Ti_3SiC_2-Cu复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti_3SiC_2系三元层状陶瓷是近年来受到广泛重视的一种新型化合物材料,它同时具有金属的导电、导热等性能和陶瓷的低密度、高熔点、高稳定性等性能。与目前触头材料中常用的增强相碳化钨相比,其电阻率相当,热导率和熔点更高,模量和热膨胀系数更接近于金属,比重更轻,同时具有良好的自润滑性和抗氧化性。用它代替碳化钨和铜进行复合,将能够减轻触头重量、降低材料成本的同时,提高材料的电接触性能,同时节省宝贵的战略资源钨,因而有望成为一种新型的高性能触头材料。
     本试验在高纯度Ti_3SiC_2粉体合成的基础上,用热压法制备出Ti_3SiC_2与Cu的复合材料。测试密度、导电性、抗弯强度等物理、力学性能,并对材料进行XRD分析、SEM微观分析、EDS微观区域分析。根据试验结果,对Ti_3SiC_2与Cu的体积比、烧结温度、保温时间、压力大小等组分与工艺进行了优化,以求得到高导电性、高强度的Ti_3SiC_2-Cu复合材料。
     试验结果表明,影响材料性能的因素主要有两个,即致密度和界面反应程度。提高致密度有助于提高材料的导电性和抗弯强度,而界面反应则会在提高材料强度的同时降低导电性。在相同的工艺条件下,铜的增加会提高材料的致密度及导电性,当铜体积含量达到60%时,材料表现一定的塑性;Ti_3SiC_2含量增加,材料脆性增强;增加保温时间和增大烧结压力,也会提高材料的致密度。本实验范围内,当复合材料为50vol%Ti_3SiC_2-Cu,烧结温度1000℃,保温时间30min,强度达到最高值,为1351.78MPa;当复合材料为40vol%Ti_3SiC_2-Cu,烧结温度1000℃,保温时间60min,电阻率达到最低值,为0.06μΩ~*m。
The ternary compound Ti_3SiC_2 has been layed more emphasis as a new compound material,and its electric and thermal conductibility is similar to metal,and its low density,high melting point and high stabilization are similar to ceramics. Compared with WC which is usually used as electrical antenna material,Ti_3SiC_2 has similar resistance,better thermal conductibility and higher melting point.Its elasticity modulus and thermal dilatability are more adjacent to metal,and it has lower specific gravity,its self-lubrication and resistance to oxidation is better.Componded with copper instead of WC,it can diminish density,lower cost,improve the capability of electric contact and save W which is a kind of valuable resource.Because of these reasons,it is hopeful to be used as a new electric contact antenna with high performance.
     On the basis of the synthesis of high purey Ti_3SiC_2 powder,we prepared Ti_3SiC_2-Cu composites through hot-press process.We test its density,electric conductivity,flexural strength and so on,and we study the composites through XRD, SEM,EDS.With the referrences to experimental result,we adjust the volume proportion of Ti_3SiC_2 and Cu,temperature,dwelling time,pressure to get the Ti_3SiC_2-Cu composites with high electric conductivity and flexural strength.The results show that there are two main factors that influence the result,which are compact degree and interphase reaction.The compact degree is favorable to the electric conductivity and flexural strength,the interphase reaction is favorable to flexural strength but it is bad to electric conductivity.With the same process,we can increase Cu's volume content to improve the material's compact degree and electric conductivity,when the volume content of Cu is no less than 0.6,the composites have plastisity;Improve the volume content of Ti_3SiC_2,the material's brittleness will be improved;increasing dwelling time or pressure,the composites' compact degree will be improved.The composites with highest flexural strength we prepared is 50vol%Ti_3SiC_2-Cu,the sintering temperature is 950℃,keeping-temperature time is 30min,and the flexural strength value is 1350Mpa;The composite with highest electric conductivity we prepared is 40vol%Ti_3SiC_2-Cu,the sintering temperature is 1000℃, keeping-temperature time is 60min,and the electric resistivity value is 0.06μΩ~*m。
引文
铩颷1]丁乘钧,杨志愁,王笑天.显微组织对CuCr真空触头材料耐电压强度的影响.电工合金,1998,3(1):11-15
    [2]李炳荣,真空开关触头材料的开发现状与进展.《机械研究与应用》,1997,01:35-36
    [3]MerlW,MeyerCL,AtayaE.电触头数据集上海.上海科学技术文献出版社,1983:77-86
    [4]王季梅.真空开关触头材料及其制造技术.西安:西安交通大学真空电弧理论研究中心,1995:50-55
    [5]李炳荣.真空开关触头材料的开发现状与进展.机械研究于应用.1997,1:35-36
    [6]W.Jeitschko,H.Nowotny."Die Kristall structure of Ti3SiC2-Ein Neuer Komplxcarbid-Typ",Monatsh.Fur Chem.1967.98:329-37
    [7]王季梅.真空开关理论及其应用.西安:西安交通大学出版社,1986.5-8
    [8]王季梅.真空开关.北京:机械工业出版社,1983.54-140
    [9]YanabuSatoru,Tsutsumi Tadahito,Yokokura Kunioetal.Recent Technical Development sin HighVoltage and High Power Vacuum Circuit Breakers.IEEET ran action son Plasma Science,October 1989,17(5):717-723
    [10]淡淑恒,王季梅,李宏群.真空开关的触头材料.低压电器.,1999,3:10-11
