复杂结构声波电磁波层析成像方法和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声波和电磁波探测技术在水电、铁路、煤炭、石油及建筑等领域中作为工程地质勘查、岩体工程稳定性研究、工程质量无损检测、工程安全评价等方面的一种重要技术手段发挥了非常重要的作用。实际大型工程地质探测的特殊性要求探测仪器和数据处理方法能够适应大尺度复杂结构体的高分辨率探测。基于此,在声波探测仪器、声波层析成像正反演算法和实际探测应用以及电磁波衰减时频特性方面开展了系统的研究。
     第1章概述了层析成像的发展历史和常见的几种图像重建算法;重点分析了目前声波、地震波射线追踪算法的发展现状,指出了开展三角网射线追踪研究的意义。针对矿井电磁波透视存在的问题,指出了在频域内开展电磁波衰减特性研究的意义。
     第2章首先给出了大透距声波探测仪的系统组成、性能指标及大功率超磁声波换能器的结构和特点;其次详细叙述了仪器采集系统的信号采集、显示及信号处理等各项操作功能;最后给出了在顶煤厚度探测和大跨度混凝土结构无损检测中的应用实例。
     第3章围绕着二维复杂区域的三角剖分,根据剖分区域点、线、面的拓扑关系,遵循Delaunay三角剖分的优化准则实现了适合复杂二维区域特点、地球物理正反演要求的三角网剖分算法,并且在生成节点和网格的同时,考虑了密度控制函数,实现了自适应功能。
     第4章提出并研究了复杂结构三角网射线追踪全局算法。在第2节定义了三角单元射线追踪的拓扑关系及相关概念;从波前邻域点最小走时计算及相应次级源的选定、波行面扩展和波传播路径的向源检索三个方面论述了节点次级源近似全局算法;实际次级源检索采用了双曲线近似全局算法。在第3节给出了三种不同类型模型的射线追踪结果,并对二水平层介质模型的理论计算结果与数值模拟结果进行了比较。
     第5章叙述了声波层析成像的基本理论,讨论了基于三角网的射线层析成像图像重建技术。对不规则区域内含有薄板低速子域和圆状低速子域的复杂结构模型进行了层析反演数值模拟,详细给出了7次迭代过程的射线追踪结果和层析反演速度分布结果。数值模拟结果表明,三角网射线层析成像方法具有复杂区域适应性强、速度界面描述灵活、分辨率高、成像结果更接近实际结构形态特征的显著特点。
     第6章给出了大透距声波层析成像技术在煤层底板破坏深度和大跨度混凝土结构工程质量检测方面的试验研究成果。在第1节介绍了采场底板岩层移动破坏规律及底板破坏的波场响应特征;给出了底板破坏声波层析成像探测的观测方案和探测成果;详细分析了底板岩体声波速度在时间和空间上随工作面推进的动态变化过程,准确地确定了煤层开采后底板破坏带深度。第2节给出了跨度12m的混凝土结构体的纵波和横波速度的层析成像结果。
     第7章以煤矿采场中存在高电阻率或低电阻率电性地质异常体为实际背景建立物理模型,采用有限差分法对电磁波波动方程进行二维正演数值模拟。根据正演模拟结果,研究了采场电磁波衰减的时频特征,对比分析了场强衰减法层析成像和质心频移法层析成像的效果。
     在结论部分,对论文工作进行了全面总结,并指出了今后的研究方向。
As an important technique applied in engineering geological exploration, the study rock mass engineering stability, non-destructive engineering quality inspection, engineering safety evaluation and other aspects, acoustic wave and electromagnetic wave detecting techniques play important roles in hydroelectricity, railway, coal, petroleum, architectural and other fields. The large-scale engineering geological detecting requires that the acoustic wave detector and data processing method can be adaptable to the high resolution detection of large-scale complex structure mass. Hence, sonic detector, acoustic wave tomography forward and inverse algorithm and their applications, and the attenuation time-frequency character of electromagnetic wave were systematically investigated in the present work.
     In chapter 1, the general development of tomography and several common image reconstruc-tion algorithms are reviewed. The current status in acoustic wave raytracing algorithms are analyzed. The importance of studying the triangle grid raytracing algorithm is explained. For problems in the coal mine electromagnetic wave penetration, the study on electromagnetic wave attenuation characters in frequency-domain is significant.
