选择性溶剂中两嵌段共聚物聚集行为的介观模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嵌段共聚物是由一系列不同的结构单元连接而成的大分子。由于不同种类单元之间不相容,因而嵌段之间相互排斥;又由于各结构单元之间是由化学键相互连接而成,因此会发生微相分离,在本体中和选择性溶剂中自组装形成有序形貌,如层状相、柱状相、球状相,以及更加复杂的自组装结构,如囊泡、复合胶束、环形胶束、多隔段胶束等。除了常见的柔性嵌段共聚物,一系列刚性以及刚柔嵌段共聚物被合成出来。研究表明,这些具有刚性嵌段的共聚物具有一些特殊的自组装行为,因此可以被应用于光学、微电子、膜工程等领域中。
     计算机模拟技术被广泛应用于研究化学问题,不但可以解释实验中观察到的现象,阐明微观机理,对实验起到辅助作用,而且也可以作为开展实验的指导。耗散粒子动力学方法作为一种粗粒化方法,由于其包含流体力学相互作用,体系动量守恒,柔性势使其积分步长可以比较大等优点,被广泛应用于嵌段共聚物自组装体系的研究中。在本论文中,我们应用耗散粒子动力学方法研究了具有一定刚性的两嵌段共聚物在选择性溶剂中的自组装行为。通过建立以粒子间的相互作用参数和溶液的浓度为变量的相图,考察了它们对各有序相位置和区域面积的影响。由于有序相的演化过程对于研究微观机理和指导实验有重大意义,我们还考察了层状相、柱状相、球状相的演化过程。发现柱状相和球状相有多种演化途径,以及相互作用参数对体系演化速度的影响。
     径向分布函数是表征体系空间有序度的重要方法,但是很少被用于分析耗散粒子动力学模拟的体系。在本论文中,我们借助于径向分布函数,对比分析了各种不同有序形貌中聚合物粒子间以及聚合物和溶剂的相对位置关系,从定量的角度分析了各有序形貌的微观差异,以及相互作用参数对有序相间距的影响。
Block copolymers are a type of macromolecules composed of a series of different repeating units linked together. Because of the incompatibility between different structural units, the blocks repel each other. On the other hand, the repeating units are connected by chemical bonds, and microphase separation can occur. Block copolymers, in bulk and in selective solvents, can self assemble into a number of ordered morphologies, such as lamellar, hexagonally packed cylinders, spherical, and even more complicated structures such as vesicles, complex micelles, ring micelles, multicompartment micelles and so on. In addition to the flexible block copolymers, a series of rod-coil and rod block copolymers are also synthesized. Studies show that copolymers with rigid blocks have distinct self-assembly behavior, which can be used in optics, microelectronics, membrane engineering and etc.
     Computer simulation has been widely used to study chemical problems. It not only supports experiments in explaining the phenomena and clarifying microscopic mechanism, but can also guide experiments. Dissipative particle dynamics method is a kind of coarse-grained simulation method. It contains fluid interaction, conservation of momentum, and employs soft potential to enable large integration time step, and has been widely used in the study of self-assembly of block copolymers. In this thesis, we apply dissipative particle dynamics to examine the self-assembly behavior of a diblock copolymer (with a certain degree of rigidity) in a selective solvent. We computed the phase diagram as a function of the concentration and the interaction parameters between the particles, and examined their effect on the location and regional size of each ordered phase. In addition, the evolution of ordered phase is very important for studying the microscopic mechanism and guiding for experiments, therefore, we investigated the evolution process of lamellar, cylinders and spherical phase. Results show that there is a variety of evolution process for cylinders and spherical phase, and the effect of interaction parameter on the evolution of ordered structures.
     Radial distribution function is an important tool to characterize the degree of spat ial order, but has been rarely used in analyzing dissipative particle dynamics results. I n this thesis, we use the radial distribution function to analyze the relative position of t he particles in different ordered phases, getting a quantitative understanding of the mi croscopic information of the ordered morphologies. In addition, we also study the effe ct of the interaction parameters on the distance between ordered morphologies.
引文
[1]韩志超.结构材料化学进展[M].北京.化学工业出版社, 2005.
