soc. Lond.1976, Vol. S207,483-524.
    41. K. P. Bennet, N. Cristianini, T. J. Shaueaylor. Enlarging the margins in perception decision trees [J]. Machine Learning,2000, Vol.41(3),295-313.
    42. J. L.Beck, S. K. Au. Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation [J]. Engineering Machine 2002, Vol.128(3),340-350.
    43. J. N. K. Liu, B. S. L. Li, T. S. Dillon. An improved naive Bayesian classifier technique coupled with a novel input solution method [J]. IEEE Transactions on Systems, Vlan and Cyhernetics, 2001, Vol.31(2),249-256.
    44.杨立,戴汝为.模式的语义描述与识别[J].中国科学,1996,Vol.26(2),179-184.
    45. M. Yao, S. Zhang. Fuzzy consistent matrix and its application [J]. Journal of Systems Engineering and Electronics,1997, Vol.8(1),57-64.
    46.何劲松,施泽生.特征选择方法中的信号分析方法研究[J].中国科学技术大学学报,2001,Vol.31(1).
    47.翟喜成,林晓梅,李琳娜,牛刚.空间域二维信号滤波方法的研究[J].长春理工大学学报,2003,Vol.26(2),49-51.
    48. X. WANG. Adaptive multistage median filter [J]. IEEE Transaction on Signal Processing,1992, 40(4),1015-1017.
    49. H. Hwang, R. A. Haddad. Adaptive median filters:new algorithms and results [J]. IEEE Transaction on Image Processing,1995,4(4),499-502.
    50. Arce G R, McLoughlin M P. Theoretical analysis of the MAX median filter [J]. IEEE Trans Acoust, Speech, Signal Processing,1987,35(1):60-69.
    51. Lee Y H, Tantaratana S. Decision-based order statistics filters [J]. IEEE Trans Acoust, Speech, Signal Processing,1990,38(3):406-420.
    52. Gabbouj M, Coyle E J, Neal J, et al. An overview of median and stack filtering [J]. Circuits Syst Signal Processing,1992, 11(1):7-45.
    53. Sun T, Neuvo Y. Detail-preserving median based filters in image processing [J].Pattern Recognition,1994,15(4):341-347.
    54. Abreu E, Lightstone M, Mitra S K. A new efficient approach for the removal of impulse noise from highly corrupted images [J]. IEEE Trans Image Process,1996,5(6):1012-1025.
    55.董立菊,于戈.一种有效的图像二值化方法[J].东北大学学报(自然科学 版),2004,25(12):1149-1152.
    56. Cheng H D, Chen Y H, Sun Y. A novel fuzzy entropy approach to image enhancement and thresholding [J]. Signal Processing,1999,75(3):277-301.
    57. Bergh F, Engelbrecht A P. A study of particle swarm optimization particle trajectories [J]. Information Sciences,2006,176 (1):937-971.
    58. Han W, Lin J. Minimum-maximum exclusive mean(MMEM) filter to remove impulse noise from highly corrupted images [J]. Electron Lett,1997,33(2):124-125.
    59. Pok G, Liu J C, Nair A S. Selective removal of impulse noise based on homogeneity level information [J]. IEEE Trans on Image Processing,2003,12(1):85-92.
    60.吴霖芳,陈娜萍.基于偏微分方程的图像去噪的主流模型[J].闽江学院学报(自然科学版),2006,vo1.27(2),25-28.
    61. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
    62. Alvarez L, Lions P L, Morel J. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on Numerical Analysis,1992,29(3):845-866.
    63.王毅,张良培,李平湘.各向异性扩散平滑滤波的改进算法[J].中国图象图形学报,2006,11(2):210-216.
    64. D Tschumperle, R Deriche. PDE's based regularization of multivalued image and applications [J]. IEEE Trans on Pattern Analysis Machine Intelligence,2005,27(4):506-517.
    65. G Gilboa, N Sochen, Y Y Zeevi. Variational denoising of partly textured images by spatially varying constraints [J]. IEEE Trans on Image Processing,2006,15(8):2281-2289.
    66.傅祖芸.信息论[M].北京:电子工业出版社,2002.
    67. F. van den Bergh, A.P. Engelbrecht. A study of particle swarm optimization particle trajectories [J]. Information Sciences,2006,176(2):937-971.
    68. Kim Dae-won, Lee Kwang H, Lee Doheon. A Novel Initialization Scheme for the Fuzzy C_Means Algorithm for Color Clustering [J]. Pattern Recognition Letters,2004, 25(2):227-237.
    69. YANG Miin-shen, HWANG Pei-yuan, CHEN De-hua. Fuzzy Clustering Algorithms for Mixed Feature Variables [J]. Fuzzy Sets and Systems,2004,141(2):301-317.
    70. Cinquea L, Foresti G, Lombardi L. A Clustering Fuzzy Approach for Image Segmentation [J]. Pattern Recognition,2004,37(9):1797-1807.