     In chapter 2, firstly, the system components, performance indeies of the large-scale sonic detector and the structure and features of the superpower GMM acoustic transducer are listed. Secondly, functions, like signal collecting, presenting, signal processing are described in detail. Finally, two application exmples in the detection of roof coal thickness of mine working faces and the non-destructive inspection of large span concrete structures are given.
     In chapter 3, according to the topology relationship of the node, line and face in subdivision area for the triangle subdivision of 2-demension complex structure, triangle subdivision algorithm that meets the characteristic of complex 2-dimensional area and geophysical forward and inversion is realized based on the the optimization rule of Delaunay triangle subdivision. The density control function is considered while the nodes and grid are formed and conformation function by itself is realized.
     In chapter 4, complex structure triangle grid raytracing global algorithm is put forward and reseached. In section 4.2, the definitions on the topological relations and related ideas of triangle cells raytracing are given. The approximate global algorithm of secondary sources of nodes is discussed in three aspects: calculation of the least travel time of wave front neighborhood points and choosing of their secondary sources, the wave level expansion and the regressive retrieving of wave ray paths. Hyperbola approximate global algorithm is used in the true secondary sources retrieve. In section 4.3, the results of the raytracing for three kinds of models are given. the results of theory calculation and the numerical simulation for the two level stratified model are compared.
     In chapter 5, the basic theory of acoustic wave tomography is described and the image reconstruction techniques of the ray tomography based on triangle grid are discussed. The tomography inversion numerical simulation on complex structure model of irregularity area with thin slab low speed subfield and circle low speed subfield is performed. The program also gives the raytracing results and the model velocity distributions iterative process of tomography inversion for 7 times. The results of numerical simulation indicate that the triangle grid tomography method has some obvious characteristics, including high adaptability in complex area, flexible description of velocity interface, high resolution, and the imaging results closer to the real structure shape feature.
     In chapter 6, the results of detection test on the destruction depth in the floor of the coal seam with large-scale acoustic wave tomography and the results on the engineering quality inspection of large span concrete structures are given. In section 6.1, the movement and failure regularity of stratum in the floor of working faces and the wave field response of floor’s failure are introduced. The schemes and the results of acoustic wave tomography for detecting the failure depth in the floor of the coal seam are given. The dynamic changing process about P-wave velocities of floor stratum with the working face impelling is analyzed in detail, and the exact depth of destruction band at the floor of coal seam exploited is determined. In section 6.2, the P-wave and S-wave velocities tomography results of the concrete structure with a span of 12m are obtained.
     In chapter 7, the physical model is established and the abnormal geological objects with high or low resistivities in the working face are taken as the practical background. Two-dimensional forward numerical simulation for electromagnetic wave equation is implemented with the finite-difference method. According to the simulation results, the time-frequency domain attenuation features are studied respectively. The tomography results of field intensity and centroidal frequency shift are compared.