    [2]Hadjichristidis N., latrou H., Pitsikalis M., Pispas S., Avgeropoulos A. Linear and Non-Linear Triblock Terpolymers. Synthesis. Self-assembly in Selective Solvents and in Bulk[J]. Prog. Polym. Sci.2005,30:725-782.
    [3]Tang P., Qiu F., Zhong H. D., Yang Y. Morphology and Phase Diagram of Complex Block Copolymers:ABC LinearTriblockCopolymers[J]. Phys. Rev. E 2004, 69:031803.
    [4]Kane L., Spontak R. J. Microstructural Characteristics of Strongly-Segregated AXB Triblock Terpolymers Possessing the Lamellar Morphology [J], Macromolecules 1994,27:1267-1273.
    [5]Dotera T. Tricontinuous Cubic Structures in ABC/A/C Copolymer and Homopolymer Blends[J]. Phys. Rev. Lett.2002,89:205502.
    [6]Nakazawa H., Ohta T. Microphase Separation of ABC-Type Triblock Copolymers[J]. Macromolecules 1993,26:5503-5511.
    [7]Zheng W., Wang Z. G. Morphology of ABC Triblock Copolymers [J]. Macromolecules 1995,28:7215-7223.
    [8]Phan S., Fredrickson G. H. Morphology of Symmetric ABC Triblock Copolymers in the Strong Segregation Limit[J]. Macromolecules 1998,31:59-63.
    [9]Zhang L., Eisenberg A. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers [J]. Science 1995,268: 1728-1731.
    [10]Zhang L., Eisenberg A. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions[J]. J. Am. Chem. Soc.1996,118:3168-3181.
    [11]Yu K., Eisenberg A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution[J]. Macromolecules 1998,31:3509-3518.
    [12]Hamley I. W., Fairclough J. P. A., Ryan A. J., Ryu C. Y., Lodge T. P., Gleeson A. J., Pedersen J. S. Micellar Ordering in Concentrated Solutions of Di-and Triblock Copolymers in a Slightly Selective Solvent[J]. Macromolecules 1998,31:1188-1196.
    [13]Hanley K. J., Lodge T. P., Huang C. I. Phase Behavior of a Block Copolymer in Solvents of Varying Selectivity [J]. Macromolecules 2000,33:5918-5931.
    [14]Lodge T. P., Pudil B., Hanley K. J. The Full Phase Behavior for Block Copolymers in Solvents of Varying Selectivity [J]. Macromolecules 2002,35: 4707-4717.
    [15]Jain S., Bates F. S. On the Origins of Morphological Complexity in Block Copolymer Surfactants [J]. Science 2003,300:460-464.
    [16]Pochan D. J., Chen Z. Y., Cui H. G., Hales K., Qi K., Wooley K. L. Toroidal Triblock Copolymer Assemblies [J]. Science 2004,306:94-97.
    [17]Laschewsky A. Polymerized Micelles with Compartments [J]. Curr. Opin. Colloid Interface Sci.2003,8:274-281.
    [18]Lutz J. F., Laschewsky A. Multicompartment Micelles:Has the Long-Standing Dream Become a Reality?[J]. Macromol. Chem. Phys.2005,206:813-817.
    [19]Kenward M., Whitmore M. D. A systematic Monte Carlo study of self-assembling amphiphiles in solution[J]. J. Chem. Phys.2002,116:3455-3470.
    [20]Milchev A., Bhattacharya A., Binder K. Formation of Block Copolymer Micelles in Solution:A Monte Carlo Study of Chain Length Dependence [J]. Macromolecules 2001,34:1881-1893.
    [21]Woloszczuk S., Banaszak M., Knychala P., Radosz M. Monte Carlo Phase Diagram of Symmetric Diblock Copolymer in Selective Solvent[J]. Macromolecules 2008,41:5945-5951.
    [22]Sun P. C, Yin Y. H., Li B. H., Chen T. H., Jin Q. H., Ding D. T., Shi A. C. Simulated annealing study of morphological transitions of diblock copolymers in solution[J]. J. Chem. Phys.2005,122:204905.
    [23]Yu B., Li B. H., Sun P. C, Chen T. H., Jin Q. H., Ding D. T., Shi A. C. Cylinder-gyroid-lamella transitions in diblock copolymer solutions:A simulated annealing study[J]. J. Chem. Phys.2005,123:234902.
