碳纤维对钢筋在模拟混凝土环境中腐蚀行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强钢筋混凝土作为新型的建筑结构材料,拥有非常好的挠曲强度、抗压强度、耐磨性能和抗渗性能,且碳纤维加入后混凝土结构还能够展现出新的电学性能,是一种比传统钢筋混凝土结构更加优秀的结构材料。然而由于碳纤维是良导体,若与混凝土中钢筋接触而发生电偶作用,则可能影响钢筋混凝土结构的耐久性。在混凝土环境中通过分析碳纤维和钢筋之间的电偶作用来评价碳纤维对混凝土中钢筋电化学腐蚀行为的影响,前人没有做过系统的研究,故本文围绕碳纤维和碳钢的电偶作用,利用电化学手段和腐蚀失重实验研究了碳纤维、混凝土模拟孔隙液的pH值以及氯离子对模拟混凝土环境中钢筋的电化学腐蚀行为的影响,并利用XPS分析了碳纤维的偶接对钢筋表面钝化膜的影响。
     在pH为12.5的模拟混凝土孔隙液中,电化学测试和腐蚀失重实验结果表明,碳纤维与碳钢偶接后,碳钢表面双电层电容Cdl增大,电荷转移电阻Rct减小,钝化膜的厚度发生减薄,表面钝化膜对碳钢的保护性能降低;同时偶接碳纤维后碳钢的腐蚀电位升高,腐蚀电流密度增大,碳钢的腐蚀速率加快。XPS测试佐证了电化学实验结果,偶接碳纤维后,碳钢表面三价铁元素和二价铁元素的比值(Fe~(3+)/Fe~(2+))降低,碳钢表面钝化膜的稳定性降低。虽然碳纤维的偶接对碳钢的钝化产生了消极的影响,但是在无氯离子的模拟孔隙液环境中碳钢表面仍然能够保持较好的钝态。
     研究了pH12.5的孔隙液中碳纤维偶接体积对碳钢腐蚀行为的影响,结果显示,随着偶接碳纤维体积的增加,碳钢表面电荷转移电阻Rct呈现下降趋势,双电层电容Cdl呈上升趋势,膜层厚度变薄;其表面Fe3+/Fe2+比值减小,表明碳钢表面钝化膜的保护性能下降,同时碳钢的腐蚀速率呈现增大的趋势。
     孔隙液pH的变化是影响钢筋电化学行为重要的因素,故研究了不同pH孔隙液中(13.3、12.5和11.6)偶接碳纤维对碳钢电化学行为的影响。在pH较高的孔隙液(13.3)中,碳钢能够保持很好的钝性,随着孔隙液pH值的降低,碳钢在孔隙液中形成的钝化膜的稳定性有所下降,但仍具一定的保护作用;偶接碳纤维后,碳钢表面钝化膜的稳定性也降低,当pH值和偶接碳纤维两个因素同时作用时,碳钢的腐蚀速率会较大程度地增加,在较低pH值孔隙液(11.6)中,偶接碳纤维体积增大时碳钢很容易发生腐蚀。
     氯离子是引发混凝土中钢筋锈蚀的主要原因,研究了三种孔隙液中(13.3、12.5和11.6)氯离子对偶接碳纤维碳钢电化学行为的影响。研究发现,孔隙液中氯离子浓度增加,碳钢表面电荷转移Rct略微减小,碳钢表面钝化膜的保护性能下降,碳钢的腐蚀速率随氯离子浓度的增大呈现增大的趋势。在pH为13.3的孔隙液中,在氯离子浓度很高时(2.65%)碳钢也能保持良好的钝性;而在pH为12.5孔隙液中,在较高氯离子浓度(0.7%和1.39%),碳钢就易发生孔蚀;pH值降至11.6,碳钢在较低浓度(0.3%)氯离子环境中就易发生孔蚀;碳纤维的偶接能够增大碳钢在氯离子环境中发生腐蚀的风险,使碳钢在较低的氯离子浓度即可发生腐蚀。
     研究了氯离子侵蚀作用下掺有碳纤维的水泥砂浆中钢筋的电化学行为。水泥砂浆中,随着碳纤维掺入量的增加(0.2%、0.5%和1%,占水泥质量百分比),钢筋的阻抗值呈现先增加后减小的趋势。在掺入量为0.2%时碳纤维能够提高水泥砂浆中钢筋的阻抗值;当掺入量增加至0.5%和1%,试样的阻抗值开始下降,并降至低于未掺碳纤维的砂浆试样的阻抗值,说明碳纤维掺入量过大时,不利水泥砂浆中碳钢的保护。
Carbon fiber reinforced concrete is a new-type building structural materialwith excellent performances such as good flexural stress, good compresivestress, strong wearability and high impermeability property. Besides, carbonfiber reinforced concrete has new electrical property compared with thetraditional concrete material. However, because carbon fiber is a goodelectrical conductor, galvanic corrosion might happen if carbon fiber andsteels contact in concrete, which might have adverse effect on steel, so as tocause the durability of concrete structures reduce. So far, few researchers havestudied the influence of carbon fiber on electrochemical corrosion behavior ofsteel in simulated concrete environment because of the galvanic couplebetween carbon fiber and steel. So this thesis was aimed at the influences ofcarbon fiber, Cl-and pH values on electrochemical behavior of carbon steel insimulated concrete environment by electrochemical tests, weight-loss test. Also, the effect of carbon fiber coupling on the protective property of passivefilm on steel surface was analyzed by XPS.