    71.苗京,黄红星,程卫生,袁启勋.基于蚁群模糊聚类算法的图像边缘检测[J].武汉大学学报(工学版),2005,38(5):124-127.
    72. Asultan K S, Selim S. A Global Algorithm for the Fuzzy Clustering Problem [J].Pattern Recognition,1993,26(9):1357-1361.
    73. Babu G P, Murty M N. Clustering with Evolution Strategies [J]. Pattern Recognition,1994, 2(27):321-329.
    74.唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036.
    75. Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence [M]. San Francisco:Morgan Kaufman Publisher,2001.
    76.夏良正.数字图象处理[M].南京:东南大学出版社,2001,160-192.
    77. L. Kitchen, J. Malin. The effect of spatial discretization on the magnitude and direction response of dimple differential edge operators on a step edge [J]. Computer Vision, Graphics and Image Processing,1989, Vol.47(2),243-258.
    78. R. Haralick. Digital step edges from zero crossing of second directional derivatives [J]. IEEE PAMI-6,1984,58-68.
    79. I. Matalas, R. Benjamin, R. Kitney. An edge detection technique using the facet model and parameterized relaxation labling [J]. IEEE PAMI,1997,19(4),328-341.
    80. B.Chanda, M. K. Kundu, Y. Vanipadmaja. A Multi-scale morphological edge detector [J]. Pattern Recognition,1998, Vol.31(10),1469-1478.
    81. M. H. F. Wilkinson. Optimizing edge detectors for robust automatic threshold selection:coping with edge curvature and noise [J]. Graphical Models and Image Processing 1998, Vol.609(2): 385-401.
    82. J. A. Arnaldo, S. M. Jorge. A class of constrained clustering algorithms for object boundary extraction [J]. IEEE Transaction Image Processing,1996, Vol.5(5),1507-1521.
    83. J. Canny. A computational approach to edge detection [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1986, Vol.8(6),679-698.
    84. D. Marry, E. Hildreth. Theory of edge detection [J]. Proc. R. Soc. Lond.1980, B207,187-217.
    85.韩军伟,郭雷.景物边缘提取的独立边缘自增强算法[J].电子学报,2002,Vol.30(4),548-551.
    86. T. Vincent, A. P. Tonaso. On edge detection [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1986, Vol.8(1),147-163.
    87. Hall L O, Ozyurt B, Bezdek J C. Clustering with a genetically optimized approach [J]. IEEE Trans on Evolutionary Computation,1999,3(2):103-112.
    88.郭海湘,诸克军.基于模糊C-均值算法和遗传算法的新聚类方法[J].华南理工大学学报(自然科学版),2004,32(10):93-96.
    89. Abdou I.E., Pratt W.K.. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE,1979,67(5):753-763.
    90. Kitchen L., Rosenfield A.. Edge evaluation using local edge coherence. IEEE Transactions on System, Man and Cybernetics,1981, 11(9):597-605.
    91.黄世国,耿国华.一种前后向复扩散图像增强算法[J].小型微型计算机系统,2007,28(3):530-532.
    92. L.A.Zadeh, Probability measures of fuzzy events [J]. Journal of Mathematical Analysis and Applications,1968,23 (10):421-427.
    93.[美]Timothy J.Ross著,钱同惠,沈其聪,葛晓滨等译.模糊逻辑及其工程应用[M].北京:电子工业出版社,2001.
    94. J. Han, K. K. Ma. Fuzzy color histogram and its use in color image retrieval [J]. IEEE Transactions on Image Processing.2002,11(8):944-952.
    95. S.K.Pal, RA.King, On Edge Detection of X-Ray Images Using Fuzzy Sets [J]. IEEE Trans. Patt. Anal and MachineIntell.,1983, PAMI-5(1):69-77.
    96. S. K. Pal, R.A.King. Image Enhancement Using Fuzzy Sets [J]. Electron. Lett.,1980,16(9): 376-378.
    97.郭桂蓉等.模糊模式识别[M].长沙:国防科技大学出版社,1992.
    98.魏宝刚,鲁东明,潘云鹤等.多颜色空间上的互式图像分割[J].计算机学报,2001,24(7):770-775.
    99.王洪元.图像动态分析中的若干智能化方法研究[D],南京理工大学,2004.
    100. Abdou I.E., Pratt W.K.. Quantitative design and evaluation of enhancement/thresholding edge detectors [J]. Proceedings of the IEEE,1979,67(5):753-763.
    101. R. Kohler. A segmentation system based on thresholding [J]. Computer Vision, Graphics and Image Processing,1981, Vol.15(2),319-338.
    102. N. Oust. A threshold selection method from gray-leave histograms [J]. IEEE Transaction System Man Cybernet,1979, SMC-9,62-66.
    103. C.M.Chen, HH-S Lu, Y.C.Lin. An early vision-based snake model for ultrasound image segmentation [J], Ultrasound in Med&Biol,2000,26(2):273-285.