    [24]Huang C. I., Hsueh H. Y. Phase behavior and micro structural length scales of a diblock copolymer in the presence of a selective solvent[J]. Polymer 2006,47: 6843-6856.
    [25]Lee M., Cho B. K., Zin W. C. Supramolecular Structures from Rod-Coil Block Copolymers[J]. Chem. Rev.2001,101:3869-3892.
    [26]Gallot B. Comb-like and block liquid crystalline polymers for biological applications[J]. Prog. Polym. Sci.1996,21:1035-1088.
    [27]Zhang G., Fournier M. J., Mason T. L., Tirrell D. A. Biological synthesis of monodisperse derivatives of poly (.alpha.,L-glutamic acid):model rodlike polymers[J]. Macromolecules 1992,25:3601-3603.
    [28]Yu S. M., Conticello V. P., Zhang G., Kayser C, Fournier M. J., Mason T. L., Tirrell D. A. Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length[J]. Nature 1997,389:167-170.
    [29]Collings P. J., Hird M. Introduction to Liquid Crystals:Taylor & Francis: London,1997.
    [30]Stegemeyer H. Liquid Crystals; Springer:New York,1994.
    [31]Chen J. T., Thomas E. L., Ober C. K., Hwang S. S. Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer [J]. Macromolecules 1995,28:1688-1697.
    [32]Chen J. T., Thomas E. L., Ober C. K., Mao G. Self-Assembled Smectic Phases in Rod-Coil Block Copolymers[J]. Science 1996,273:343-346.
    [33]Halperin A. Smectic A-Smectic C Transition in Lamellae Formed by Rod-Coil Copolymers[J]. Europhys. Lett.1989,10:549-553.
    [34]Halperin A. Rod-coil copolymers:their aggregation behavior[J]. Macromolecules 1990,23:2724-2731.
    [35]Vilgis T., Halperin A. Aggregation of coil-crystalline block copolymers: equilibrium crystallization[J]. Macromolecules 1991,24:2090-2095.
    [36]Ji S. H., Zin W. C, Oh N. K., Lee M. Solubilization of poly(ethylene oxide) into a rod-coil polymer of ethyl 4-[4'-oxy-4 biphenylcarbonyloxy]-4'-biphenyl carboxylate-block-poly(ethylene oxide)[J]. Polymer 1997,38:4377-4380.
    [37]Thatcher J. H., Thanapprapasr K., Nagae S., Mai S. M., Booth C, Owen J. R. Effect of salt concentration on the properties of poly[oxymethylene-oligo(oxyethylene)]/Mg(ClO4)2 polymer electrolytes[J]. J. Mater. Chem.1994,4:591-598.
    [38]Dias, F. B.; Voss, T. P.; Batty, S. V.:Wright, P. V.; Ungas, G. Smectic phases in a novel alkyl-substituted polyether and its complex with lithium tetrafluoroborate[J], Macromol. Rapid Commun.1994,15:961-969.
    [39]Percec, V.; Heck, J.; Johansson, G.; Tomazos, D.; Ungar, G. Towards tobacco mosaic virus-like self-assembled supramolecular architectures [J]. Macromol. Symp. 1994,77:237-265.
    [40]Kraft A., Grimsdale A. C, Holmes A. B. Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light[J]. Angew. Chem., Int. Ed.1998,37: 402-428.
    [41]Segura J. L., Martin N. Functionalized oligoarylenes as building blocks for new organic materials[J]. J. Mater. Chem.2000,10:2403-2435.
    [42]Osaheni J. A., Jenekhe S. A. Electroactive and Photoactive Rod-Coil Copolymers: Design, Synthesis, and Supramolecular Regulation of Photophysical Properties[J]. J. Am. Chem. Soc.1995,117:7389-7398.
    [43]Berresheim A. J., Muller M., Mullen K. Polyphenylene Nanostructures[J]. Chem. Rev.1999,99:1747-1786.
    [44]Kong X. X., Jenekhe S. A. Block Copolymers Containing Conjugated Polymer and Polypeptide Sequences:Synthesis and Self-Assembly of Electroactive and Photoactive Nanostructures[J]. Macromolecules 2004,37:8180-8183.