     In conclusion, the research work of this dissertation is summarized, and the future developing directions are indicated.
引文
1 P. Bios, M. La. Porte, M. Lavergne and G. Thomas. Well-to-Well Seismic Measurements, Geophysics, 1972, 37(6): 471~480
    2 M. Laporte. Seismic Measurements by Transmission-Apllication to Civil Engineering. Geophysics, 1973, 21: 146~158
    3 W. D. Daily. Underground Oil-Shale Retort Monitoring Using Geotomography. Geophysics, 1984, 49: 1701~1711
    4 Somerstein. Radio-Frequencey Geotomography for Remotely Probing the Interior of Operating Mini and Commercial-Sized Oil-Shale Retorts. Geophysics, 1984, 49: 1288~1300
    5 R. G. Pratt, M. H.Worthington. The Application of Diffraction Tomography to Crossbole Seismic Data. Geophysics, 1984, 53(10): 1284~1294
    6 T. N. Bishop. Tomographic Detemination of Velocity and Depth in Laterally Varying Media. Geophysics, 1985, 50: 903~923
    7杨文采.地球物理反演的理论与方法.地质出版社, 1996
    8徐明果.反演理论及其应用.地震出版社, 2003
    9王兴泰.工程与环境物探新方法新技术.地质出版社, 1996
    10王建军,廖全涛,曹建伟等.应用井间CT探测某桥墩基础断裂.物探与化探. 2006, 30(2): 181~186
    11汪兴旺.岩溶探测中井间地震波层析成像的应用.物探与化探, 2008, 32(1): 105~108
    12石林珂,孙懿斐.声波层析成像方法及应用.辽宁工程技术大学学报(自然科学版). 2001, 20(4): 489~491
    13 W. S. Phillips, M. G. Fehler. Traveltime Tomography: a Comparison of Popular Methods. Geophysics, 1991, 56: 1693~1694
    14 Yue Tian, S. H. Hung, Guust Noletet et al. Dynamic Ray Tracing and Traveltime Corrections for Global Seismic Tomography. Journal of Computational Physics. 2007, 226: 672~687
    15 J. W. Rector. Crosswell Methods: Where are We, Where are We Going? Geophysics, 1995, 60(3), 627~630
    16 Y. Ishii, S. Rokugawa and Y. Aoki. Seismic Tomography Measurements in aHighly Fractured Area. PartⅡ, Geotomography, Segj, Tokyo, Japan, 1992, Vol. 2, 179~192
    17金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望.浙江大学学报(工学版), 2002, 36(4): 371~403
    18赵勤贤.混凝土结构工程耐久性研究的历史、现状及趋势.建筑技术开发, 2002, 29(9): 71~72
    19朱金颖,陈龙珠,严细水.混凝土受力状态下超声波传播特性研究.工程力学, 1998, 15(3): 111~117
    20 J. L. Bond, F. K. William and M. D. Frangopol. Improved Assessment of Mass Concrete Dams Using Acoustic Travel Time Tomography, PartⅠ—Theory. Construction Building Materials, 2000, 14: 133~146
    21 F. K. William, J. B. Leonard and M. D. Frangopol. Improved Assessment of Mass Concrete Dams Using Acoustic Travel Time Tomography, PartⅡ—Application. Constructionand Building Materiais, 2000, 14: 147~156
    22袁志亮,孟小红.井间地震层析成像技术在煤层气压裂监测的应用.中国煤田地质, 2007, 19(2): 70~74
    23程久龙.岩体破坏弹性波CT动态探测试验研究.岩土工程学报, 2000, 22(5): 565~568
    24 Cheng Jiulong, Li Li, Yu Shijian. Assessing Changes in the Mechanical Condition of Rock Masses Using P-Wave Computerized Tomography. International Journal of Rock Mechanics and Ming Science, 2001, 38(7): 1065~1070
    25裴正林.井间地震层析成像的现状与进展.地球物理学进展. 2001, 16(3): 91~97
    26 Guust Ndet.地震层析技术.冯锐译.地质出版杜, 1991
    27周兵,赵明阶.最小走时射线追踪层析方法.物探化探计算技术, 1992, 14(2): 124~130
    28周兵,朱介寿.一种新的地震射线层析成像计算方法.石油物探, 1994, 33(1): 45~54
    29吴律.层析基础及其在井间地展中的应用.石油工业出版社, 1997
    30 P. Dual Carrion. Tomography for Imaging Complex Structure. Geophysics, 1991, 56(9): 1395~1404
    31张文生,何樵登.约束走时层析成像.石油地球物理勘探, 1997, 32(1): 68~74
    32殷军,冯锐.井间层析成像的最大熵方法.地球物理学报, 1992, 35(2): 234~241
    33 R. S. Wu, M. N. Tokson. Diffration Tomography and Multisource Holography Applied to Seismic Imaging. Geophysics, 1987, 52(1): 11~25
    34 T. W. Lo, M. N. Toksoz and S. H. Xu, et al. Ultrasonic Laboratory Tests of Geophysical Tomographic Reconstruction. Geophysics, 1988. 53(7): 947~956