    [11]孟繁琦.银钨触头材料的制备工艺及使用性能.材料导报.2006,S1:321-324
    [12]王新刚.真空开关用WCu10触头材料制备工艺的研究.中国钨业.2007,03:321-324
    [13]张剑平,陈敬超,周晓龙.影响CuCr系触头材料性能的因素.电气制造.2007,02:139-141
    [14]Sato J,Watanabe K,Seki T,et al.Effect of Cr content in CuCr contact material on interruptingability of VCB 3rd International Conference on Elect rical Contact s,Arcs,Apparatus and theirApplications(IC-ECAAA)[C],Xi'an,China,1997:156-159
    [15]韩宝军,徐洲.铸造法制备MgO增强铜基复合材料的研究.特种铸造及有色合金,2005,25(12):753-755
    [16]Pay Yih.Discontinuously reinforced copper-matrix composites by powder metallurgy.Ph.D.dissertation.State university of New York at Buffalo.1996.13-20
    [17]谭毅,李敬锋.新材料概论.北京.冶金工业出版社.2004.56-57
    [18]赵国田,孙素杰,徐永东,等.无压浸渗法制备高体积含量的铝基复合材料.兵器材料科学与工程.2006,29(2):67-69
    [19]赵国田,孙素杰,徐永东,等.无压浸渗法制备高体积含量的铝基复合材料.兵器材料科学与工程.2006,29(2):67-69
    [20]韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/功能一体化铝基复合材料的性能及应用.航空制造技术.2006,1:95-98
    [21]Sheng-ming Zhou,Xiao-bin Zhang,Zhi-peng Ding.Fabrication and tribological properties ofcarbon nanotubes reinforced Al composites prepared by pressureless infiltration technique.Composites Part A:Applied Science and Manufacturing,In Press,Corrected Proof,Availableonline 12 June 2006.
    [22]杜之明,程远胜,罗守靖.压力下浸渗-半固态致密法制备Al2O3sf·SiCp/Al复合材料.中国有色金属学报.2004,14(12):2079-2081
    [23]Gui-rong Yang,Yuan Hao,Wen-ming Song,et al.Effects of some parameters on formation andstructure of infiltrated(surface)layer prepared by vacuum infiltration casting technique. Surface and Coatings Technology.2006,201(3-4,5):1711-1714
    铩颷24]GermanRM.Powder Injection Molding[M].MPIF:Princeton,1990.61-95
    [25]CapusJ,Pickering S,WeaverA.Hoeganaes offers higher density at lower cost[J].MetalPowder Repor.1994,49(7P8):22-24
    [26]MichaelL,Maruccietal.Properties of high density sinter hardening P/M steels processed using anadvanced binder system[A].Advance sinPowder Metal lurgy&Particulate Materials[C,NJ,MPIF,2002,13:48-59.
    [27]黄在银,柴春芳.直接氧化法制备准一维氧化物纳米材料的研究进展.材料导报.2006,20(3):52-55
    [28]W.Jeitschko and H.Nowotny."Die Kristallstmctur von Ti3SiC2-Ein Neuer Komplxcarbid-Typ",Monatsh.Fur Chem.1967.98:329-37
    [29]Kisi E K,Crossley J A A,Myhra S,et al.Structure and Crystal-chemistry ofTi3SiC2.Phys.Chem.sol.1998.59:1437-1443
    [30]Amer M,Barsoum M W,El-Raghy T,Wiess I,et al.Raman Spectrum of Ti3SiC2.ApplPhys.1998.84:5817-5819
    [31]Pampuch R,Lis J,Stobierski L,et al.Solid combustion synthesis of Ti3SiC2.Eur Ceram Soc,1989.5:283
    [32]Barsoum M W,El-Raghy T.Synthesis and characterization of a remarkable ceramic- Ti3SiC2.JAm Ceram Soc,1996,19(7):1953
    [33]El-Raghy T,Barsoum M W,Zavaliangos A,et al.Processing and mechanical Properties ofTi3SiC2,part Ⅱ:effect of grain size and deformation temperature.Am Ceram Soc,1999,82(10):2855
    [34]Gao N F,Miyamoto Y,Zhang D.Dense Ti3SiC2 prepared by reactive hip.Mater Sci,1999,(34):4358
    [35]Barsoum M W,El-Raghy T,Raun C,et al.Thermal properties of Ti3SiC2.Phys ChemSokds,1999,60:429
    [36]Crssiey A,Kisi E H,Summers J W B,et al.Ultra-low friction for a layered carbide derivedceramic,Ti3SiC2,investigated by lateral force microscopy.J Appl Phys,1999,32:632
    [37]Finkel P,Barsoum M W,El-Raghy T.Low temperature dependencies of the elastic properties ofTi3Al1.1C1.8,Ti4AlN3 and Ti3SiC2.J Appl Phys,2000,87:1701
    [38]Gilbert C J,Bloyer D R,Barsoum M W,et al.Fatigue-crack growth and fracture properties ofcoarse and fine-grained Ti3SiC2.Scripta mater,2000(42):761
    [18]Nikolay V.Tzenov,Michel W.Barsoum,Synthesis and characterization of Ti3AlC2[J].J AmCeram Soc,2000,83(4):825-832
    [39]Askeland,Donald R.Essentials of materials science and engineering.北京:清华大学出版社.2005.76-80
    [40]E.H.Kener.The elastic and thermo-elastic properties of composite materials.Proc.Phys.Soc.1956,68B:808-813
    [41]张建云,王磊,周贤良.高体积分数SiCp/Al复合材料的热物理性能.兵器材料科学与工程.2006,29(3):11-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700