    [45]Hayakawa T., Goseki R., Kakimoto M., Tokita M., Watanabe J., Liao Y., Horiuchi S. Self-Assembled Lamellar Nanostructures of Wholly Aromatic Rod-Rod-Type Block Molecules[J]. Org. Lett.2006,8:5453-5456.
    [46]Lee H. F., Sheu H. S., Jeng U. S., Huang C. F., Chang F. C. Preparation and Supramolecular Self-Assembly of a Polypeptide-block-polypseudorotaxane[J]. Macromolecules 2005,38:6551-6558.
    [47]Rubatat L., Kong X. X., Jenekhe S. A., Ruokolainen J., Hojeij M., Mezzenga R. Self-Assembly of Polypeptide/π-Conjugated Polymer/Polypeptide Triblock Copolymers in Rod-Rod-Rod and Coil-Rod-Coil Conformations[J]. Macromolecules 2008,41:1846-1852.
    [48]Zhou Q. H., Zhen J. K., Shen Z. H., Fan X. H., Chen X. F., Zhou Q. F. Synthesis and Hierarchical Self-Assembly of Rod-Rod Block Copolymers via Click Chemistry between Mesogen-Jacketed Liquid Crystalline Polymers and Helical Polypeptides[J]. Macromolecules 2010,43:5637-5646.
    [49]Scherf U., Adamczyk S., Gutacter A., Koenen N. All-Conjugated, Rod-Rod Block Copolymers-Generation and Self-Assembly Properties[J]. Macromol. Rapid Commun.2009,30:1059-1065.
    [50]韩向刚,张程祥.棒-棒二嵌段共聚物自组装行为的自洽场研究[J].高等学校化学学报2010,31:566-570.
    [51]Bader, H.; Ringsdorf, H.; Schmidt, B.; Watersoluble polymer in medicine. Angew. Makromol. Chem.,1984,123:457.
    [52]Yokoyama M., Miyauchi M., Yamada N., Okano T., Sakurai Y., Kataoka K., Lnoue S. Polymer micelles as novel drug carrier-adriamycin-conjugated poly (ethylene glycol) poly (aspartic acid) block copolymer[J]. J. control. Release 1990,11: 269-278.
    [53]Yokoyama M., Okano T., Sakurai Y., Kataoka K. Improved synthesis of adriamycin-conjugated poly (ethylene oxide) poly (aspartic acid) block-copolymer, formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin[J]. J. control. Release 1994,32:269-277.
    [54]Yokoyama M., Okano T., Sakurai Y., Fukushinia S., Okamoto K., Kataoka K. Selective delivery of adiramycin to a solid tumor using a polymeric micelle carrier system[J]. J. Drug. Target.1999,7:171-186.
    [55]Kwon G. S., Suwa S., Yokoyama M., Okano T., Sakurai Y., Kataoka K. Enhanced tumor accumulation, prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates[J]. J. Control. Release 1994,29:17-23.
    [56]Kwon G. S., Naito M., Yokoyama M., Okano T., Sakurai Y., Kataoka K. Physical entrapment of adriamycin in AB block-copolymer micelles [J]. Pharm. Res. 1995,12:192-195.
    [57]Cammas S., Matsumoto T., Okano T., Sakurai Y., Kataoka K. Design of functional polymeric micelles as site specific drug vehicles based on poly (alpha-hydroxy ethylene oxide-co-beta-benzyl L-aspartate) block copolymers[J]. Mat. Sci. Eng. C:Bio. S.1997,4:241-247.
    [58]Kataoka K., Matsumoto T., Yokoyama M., Okano T., Sakurai Y., Fukushima S., Okamoto K., Kwon G. S. Doxorubicin-loaded poly (ethylene glycol)-poly (beta-benzyl-l-aspartate) copolymer micelles:their pharmaceutical characteristics, biological significance[J]. J. Control. Release 2000,64:143-153.
    [59]Pinzani V., Bressolle F., Hang L. J., Galtier M., Blayac J. P., Balmes P. Cisplatin-induced renal toxicity, toxicity-modulating strategies-a review[J]. Cancer Chemoth. Pharm.1994,35:1-9.