    35 D. M. Pai. Crosehole Seismic Using Vertical Eigenstate. Geophysics, 1990, 55(7): 815~820
    36 T. A. Dickens. Diffraction Tomography for Crosswell Imaging of Nearly Layered Media. Geophysics, 1994, 59(5): 694~706
    37黄联捷,吴如山.垂直非均匀背景多频背向散射层析成像.地球物理学报, 1994, 37(1): 87~100
    38井西利,杨长春.一种非均匀背景的散射层析成像方法研究.石油物探, 1997, 36(2): 7~14
    39 A. Tarantorn. Inversion of Seigmic Reflection Data in the Acoustic Approximation. Geophysics, 1984, 49(8):1259~1266
    40黄联捷,杨文采.声波方程逆散射反演的近似方法.地球物理学报, 1991, 34(3): 626~634
    41 R. G. Pratt, N. R. Coulty. Combining Wave-Equation Imaging with Traveltime Tomography to Form High-Resolution Images from Crosshole Data. Geophysics, 1991, 56(2): 208~224
    42 D. T. Reiter, W. Rodi. Nonlinear Waveform Tomography Applied to Crosshole Seismic Data. Geophysics, 1996, 61(3): 902~913
    43王守东,刘家琦.二维声波方程速度反演的一种方法.地球物理学报, 1995, 38(6): 833~839
    44 Y. Luo, G. T. Schuster. Wave-Equation Traveltime Inversion. Geophysics, 1991, 56(5): 645~653
    45 C. Bunks. Multlscale Seismic Waveform Inversion. Geophyeics, 1995, 60(5), 1457~1473
    46冯国峰,韩波,刘家琦.二维波动方程约束反演的大范围收敛广义脉冲谱方法.地球物理学报, 2003, 46(2): 265~270
    47钱建良,杨光,刘家琦.二维弹性波方程反问题的脉冲谱—多重网格迭代算法.哈尔滨工业大学学报, 1996, 28(1): 6~12
    48 C. Zhou. Acoustic Wave Equation Traveltime and Waveform Inversion of Crosshole Seismic Dada. Geophyeics, 1995, 60(3): 765~774
    49 J. E. Vidale. Finite-Difference Calculation of Travel Times. Bull., Seis. Soc. Am., 1988, 78: 2062~2076
    50 J. E. Vidale. Finite-difference Calculation of Traveltimes in Three Dimension. Geophysics, 1990, 55: 521~526
    51 J. E. Vidale, H. Houston. Rapid Calculation of Seismic Amplitude. Geophysics, 1990, 55: 1504~1507
    52 F. Qin, K. Olsen, Y. Luo and G. T. Schuster. Finite-Difference Solution of the Eikonal Equation along Expanding Wavefronts, Geophysics, 1992, 57(3): 478~487
    53 P. Podvin, I. Lecomte. Finite Difference Computation of Traveltimes in Very Contrasted Velocity Model: A Massively Parallel Approach And its Associated Tools. Gephys. J. Int. 1991, 105: 271~284
    54 J. Van Trier,W. W. Symes. Upwind Finite-Difference Calculation of Travel Times. Geophysics, 1991, 56: 812~821
    55黄联捷,李幼铭,吴如山.用于图像重建的波前法射线追踪.地球物理学报, 1992, 35(2): 223~232
    56 I. Nakanishi, K. Yamaguchi. A Numerical Experiment on Nonlinear Image Reconstruction from First-Arrival Times for Two-Dimensional Island Arc Structure. J. Phys. Earth, 1986, 34(1): 195~201
    57 T. J. Moser. Shortest Path Calculation of Seismic Ray. Geophysics, 1991, 56(1): 59~67
    58 R. Fischer, J. M. Lees. Shortest Path Ray-Tracing with Sparse Graphs. Geophysics, 1993, 58(7): 987~996
    59 L. Klimes, M. Kvasnicha. 3-D Network Ray Tracing. Geophys. J. Int., 1994, 116: 726~738
    60 J. Zhang, M. N. Toksoz. Nonlinear Refraction Traveltime Tomography. Geophysics, 1998, 63(6): 1726~1737
    61 H. J. A. Van Avendonk, A. J. Harding and J. A. Orcutt, et al. Hybrid Shortest Path and Ray Bending Method for Traveltime and Raypath Calculations. Geophysics, 2001, 66(2): 648~653
    62王辉,常旭.基于图形结构的三维射线追踪方法.地球物理学报, 2000, 43(4): 534~541
    63赵爱华,张中杰,王光杰.非均匀介质中地震波走时与射线路径快速计算技术.地震学报, 2000, 22(1): 151~157
    64刘洪,孟凡林,李幼铭.计算最小走时和射线路径的界面网全局方法.地球物理学报, 1995, 38(6): 823~832
    65张建中,陈世军,徐初伟.动态网络最短路径射线追踪.地球物理学报, 2004, 47(5): 899~904
    66高尔根,徐明果,王光品等.任意界面下的整体迭代射线追踪方法研究.声学学报, 2002, 27(3): 282~287
    67徐涛,徐果明,高尔根等.三维复杂介质的块状建模和试射射线追踪.地球物理学报, 2004, 47(6): 1118~1125
    68张美根,贾豫葛,王妙月等.界面二次源波前扩展法全局最小走时射线追踪技术.地球物理学报, 2006, 49(4): 1169~1175
    69 W. W. Symes. A Slowness Matching Finite Difference Method for Traveltimes Beyond Transmission Austics, 68 Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1998: 1945~1948, New Orleans.