     In pH12.5simulated concrete pore solution, electrochemical tests andweight-loss tests results show that after carbon fiber coupling, double layercapacity (C_(dl)) of steel surface is significantly increased, meanwhile chargetransfer resistance (R_(ct)) decrease. The changes of Cdland Rctparametersindicate that the passive film formed on steel surface in pore solution becomesthiner when steel is coupled with carbon fiber, and the protective property ofthe steel surface film get weak. Meanwhile, after carbon fiber coupling, thecorrosion potential of steel shifts positively, and corrosion current densityincreases, thus the corrosion rate of steel is accelerated. The results of XPSsupports the conclusion from electrochemical and weight-loss tests: after steelcoupling with carbon fiber, the ratio of Fe~(3+)to Fe~(2+)on steel surface decreases,which indicates the stability of passive film on steel gets decreased. Althoughcarbon fiber coupling has a negative effect on steel passivation, carbon steelstill could keep good passivation in12.5pH concrete pore solution withoutCl-.
     The influence of carbon fiber volumes on electrochemical behavior of steelwas studied. With volume amounts increasing, Rctof steel descends,meanwhile C_(dl)ascends, and theFe~(3+) Fe~(2+)to Feratio in the passive film on steelsurface decreases. These suggests that with the volume of carbon fibercoupling increasing, the protective property of passive film on steel surface descends, also the film thickness reduces. The corrosion rate of steel showsincreasing tendency when the volumes of carbon fiber coupling increases.
     The pH value of pore solution is a very significant influence factor on theelectromechanical behavior of steel, so some investigations were focused onthe influence of pH values (13.3,12.5and11.6) on the electrochemicalbehavior of steel coupling with carbon fiber. In the higher pH value poresolutions (pH13.3), the passivation of steel surface is very good; as the pHvalue decreases (12.5and11.6), good passivation gets a little weaker. Whensteel coupled with carbon fiber in lower pH pore solution (pH11.6), thecorrosion susceptibility of steel increases apparently and the corrosion rate ofsteel accelerates.
     Cl-is the most important factor to induce initiation of corrosion on steelin concrete, so experiments were carried out to study the influence of Cl~-onthe corrosion behavior of steel coupling carbon fiber in various pH value poresolutions (pH13.3,12.5and11.6). With the concentration of Cl-increases, Rctof steel decreases slightly, the protective property of passive film decends,meanwhile the corrosion rate of steel ascends. In pH13.3pore solution,passivation of steel still maintained even when the Cl-concentration is veryhigh (2.65%). As pH value of pore solution is decreased to12.5, corrosionoccurrs when the Cl~-concentration is0.7%and1.39%. As pH value falls to11.6, corrosion of steel initiates when the concentration of Cl~-is in acomparatively low level (0.3%). When coupling with carbon fiber, carbon still is sensitive to corrosion in low pH value pore solutions (pH11.6) evencontaining low content of Cl-.