    [60]Schechter B., Neumann A., Wilchek M.. Arnon R. Soluble polymers as carriers of cis-platinum[J]. J. Control. Release 1989,10:75-87.
    [61]Harada A., Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core.2. characterization of the micelles prepared at nonstoichiometric mixing ratios[J]. Langmuir 1999,15:4208-4212.
    [62]Harada A., Kataoka K. On-off control of enzymatic activity synchronizing with reversible formation of supermolecular assembly from enzyme, charged block copolymer[J]. J. Am. Chem. Soc.1999,121:9241-9242.
    [63]Kataoka K., Togawa H., Harada A., Yasug K., Matsumoto T., Katayose S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline[J]. Macromolecules 1996,29:8556-8557.
    [64]Kakizawa Y., Kataoka K. Block copolymer micelles for delivery of gene and related compounds[J]. Advanced Drug Delivery Reviews 2002,54:203-222.
    [65]Underhill R. S., Liu G. Triblock Nanospheres and Their Use as Templates for Inorganic Nanoparticle Preparation[J]. Chem. Mater.2000,12:2082-2091.
    [66]Moffitt M., McMahon L., Pessel V., Eisenberg A. Size Control of Nanoparticles in Semiconductor-Polymer Composites.2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers[J]. Chem. Mater.1995,7: 1185-1192.
    [67]Anttoietti M., Forster S., Hartmann J., Oestreich S. Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids[J]. Macromolecules,1996,29:3800-3806.
    [68]刘国军,王国昌.海外高分子科学的新进展[M].北京.化学工业出版社,1997.
    [69]Liu G. J., Ding J. F. Thin Diblock Films with Densely Hexagonally Packed Nanochannels[J]. Adv. Mater.1998,10:69-71.
    [70]Liu G. J., Ding J. F., Guo A., Herfort M., Bazett-Jones D. Potential Skin Layers for Membranes with Tunable Nanochannels[J]. Macromolecules 1997,30: 1851-1853.
    [71]Liu G. J. Nanofibers[J]. Adv. Mater.1997,9:437-439.
    [72]Stewart S., Liu G. J. Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate)[J]. Chem. Mater.1999,11:1048-1054.
    [73]Tao J., Liu G. J., Ding J. F., Yang M. L. Cross-Linked Nanospheres of Poly(2-cinnamoylethyl methacrylate) with Immediately Attached Surface Functional Groups[J]. Macromolecules,1997,30:4084-4089.
    [74]Stewart S., Liu G. J., Block Copolymer Nanotubes[J]. Angew. Chem. Int. Eng. Ed.2000.39:340-344.
    [75]Liu G. J., Ding J. F., Stewart S. Preparation and Properties of Nanoporous Membranes from a Triblock Copolymer [J]. Angew. Chem. Int. Eng. Ed.1999.38: 835-838.
    [76]Jenekhe S. A., Chen X. L. Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes[J]. Science 1998,279:1903-1907.
    [77]Huang H., Remsen E. E., Kowalewski T., Wooley K. L. Nanocages Derived from Shell Cross-Linked Micelle Templates[J]. J. Am. Chem. Soc.1999,121: 3805-3806.
    [78]朱道本,王佛松.有机固体[M].上海.上海科学技术出版社,1999.
    [79]Heischkel, Y.; Schmidt, H. W. Synthesis of ABC-triblock copolymers for light emitting diodes[M]. Macromol. Chem. Phys.1998,199:869-880.
    [80]Muller-Plathe F. Coarse-graining in polymer simulation:from the atomistic to the mesoscopic scale and back[J]. ChemPhysChem 2002,3:754-769.
    [81]Hoogerbrugge P. J.. Koelman J. M. V. A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics[J]. Europhys. Lett. 1992,19:155-160.
    [82]Koelman J. M. V. A., Hoogerbrugge P. J. Dynamic Simulations of Hard-Sphere Suspensions Under Steady Shear[J]. Europhys. Lett.1993,21:363-368.
    [83]Espanol P., Warren P. Statistical Mechanics of Dissipative Particle Dynamics[J]. Europhys. Lett.1995,30:191-196.
    [84]Groot R. D., Warren P. B. Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem. Phys.1997,107: 4423-4435.