    70 P. Sava, S. Fomel. Huygens Wavefront Tracing: A Robust Alternative to Ray Tracing, 68 Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, , 1998: 1961~1964, New Orleans.
    71 A. Leidenfrost, N. Ettrich, D.Gajewski, et al. Kosloff. Comparison of six different methods for calculating traveltime. Geophysical Prospecting, 1999, 47(1): 269~297
    72 Zhang Jianzhong, Chen Shijun. Numerical modeling of seismic first break in complex media. Chinese J. Comput Phys, 2003, 20(5): 429-433
    73韩复兴,孙建国,杨昊.不同插值算法在波前构建射线追踪中的应用与对比.计算物理, 2008, 25(2): 197~202
    74赵改善,郝守玲,杨尔皓等.基于旅行时线性插值的地震射线追踪算法.石油物探, 1998, 37(2): 14~24
    75许琨,吴律,王妙月.改进Moser法射线追踪地.地球物理学进展, 1998, 13(4): 60~66
    76张赛民,周竹生,陈灵君等.对旅行时进行抛物型插值的地震射线追踪方法.地球物理学进展, 2007, 22(1): 43~48
    77吴国忱,王华忠,马在田.常速度梯度射线追踪与二维层速度反演.石油物探, 2003, 42(4): 434~440
    78赵连锋,朱介寿,曹俊兴等.有序波前重建法的射线追踪.地球物理学报, 2003, 46(3): 415~420
    79 James A. Sethian, A. Mihai Popovici. 3-D Traveltime Computation Using the Fast Marching Method. Goephysics, 1999, 64(2): 561~523
    80 Z. S. Yao, K. S. Osypov and R. G. Roberts. Traveltime Tomography Using Regularized Recursive Least Squares. Geophys. J. Int. 1998, 134(1-3): 545~553
    81徐升,杨长春,刘洪等.射线追踪的微变网格方法.地球物理学报, 1996, 39(1): 97~102
    82陈景波,秦孟兆.射线追踪、辛几何算法与波场的数值模拟.计算物理, 2001, 18(6): 481~486
    83成谷,马在田,耿建华等.地震层析成像发展回顾.勘探地球物理进展. 2002, 25(3): 6~12
    84杨晓春,李小凡,张美根.地震波反演方法研究的某些进展及其数学基础.地球物理学进展, 2001, 16(4): 96~109
    85 K. Aki, W. H. K. Lee. Determination of Three-Dimensional Velocity Anomalies Under a Seismic Array Using First P Arrival Times from Local Earthquakes. Geophys Res., 1976, 81(23): 4381~4399
    86 K. Aki, A. Christoffersson and E. S. Husebye. Determination of the Three-Dimensional Seismic Structure of the Lithosphere Geophys. Journal of Geophysical Research, 1977, 82: 277~96
    87 C. Spencer, D. Gubbins. Travel-Time Inversion for Simultaneous Earthquake Location and Velocity Structure Determination in Laterally Varying Media. Geophysical Journal of the Royal Astronomical Society, 1980, 63: 95~116
    88 G. Pavlis, J. Booker. The Mixed Discrete Continuous Inverse Problem: Application to the Simultaneous Determination of Earthquake Hypocenters and Velocity Structure. Journal of Geophysical Research, 1980, 85: 4801~10
    89 G. H.Golub, C. Reinsch. Singular Values Decomposition and Least Squares Solution. Numer. Math., 1970, 14(3): 403~420
    90 G. Nolet. Seismic Wave Propagation and Seismic Tomography, D. Reidel Publ, Co. 1987
    91 R. P. Singh, Y. P. Singh. A New Inversion Technique for Geotomographic Data.Geophysics, 1991, 56: 1215~1227
    92 W. S. Phillips, M. C. Fehler. Traveltime Tomography:A Comparison of Popular Methods. Geophysics, 1991, 56: 1639~1649
    93 G. Herman. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, San Diego, 1980
    94 K. Hirhara. Detection of Three-Dimensional Velocity Anisotropy. Physics of the Earth and Planetary Interiors, 1988, 51, 71~85