     The electrochemical behavior of steel in cement mortar mixed withcarbon fiber has been studied. In cement mortar, as the mixing mass of carbonfiber increases (0.2%,0.5%and1%, the mass ratio of carbon fiber andcement), impedance of steel firstly increases and then decreases. When thecarbon fiber mass is0.2%, impedance of rebar ascends, which means steel isbetter protected. When the mass of carbon fiber increases to0.5%and1%, theimpedance decreases, which is even lower than the impedance of carbon steelin cement mortar without cabon fiber. So, when mixing mass of carbon fiber isexcessive, it is adverse to the protection of steel rabar in cement mortar.
引文
[1]冯乃谦,邢锋.混凝土结构的耐久性[M].北京:机械工业出版社,2009:15.
    [2]柴金义.钢筋混凝土结构[M].北京:人民交通出版社,2002:7.
    [3]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008:6.
    [4]吴智敏,郭夏,魏华.纤维增强复合材料加固混凝土柱的研究进展[J].建筑科学与工程学报.2008,25(2):24-35.
    [5]陆总兵,陆艳辉.碳纤维布加固技术在混凝土结构补强中的应用[J].科技创新导报.2010,5:16-17.
    [6]朱宏军,程海丽,姜得民.特种混凝土和新型混凝土[M].北京:化学工业出版社,2004:3.
    [7] Garces P, Fraile J, Vilaplana-Ortego E, etc. Effect of carbon fibres on the mechanical properties andcorrosion levels of reinforced Portland cement mortars[J]. Cement and Concrete Research,2005,35(2):324-331.
    [8] Garces P, Andion L G, De la Varga I, etc. Corrosion of steel reinforcement in structural concretewith carbon material addition [J]. Corrosion Science,2007,49(6):2557-2566.
    [9] Hou J Y, Chung D D L. Cathodic protection of steel reinforced mortar or concrete[J]. Cement andconcrete research,1997,27(5):649-656.
    [10] Hou J Y, Chung D D L. Effect of admixtures in concrete on the corrosion resistance of steelreinforced concrete [J]. Corrosion Science,2000,42(9):1489-1507.
    [11]胡融刚,钢筋/混凝土体系腐蚀过程的电化学研究[D].厦门:厦门大学,2004.
    [12]冯立明.电镀工艺与设备[M].北京:化工工业出版社,2005:8.
    [13] Ahmad Shamsad. Reinforcement corrosion in concrete structures, its monitoring and service lifeprediction-a review [J]. Cement&Concrete Composites,2003,23:459-471.
    [14]刘玉.钢筋腐蚀机理及氯离子影响机制的研究[D].厦门:厦门大学,2007.
    [15] Mehta P K. Durability of concrete–fifty years of progress[R]. Montreal, Canada: Proceedings ofthe2ndinternational conference,1991.
    [16]陈朝辉,黄河.混凝土劣化对结构性能的影响[J].重庆大学学报,2003.4-5.
    [17]柳俊哲,吕丽华,李玉顺.混凝土碳化研究与进展(2)-碳化速度的影响因素及碳化对混凝土品质的影响[J].混凝土,2005,12:10-13.
    [18]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:9.
    [19] Zivica Vladimir, Bajza Adolf. Acidic attack of cement based materials-a review. Part1: Principle ofacidic attack [J]. Construction and Building Materials,2001,15:331-340.
    [20]牛乐.焙烧水滑石对钢筋腐蚀行为的影响[D].北京:北京化工大学,2010.
    [21] Yuzer Nabi, Akoz Fevziye, Kabay Nihat. Prediction of time to crack initiation in reinforcedconcrete exposed to chloride [J]. Construction and Building Materials,2008,22:1100-1107.