    [85]Groot R. D., Madden T. J. Dynamics simulation of diblock copolymer microphase separation[J]. J. Chem. Phys.1998,108:8713-8724.
    [86]Groot R. D., Madden T. J., Tildesley D. J. On the role of hydrodynamic interactions in block copolymer microphase separation[J]. J. Chem. Phys.1999,110: 9739-9749.
    [87]Li X. J., Guo J. Y., Liu Y., Liang H. J. Microphase separation of diblock copolymer poly(styrene-b-isoprene):A dissipative particle dynamics simulation study[J]. J. Chem. Phys.2009,130:074908.
    [88]Soto-Figueroa C, Rodriguez-Hidalgo M., Martinez-Magadan J. Molecular simulation of diblock copolymers; morphology and mechanical properties [J]. Polymer 2005,46:7485-7493.
    [89]Soto-Figueroa C, Vicente L., Martinez-Magadan J., Rodriguez-Hidalgo M. Self-Organization Process of Ordered Structures in Linear and Star Poly(styrene)-Poly(isoprene) Block Copolymers:Gaussian Models and Mesoscopic Parameters of Polymeric Systems[J]. J. Phys. Chem. B 2007,111:11756-11764.
    [90]Soto-Figueroa C, Rodriguez-Hidalgo M., Martinez-Magadan J., Vicente L. Dissipative Particle Dynamics Study of Order-Order Phase Transition of BCC, HPC, OBDD, and LAM Structures of the Poly(styrene)-Poly(isoprene) Diblock Copolymer[J]. Macromolecules 2008,41:3297-3304.
    [91]Abu-Sharkh B., AlSunaidi A. Morphology and Conformation Analysis of Self-Assembled Triblock Copolymer Melts [J]. Macromol. Theory Simul.2006,15: 507-515.
    [92]Wang Y. C, Lee W. J., Ju S. P. Modeling of the polyethylene and poly(L-lactide) triblock copolymer:A dissipative particle dynamics study [J]. J. Chem. Phys.2009, 131:124901.
    [93]Liu D. H., Zhong C. L. Dissipative Particle Dynamics Simulation of Microphase Separation and Properties of Linear-Dendritic Diblock Copolymer Melts under Steady Shear Flow[J], Macromol. Rapid Commun.2005,26:1960-1964.
    [94]Huang C. I., Yu H. T. Microphase separation and molecular conformation of AB2 miktoarm star copolymers by dissipative particle dynamics[J]. Polymer 2007,48: 4537-4546.
    [95]Huang C. I., Lin Y. C. Hierarchical Structure-within-Structure Morphologies in A-block-(B-graft-C) Molecules[J]. Macromol. Rapid Commun.2007,28:1634-1639.
    [96]Huang C. I., Chen C. M. Hierarchical Structure-Within-Structure Morphologies in A2-star-(B-alt-C) Molecules[J]. ChemPhysChem 2007,8:2588-2594.
    [97]Groot R. D., Rabone K. L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants [J]. Biophysical Journal.2001, 81:725-736.
    [98]Groot R. D. Mesoscopic simulation of polymer-surfactant aggregation[J]. Langmuir 2000,16:7493-7502.
    [99]Huang C. I., Hsueh H. Y., Lan Y. K., Lin Y. C. Phase Behavior of Amphiphilic Molecules in the Presence of One Solvent:A Dissipative Particle Dynamics Study [J]. Macromol. Theory Simul.2007.16:77-85.
    [100]Huang C. I., Chiou Y. J., Lan Y. K. Phase behavior of an amphiphilic molecule in the presence of two solvents by dissipative particle dynamics[J]. Polymer 2007,48: 877-886.
    [101]Cao X. R., Xu G. Y., Li Y. M., Zhang Z. Q. Aggregation of Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers in Aqueous Solution:DPD Simulation Study [J]. J. Phys. Chem. A 2005,109:10418-10423.
    [102]Li Z. L., Dormidontova E. E. Kinetics of Diblock Copolymer Micellization by Dissipative Particle Dynamics[J]. Macromolecules 2010,43:3521-3531.