    104.马波,张文田.基于曲线进化的目标检测算法[J].信号处理,2004,20(2):237-241.
    105. GI. Chow J. N. Wang. A neural network-based stochastic active contour model (nns-Snake) for contour finding of distinct features [J], Image Processing,1995,4(10):1407-1416.
    106. H.S.Wu, J.Barba, J.A.Gil. A parametric fitting algorithm for segmentation of cell image [J], IEEE Trans. On Biomedical Engineering,1998,3(45):400-410.
    107. Wenbing Tao, Hai Jin, Yimin Zhang, Liman Liu, Desheng Wang. Image Thresholding Using Graph Cuts [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, Sept. 2008 Vol.38, No.5 pp:1181-1195.
    108. Pundlik, S.J. Woodard, D.L. Birchfield, S.T. Non-ideal iris segmentation using graph cuts[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR 2008. June 2008, pp:1-6.
    109. Xiaoqing Liu, Veksler, O., Samarabandu, J. Graph cut with ordering constraints on labels and its applications[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. June 2008, pp:1-8.
    110. Xiaoyu Wu, Yangsheng Wang. Interactive Foreground/Background Segmentation Based on Graph Cut[C]. Congress on Image and Signal Processing,2008. CISP'08. May 2008, Vol.3, pp:692-696.
    111. Houhou, N., Thiran, J.-R., Bresson, X. Fast texture segmentation model based on the shape operator and active contour[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. June 2008, pp:1-8.
    112.Hongda Mao, Huafeng Liu, Pengcheng Shi. Neighbor-constrained active contours without edges[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR 2008. June 2008, pp:1-7.
    113.Xianghua Xie, Mirmehdi, M.MAC:Magnetostatic Active Contour Model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008, Vol.30, No.4, pp:632-646.
    114. Melonakos, J., Pichon, E., Angenent, S. Tannenbaum, A. Finsler Active Contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, March 2008 Vol.30, No.3 pp: 412-423.
    115. Sum K.W., Cheung, P.Y.S. Vessel Extraction Under Non-Uniform Illumination:A Level Set Approach [J]. IEEE Transactions on Biomedical Engineering, Jan.2008, Vol.55 No.1, pp:358-360.
    116. Sheng Zheng, Chang-Cai Yang, Shi-Ling Xiang, Jin Ye. Makers based level set method for image segmentation[C].2008 International Conference on Machine Learning and Cybernetics, July 2008, Vol.2, pp:947-952.
    117. Xian Fan Bazin, P.-L. Prince, J.L. A multi-compartment segmentation framework with homeomorphic level sets[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. June 2008, pp:1-6.
    118. Abdelmunim, H. Farag, A.A. Miller, W. AboelGhar, M. A kidney segmentation approach from DCE-MRI using level sets[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2008. June 2008, pp:1-6.
    119. Lin Y, Tian J, He HG. Image segmentation via fuzzy object extraction and edge detection and its medical application [J]. Journal of X-Ray Science and Technology,2002,10(1-2):95-106.
    120. J T Orlando, R Seara Image segmentation by histogram thresholding using fuzzy sets [J]. IEEE Trans on Image Processing 2002,11(1):1457-1465.
    121. W B Tao, J W Tian, J Liu. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm [J]. Pattern Recognition Letters,2003,24(1):3069-3078.
    122. Lin Y, Tian J, He HG. Image segmentation via fuzzy object extraction and edge detection and its medical application [J]. Journal of X-Ray Science and Technology,2002,10(1-2):95-106.
    123. Orlando J T, Seara R. Image segmentation by histogram thresholding using fuzzy sets [J]. IEEE Trans on Image Processing,2002,11(1):1457-1465.
    124. W B Tao, J W Tian, J Liu. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm [J]. Pattern Recognition Letters,2003,24 (1):3069-3078.
    125. Saha P K, Udupa J K, Odhner D. Scale-based fuzzy connected image segmentation:Theory, algorithms, and validation. Computer Vision and Image Understanding [J],2000,77(2): 145-174.
    126. Lin Yao, Tian Jie, He Huiguang. Image segmentation via fuzzy object extraction and edge detection and its medical application. Journal of X-Ray Science and Technology [J],2002, 10(1):95-106.
    127.田春娜,高新波,哈力旦.一种基于相对模糊连通度的交互式序列图像快速分割算法[J].电子与信息学报,2005,27(10):1549-1554.
    128.陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119.
    129. Wu Z Y, Leahy R. An optimal graph theoretic approach to data clustering:Theory and its application to image segmentation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence,1993,15(11):1101-1113.
    130. Shi J, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence,2000,22 (8):888-905.
    131. Shi Y, Eberhart R C. A modified particle swarm optimizer[C], IEEE Int. Conf. on Evolutionary Computation, Piscataway, NJ, IEEE Service Center,1998,69-73.
    132. Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C], Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL,2000, 1945-1950.
    133.吕振肃,厚志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700