    [22] Pradhan Bulu, Bhattacharjee B. Corrosion zones of rebar in chloride contaminated concrete throughpotentiostatic study in concrete powder solution extracts [J]. Corrosion Science,2007,49:3935-3952.
    [23] Etteyeb N, Dhouibi L, Takenouti H, Alonso M.C, Triki E. Corrosion inhibition of carbon steel inalkaline chloride media by Na3PO4[J]. Electrochimica Acta,2007,52:7506-7512.
    [24] Manera Marco, Vennesland Stein, Bertolini Luca. Chloride threshold for rebar corrosion inconcrete with addition of silica fume [J]. Corrosion Science,2007,50:554-560.
    [25]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984:2.
    [26]汪鹰,史苑芗,魏宝明.原子力显微镜对钢筋表面钝化膜的研究[J].中国腐蚀与防护学报,1998,18:102-106.
    [27]汪鹰,史苑芗,魏宝明.用XPS研究钢筋钝化膜和Cl-对钝化膜的影响[J].中国腐蚀与防护学报,1998,18:107-112.
    [28] Ann Ki Yong, Song Ha-Won. Chloride threshold level for corrosion of steel in concrete[J].Corrosion Science,2007,49:4113-4133.
    [29] Hausmann D A. Steel corrosion in concrete; How does it occur?[J]. Materials and Protection,1967,6:19-23.
    [30] British Standard8110: Part1, Structural use of concrete–code of practice for design andconstruction[S]. British Standards Institute, London UK,1985.
    [31]储炜,史苑芗,魏宝明.钢筋在混凝土模拟孔隙液及水泥净浆中的腐蚀电化学行为[J].南京化工学院学报,1995,17(3):14-19.
    [32]蔡光汀.钢筋混凝土腐蚀机理和防腐措施探讨[J].混凝土,1992,1:18-24.
    [33] Hack Harvey P. ASTM special technical publication978, Galvanic Corrosion[S]. United States,Ann Arbor: ASTM,1988.
    [34] Aylor D M, Murray J N. Effect of a seawater environment on the galvanic corrosion behavior ofgraphite/epoxy composites coupled to metals[R]. United States: Carderock Division Naval SurfaceWarfare Center,1992.
    [35] Brown R, Rockett T J. Blistering of graphite/polymer composite galvanically coupled with metalsin sea water[R]. United States: College of Engineering of the University of Rhode Island,1992.
    [36]岳清瑞,张宁,彭福明.碳纤维增强复合材料(CFRP)加固修复钢结构性能研究与工程应用
    [M].北京:中国建筑工业出版社,2009:3.
    [37] Tavakkolizadeh, Saadtmanesh. Galvanic corrosion of carbon and steel in aggressive environment[J].Journal of Composite Construction,2001,5:200-209.
    [38]郭晓伟.碳纤维增强塑料/结构钢复合结构的电偶腐蚀研究[J].材料开发与应用,1998,13:16-19.
    [39]李果,袁迎曙,耿欧.气候条件对碳化混凝土内钢筋腐蚀速度的影响[J].混凝土,2005,8:40-48.
    [40] Tuutti K. Service life of structures with regard to corrosion of embedded steel [J]. RILEM QualityControl of Concrete Structures, Stockholm, Sweden,1979:293-299.
    [41]钱磊.氯环境下温度对钢筋混凝土结构中钢筋腐蚀的影响[D].上海:上海交通大学,2004.
    [42]周剑婷.高温条件下混凝土模拟孔隙液中钢筋腐蚀的临界氯离子浓度的试验研究[D].上海:上海交通大学,2010.
    [43]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社工业装备与信息出版中心,2003:45.
    [44] Miranda J M, Fernández-Jiménez A, González J A, Palomo A. Corrosion resistance in activated flyash mortars [J]. Cement and Concrete Research,2005,6(35):1210-1217.