    95 E. Humphreys, R. Clayton. Adaptation of Back Projection Tomography to Seismic Travel Time Problems. Journal of Geophysical Research, 1988, 93: 1073~85
    96 C. Paige, M. Saunders. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. Association of Computational Mechanics Transactions and Mathematical Software. 1982, 8: 43~71
    97 J. Scales. Tomographic inversion via the Conjugate Gradient Method. Geophysics, 1987, 52: 179~85
    98杨文采,杜剑渊.层析成像新算法及其在工程检测中的应用.地球物理学报, 1994, 37(2): 239~244
    99朱介寿,严忠琼,曹俊兴.井间地球物理层析成像软件系统研究.物探化探计算技术, 1994, 62(4): 310~321
    100牛彦良,杨文采.跨孔地震CT中的逐次线性化方法.地球物理学报. 1995, 38(3): 378~386
    101曹俊兴,严忠琼.地震波跨孔旅行时层析成像分辨率估计.成都理工学院学报, 1995, 22(4): 95~101
    102 Z. Dapeng, A. Hasegawa, Shigeki, et al. Tomographic Imaging of P and S Wave Velocity Structure Beneath Northeastern Japan. J. Geophys Res. 1992, 97(B3): 990~928
    103 G. Nolet. Solving or Resolving Inadequate and Noisy Tomographic Systems. Journal of Computational Physics. 1985, 61: 463-82
    104 W. Spakman, G. Nolet. Imageing Algorithms, Accuracy and Resolution in Delay Time Tomography. Mathematical Geophysics, 1988: 155~187
    105 F. Press. Earth Models Obtained by Monte-Carlo Inversion. J. Geophys Res. 1968, 73: 5223~5234
    106 S. Kirkpatrck, C. Gelatt. Optimazation by Simulated Annealing. Science, 1983,220: 671~680
    107 C. Ammon, J. Vidale. Tomography without Rays. Bulletins of the Siesmological Society of America, 1993, 83: 509~28
    108裴正林,余钦范,牟永光.小波多尺度井间地震层析成像方法.地球学报, 2002, 23(4): 383~386
    109 M. S. Sambridge. Geophysical Inversion with a Neighborhood Algorithm-Ⅰ, Searching a parameter space. Geophys J. Int. 1999, 138: 479~494
    110 A. J. Devaney. Geophysical Diffractions Tomography. IEEE Transactions on Geoscience and Remote Sensing, 1984, 22(1): 3~13
    111 Alan Witten, J. E. Molyneux. Geophysical Imaging with Arbitrary Source Illumination. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26 (4): 409~419
    112 R. A. Phinney, D. M. Jurdy. Seismic Imaging of Deep Crust. Geophysics, 1979, 44 (10): 1637~1660
    113 R. D. Lager, R. J. Lytle. Determining a Subsurface Electromagnetic Profile from High-Frequency Measurements by Applying Reconstruction Technique Algorithms. Radio Science, 1977, 12 (3-4): 249~260
    114 R. D. Radcliff, C. A. Balianis. Electromagnetic Geophysical Imaging Incorporating Refraction and Reflection. IEEE Transactions on Antennas and Propagation, 1981, 29 (3): 288~292
    115董守华,王琦.层析成像在巷道无线电波透视法中的应用.中国矿业大学学报, 2003, 32(5): 579~582
    116程久龙.煤层底板破坏深度的声波CT探测试验研究.煤炭学报. 1999, 24(6): 576~580
    117宁书年,张绍红,杨峰等.无线电波层析成像技术及在矿井坑透中的应用.煤炭学报, 2001, 26(5): 468~472
    118林树海,赵立英.井间电磁波层析成像中的高精度时间域正演计算.地球科学—中国地质大学学报, 2007, 32(4): 469~473
    119 L. Lanbo, J. W. Lane and Q. Youli. Radar Attenuation Tomography Using the Centroid Frequency Downshift Method. Journal of Applied Geophysics, 1998, 40(1-3): 105~116