    [103]Li X. J., Deng M. G., Liu Y., Liang H. J. Dissipative Particle Dynamics Simulations of Toroidal Structure Formations of Amphiphilic Triblock Copolymers [J]. J. Phys. Chem. B 2008,112:14762-14765.
    [104]He P. T., Li X. J., Kou D. Z., Deng M. G., Liang H. J. Complex micelles from the self-assembly of amphiphilic triblock copolymers in selective solvents [J]. J. Chem. Phys.2010,132:204905.
    [105]He P. T., Li X. J., Deng M. G., Chen T., Liang H. J. Complex micelles from the self-assembly of coil-rod-coil amphiphilic triblock copolymers in selective solvents[J]. Soft Matter,2010,6:1539-1546.
    [106]Li X. J., Pivkin I. V., Liang H. J., Karniadakis G. E. Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers:A Dissipative Particle Dynamics Simulation Study [J]. Macromolecules 2009,42:3195-3200.
    [107]Li X. J., Liu Y., Wang L., Deng M. G., Liang H. J. Fusion and fission pathways of vesicles from amphiphilic triblock copolymers:a dissipative particle dynamics simulation study [J]. Phys. Chem. Chem. Phys.2009,11:4051-4059.
    [108]Liu Y. T., Zhao Y., Liu H., Liu Y. H., Lu Z. Y. Spontaneous Fusion between the Vesicles Formed by A2n(B2)n Type Comb-Like Block Copolymers with a Semiflexible Hydrophobic Backbone [J]. J. Phys. Chem. B 2009,113:15256-15262.
    [109]Liu D. H., Zhong C. L. Novel Two-Compartment Micelles Formed by Self-Assembly of Linear Pentablock Copolymers in Selective Solvents[J]. Macromol. Rapid Commun.2007,28:292-297.
    [110]Xia J., Zhong C. L. Dissipative Particle Dynamics Study of the Formation of Multicompartment Micelles from ABC Star Triblock Copolymers in Water[J]. Macromol. Rapid Commun.2006.27:1110-1114.
    [111]Xia J., Liu D. H., Zhong C. L. Multicompartment micelles and vesicles from π-shaped ABC block copolymers:a dissipative particle dynamics study[J]. Phys. Chem. Chem. Phys.2007,9:5267-5273.
    [112]Guo X. D., Tan J. P. K., Zhang L. J., Khan M., Liu S. Q., Yang Y. Y., Qian Y. Phase behavior study of paclitaxel loaded amphiphilic copolymer in two solvents by dissipative particle dynamics simulations [J]. Chemical Physics Letters 2009,473: 336-342.
    [113]Guo X. D., Tan J. P. K., Kim S. H., Zhang L. J., Zhang Y., Hedrick J. L., Yang Y. Y., Qian Y. Computational studies on self-assembled paclitaxel structures: Templates for hierarchical block copolymer assemblies and sustained drug release[J]. Biomaterials 2009,30:6556-6563.
    [114]Guo X. D., Zhang L. J., Wu Z. M., Qian Y. Dissipative Particle Dynamics Studies on Microstructure of pH-Sensitive Micelles for Sustained Drug Delivery[J]. Macromolecules 2010,43:7839-7844.
    [115]D. A. McQuarrie, Statistical Mechanics. Sausalito. CA. University Science Books,2000.
    [116]Dong H. T., Hyun J. K., Durham C, Wheeler R. A. Molecular dynamics simulations and structural comparisions of amorphous poly(ethylene oxide) and poly(ethylenimine) models[J]. Polymer 2001,42:7809-7817.
    [117]Luo Z. L., Jiang J. W. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends[J]. Polymer 2010,51:291-299.
    [118]Baysal C, Erman B., Chu B. Conformational features of poly(1,1-dihydroperfluorooctyl acrylate) and poly(vinyl acetate) diblock oligomers in supercritical carbon dioxide [J]. J. Chem. Phys.2001,114:5444-5449.
    [119]何曼君,张红东,陈维孝,董西侠.高分子物理[M].上海.复旦大学出版社,2006.
    [120]Nakamura H., Tamura Y. Phase diagram for self-assembly of amphiphilic molecule C12E6 by dissipative particle dynamics simulation[J]. Comp. Phys. Com. 2005,169:139-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700