    [45] Anwar Hossain Khandaker M. Chloride induced corrosion of reinforcement in volcanic ash andpumice based blended concrete [J]. Cement and Concrete Composites,2005,3(27):381-390.
    [46]陈益民,贺行洋,李永鑫,苏英.矿物掺合料研究进展及存在的问题[J].材料导报,2006,20(8):28-31.
    [47]施锦杰,孙伟.矿物掺合料与钢筋表面状态对砂浆中钢筋锈蚀的影响[J].硅酸盐学报,2011,39:54-62.
    [48]张倩倩,孙伟,施锦杰.矿物掺合料对钢筋锈蚀临界氯离子含量的影响[J].硅酸盐学报,2010,38:633-637.
    [49]唐聿明,张杰,左禹.萘系减水剂对硬化水泥浆体及孔隙液中钢筋腐蚀的影响[J].材料保护,2009,42:49-51.
    [50]唐聿明,张杰,左禹.萘系减水剂混凝土钢筋的电化学腐蚀[J].电化学,2009,15:152-156.
    [51] Tang Yuming, Zhang Guodong, Zuo Yu. The inhibition effects of several inhibitors on rebar inacidified concrete pore solution[J]. Construction and building materials,2012,28:327-332.
    [52] PoPovies J S. NDE Techniques for concrete and masonry structures [J]. Progress Structure andEnging Materials,2003,5(1):49-59.
    [53] Andrade C, Alonso C. Corrosion rate monitoring in the laboratory and on site [J]. Construction andBuilding Materials,1996,10(5):315-328.
    [54] Feliu V, Gonzalez J A, Andrade C, Feliu S. Equivalent circuit for modeling the steel Concreteinterface. I. experimental evidence and theoretical predictions [J]. Corrosion Scienee,1998,40:975-993.
    [55] Broomfield John P. The use of permanent corrosion monitoring in new and existing reinforcedconcrete structures [J]. Cement&Cocrete Composites,2002,24:27-34.
    [56]汪鹰,史苑芗,魏宝明,林昌健.应用扫描微参比电极研究钢筋在含氯离子碱液中的点蚀及其被抑制行为[J].腐蚀科学与防护技术,1998,10(3):135-139.
    [57]田昭武.电化学实验方法进展[M].厦门:厦门大学出版社,1988:65.
    [58]王胜先,林薇薇,李跃,张雄,吴科如.新型阻锈剂对钢筋混凝土阻绣作用的研究-对电化学阻抗特性的影响[J].建筑材料学报,2000,12:310-316.
    [59]何军拥,姚立宁.碳纤维混凝土的特征及应用探讨[J].新型建筑材料,2006,4:12-14.
    [60]韩建宏,娄宗科,梁建.基于通用旋转组合设计的层布式混杂纤维混凝土配合比研究[J].工业建筑,2011,41(7):87-91.
    [61]曾挺.碳纤维混凝土的性能分析及其机理探讨[J].建筑技术与应用,2011,9:14-17.
    [62]谢世涛,侯作富,李卓球,庞文彬,陈强.基于碳纤维混凝土压敏性的压黄线检测系统的设计研究[J].2011,35(2):322-324.
    [63]邓友生,田青芸.树脂基碳纤维智能层电测混凝土表面裂缝宽度[J].中南大学学报,2011,42(7):2120-2125.
    [64]马世宁,刘晓军,张云龙.碳纤维导电混凝土道面机场除冰雪的应用研究[J].2011,3:182-188.
    [65]李春雄.碳纤维混凝土力学特性的试验研究[D].武汉:湖北工业大学,2007.
    [66]任彦华,程赫明,何天淳,代若愚.碳纤维混凝土的力学性能实验研究[J].云南农业大学学报,2010,25(5):697-702.
    [67]余辉,周美英,顾秋琴.碳纤维增强混凝土力学性能试验分析[J].常州工学院学报,2006,19(5):26-30.
    [68]王闯,李克智,李贺军.短碳纤维的分散性与CFRC复合材料的力学性能[J].精细化工,2007,24(6):521-525.