    120 Z. Chaoguang, L. Lanbo, J. W. Lane. Nonlinear Inversion of Borehole-Radar Tomography Data to Reconstruct Velocity and Attenuation Distribution in EarthMaterials. Journal of Applied Geophysics, 2001, 47(3-4): 271~284
    121肖柏勋,刘明贵.一种新型的工程岩体探测震源—超磁致伸缩声波发射器.地学前缘. 1996, 3(1-2): 198~202
    122朱厚卿.稀土超磁致伸缩材料的应用.应用声学, 1998, 17(5): 3~10
    123朱国,王怀秀,刘盛东.声波探测综放面顶煤厚度的试验研究.煤炭科学技术. 1997, 25(12): 17~20
    124 I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Commum. Pure Math. 1988, 41: 900~996
    125 L. Cohen, I. Daubechies, J. Feauveau. Biorthonormal Bases of Compactly Supported wavelets. Commum. Pure Math. 1992, 45: 906~996
    126 S. Mallat. A Theory for Multiresolution Signal Decomposition. The Wavelet Representation, IEEE Pattern Anal. and Machine Intell.1989, 11(7): 674~693
    127赵学智.奇异信号检测时小波基的选取研究.华南理工大学学报, 2001, 28(10): 75~81
    128李建平.多种小波基应用性能比较.重庆大学学报, 1998, 21(2): 111~116
    129殷人昆.数据结构.清华大学出版社, 2007
    130 M. A. Weiss.数据结构与问题求解(C++版).张丽萍译, 2nd,.清华大学出版社, 2005
    131 M. C. Robinson. The greedy and delaunay triangulations are not bad in the average case. Information Processing Letters, 1986(22): 25~31
    132 S. H. Lo. Delaunay triangulation of non-convex planar domains. International Journal for Numerical Methods in Engineering, 1989(28): 2695~2707
    133 W. Simon Houlding. Practical Geostatistic. Germany Springer, 2000: 27~113
    134周杰,丁贤荣,汪德.平面散点集Delaunay三角剖分的一种高效方法.测绘信息与工程, 2003, 28(6): 21~23
    135方锡武,崔汉国.有限元网格自动生成的Delaunay算法.海军工程学院学报, 1998, 4: 31~34
    136李世森,朱志夏,秦岭等.任意平面区域的自动三角剖分.天津大学学报, 2000, 33(5): 592~598
    137闵卫东,唐泽圣.二维任意域内点集的Delaunay三角划分的研究.计算机学报, 1995, 18(5): 357~364
    138邓建辉,熊文林,葛修润.复杂区域自适应三角网格全自动生成方法.岩土力学, 1994, 15(2): 43~45
    139刘强.基于二叉树思想的任意多边形三角剖分递归算法.武汉大学学报(信息科学版), 2002, 27(5): 528~533
    140严登俊,黄学良,胡敏强.二维平面任意区域有限元网格自适应生成算法.微电机, 1999, 32(3): 11~14
    141张钋,刘洪,李幼铭.射线追踪方法的发展现状.地球物理学进展, 2000, 15(1): 36~45
    142 K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Transaction, 1966, AP-14(3): 302~307
    143 B. Engquist, A. Majda. Absorbing Boundary Condition for the Numerical Simulation of wave. Mathematics of the Computation, 1977, 31(139): 629~651
    144 G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations. IEEE Transaction, 1981, MTT-29(10): 1073~1077
    145 J. Y. Fang, K. K. Mei. A Super-Absorbing Boundary Algorithm for Numerical Solving Electromagnetic Problems by Time-Domain Finite Difference Method. IEEE AP-S International Symposium, Syracuse, NY. USA. JUNE 6-10, 1988, 4276~5475
    146 K. K. Mei, J. Y. Fang. Superabsorption-A Method to Improve Absorbing Boundary Conditions. IEEE Trans, 1992, AP-40(9): 1001~1010
    147 R. W. Ward, M. N. Toks?z. Causes of Regional Variation of Magnitude: SSA Bull, 1971, 61: 649~670
    148 You Quan, M. Jerry Harris. Seismic Attenuation Tomography Using the Frequency Shift Method. Geophysics, 1997, 62(3): 895-905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700