    [69]李洪磊,顾强康,李婉.碳纤维混凝土智能化研究中的问题[J].路基工程.2009,2:123-124.
    [70]张跃,职任涛,朱逢吾,肖纪美.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究[J].材料科学进展,1992,6(4):357-362.
    [71]孙明清,李卓球,沈大荣.炭纤维水泥基复合材料的Seebeck效应[J].材料研究学报,1998,12(1):111-112.
    [72]陈兵,吴科如,姚武.碳纤维水泥基复合材料导电性能研究[J].混凝土与水泥制品,2002,(12):36-39.
    [73]高路实,杨伟杰,陈利红.碳纤维混凝土技术及其在国内外研发的介绍[J].黑龙江交通科技,2006,7:4-6.
    [74]吕楠,康青,国华雨.短切碳纤维混凝土电磁屏蔽规律的实验研究[J].后勤工程学院学报,2006,2:15-18.
    [75]侯作富,李卓球,杨唐胜.碳纤维导电混凝土融雪化冰的智能控制研究[J].武汉理工大学学报,2005,29(1):63-66.
    [76]侯作富,李卓球,王建军.碳纤维水泥基复合材料电阻变化规律研究[J].武汉理工大学学报,2007,29(7):30-32.
    [77]郑立霞,朱四荣,李卓球,郑华升.局部层叠碳纤维水泥基材料的应变电阻效应研究[J].四川大学学报,2011,43(2):192-196.
    [78]宋显辉,潘志橼,王建军,李卓球.碳纤维混凝土局部损伤检测的实验研究[J].武汉理工大学学报,2004,26(3):44-50.
    [79]范晓明,李卓球,宋显辉,谭志强.混凝土裂缝自修复的研究进展[J].混凝土与水泥制品,2006,4:13-16.
    [80]徐家云,刘科,赵勇,曲宪伟.碳纤维混凝土电热效应提高连续梁承载力研究[J].华中科技大学学报,2009,37(12):129-132.
    [81]江莉,曹刚,林安,甘复兴. A3钢在不同化学清洗液体的腐蚀失重分析[J].装备环境工程,2005,2:69-72.
    [82] Li L, Sagues A A. Chloride corrosion threshold of reinforcing steel in alkaline solutions-effect ofspecimen size[J]. Corrosion,2004,60:195-202.
    [83] Ford S J, Shane J D, Mason T O. Assignment of features in impedance spectra of thecement-paste/steel system[J]. Cement and Concrete Research,1998,28(12):1737-1751.
    [84]陈兵,姚武,吴科如.用交流阻抗法研究碳纤维混凝土导电性[J].材料科学与工程,2001,19(1):76-79.
    [85]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.7.
    [86]崔巍,史志明,宋光铃,林海潮,曹楚南.钢筋混凝土养护过程中的电化学行为[J].腐蚀科学与防护技术,1998,10(4):202-207.
    [87] Petrovic Darja Steiner, Mandrino Djordje. XPS characterization of the oxide scale on fullyprocessed non-oriented electrical steel sheet[J]. Materials Characterization,2011,62:503-508.
    [88] Yumoto H, Nagamine Y, Nagahama J, Shimotomai M. Corrosion and stability of cementite filmsprepared by electron shower[J]. Vacuum,2002,65:527-531.
    [89] Ghods P, Isgor O B, Brown J R, Bensebaa F, Kingston D. XPS depth profiling study on the passiveoxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the filmproperties[J]. Applied Surface Science,2011,257:4669-4677.
    [90] Yu Hui, Chiang Kuang-Tsan K, Yang Lietai. Threshold chloride level and characteristics ofreinforcement corrosion initiation in simulated concrete pore solutions[J]. Construction and BuildingMaterials,2012,26:723-729.
    [91] G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach and etc. The analysis of electrodeimpedances complicated by the presence of constant phase element[J]. Journal of ElectroanalyticalChemistry and interfacial Electrochemistry,1984,176(1):275-295.
    [92]赵帅.聚丙烯纤维增强水泥复合材料的性能与机理研究[D].山东:济南大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700