不对称结构的气体辅助注射成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体辅助注射成型(简称气辅注射成型)技术是近年来发展起来的一项塑料成型新技术,具有注射压力低、制品翘曲变形小、表面质量好以及易于加工壁厚差异较大的制品等优点。与传统的注射成型工艺相比,气体辅助注射成型有更多的工艺参数需要确定和控制,因而对于制品设计、模具设计和成型过程的控制都有特殊的要求,而且难度很大。随着计算机硬件和软件技术的发展,使得CAE技术在气体辅助注射成型方面有了更大的应用空间。为了有效的使用这项新技术,一方面要在大量应用和实验研究的基础上,引入一些好的概率统计和优化的方法,使得加工过程中的人工经验量化;另一方面则应当重视气体辅助成型CAE软件的应用。
     本文总结了气道设计及布置的要求,气辅模具设计的要求以及气辅工艺参数对制品成型质量的影响。根据不对称结构制品设计的要求,建立了多个具有不同制品结构及气道结构尺寸的典型转角类和平板类气辅制件的CAD模型。利用目前比较成熟的塑料成型CAE软件MPI对上述模型进行了气体辅助注射成型过程的模拟。研究了相同成型工艺条件下,基板厚度和宽度的变化对气道穿透长度、气体薄壁穿透、气体穿透体积以及熔接痕长度等的影响规律,发现通过改变基板的厚度可以有效的控制熔体在型腔中的流动,能够有效的抑制气体向薄壁的穿透并使得熔接痕的长度变短,从而改善了制件的成型质量。根据模拟分析的结果,从质量合格的产品中提取相应的气辅工艺参数。
     以气道半径、气道长度、气道两侧板宽比及其相应的壁厚比作为自变量,分别以熔体预注射量、切换延迟时间、气体压力、气体注射保压时间作为因变量,运用Matlab软件对上述自变量和因变量进行多元线性回归分析,得出了转角结构和平板结构的气辅工艺参数回归方程。
     最后分别对转角结构和平板结构的气辅工艺参数回归方程进行了显著性检验,验证了气辅工艺参数与制件结构和气道结构参数之间具有明显的线性相关性。对任意给定的转角类和平板类气辅制件设计参数,利用气辅工艺参数回归方程预测出了气辅成型工艺参数及其相应的置信区间。
Gas assisted injection molding (GAIM), developed quickly in recent years, is anew kind of polymer processing technology.It has many advantages such as lowerinjection pressure, less warpage, better surface quality and easily processing productwith different wall thickness etc. Compared with traditional injection molding, GAIMhas more process variables needed to be specified and controlled, and therefore hassome special demand in processing control, product and mould design. With thedevelopment of computer hardware and software, there will be more space for usingCAE teclmology in GAIM. For the purpose of using this technology effectively, onone hand, we should introduce some better probability statistics and optimizationmeans to make the artificial experience quantized based on plenty of applications andexperiments; on the other hand, we should pay attention to the applications of CAEsoftware for GAIM.
     In this article, the arrangement and size design of gas channel, mould design andGAIM processing parameters to product quality were summarized. According to thedesign demand for unsymmetrical structure, created several typical CAD models withdifferent product and gas channel dimensions for rotation angle and planar structure.Use MPI, the mature plastic processing software, to simulate the GAIM process ofthe above CAD models. Under the same processing conditions, the influence ofthickness and breadth of base plate to gas channel penetration length, finger effectand melting-joint imprint were studied. Found that the melt flow can be effectivelycontrolled, the gas penetration to thin wall can be evidently restrained and the lengthof melting-joint imprint can be decreased by changing the thickness of base plate. Sothe quality of the product was improved. According to the simulation results, extractthe corresponding GAIM process parameters from the qualified product.
     Make the radius of gas channel, length of gas channel, ratio of breadth oftwo-sided cardinal plates and ratio of thickness of two-sided cardinal plates asindependent variables. Also, make the short shot, delay time, gas pressure, gasinjection time as dependent variables. Do the multiple regression analysis of thedependent and independent variables respectively with Matlb, so the regressionequation of GAIM processing parameters for the rotation angle and planar structurewere obtained.
     Finally, by testing the significance of the regression equation of GAIMprocessing parameters, verified that there was conspicuous linear correlation betweenGAIM process parameters and product and gas channel structure parameters. For thedesign parameters of any rotation angle and planar structure, using the regressionequation of GAIM processing parameters to predict the GAIM process parametersand its confidence interval.
引文
[1] 梁瑞凤.气体辅助注塑成型技术——一项向传统注塑工艺挑战的未来技术.高分子通报,1996(4):226~233.
    [2] 刘锦萼,杨喜寿,俞纯权,等.概率论与数理统计.北京:科学出版社,2001.273~308.
    [3] 汪建萍.气体辅助注射成型.塑料,2001,30(3):52~55.
    [4] 谢建正.气体辅助注塑设计.制造技术与机床,2004(7):61~63.
    [5] 蔡永洪.工艺参数与气肋设计对气辅注塑成型的影响.塑料科技,2002(4):9~12.
    [6] 梁继才,李义,李笑明等.气体辅助注射制品滞留痕缺陷的形成及防治.吉林大学学报(工学版),2002,32(1):83~85.
    [7] S. C. Chen, K.F. Hsu, and K.S. Hsu. Polymer Melt Flow and Gas Penertration in Gas-assisted Injection Molding of a Thin part with Gas channel design,Int. J. Heat Mass Transer. 1996, (39)
    [8] 张华,李德群.气辅注塑成型工艺过程及其关键技术.塑料科技,1998(3):11~16.
    [9] 梁继才,周东辉,李义等.气辅注射成型制品气泡缺陷形成机理.吉林大学学报(工学版),2006,36(5):727~730
    [10] 张晓黎,吴崇峰,屈春起.气辅注射成型及设计要点.塑料科技,2002(5):10~12.
    [11] 欧长劲 郑子军 胡如夫.气辅注射成型工艺参数CAE模拟分析.电加工与模具,2005(3):51~53.
    [12] 朱伟勇.最忧设计理论与应用.沈阳:辽宁人民出版社,1981.36~91.
    [13] 魏常武,柳和生,缪宪文.气体辅助注射成型及其影响因素.橡塑技术与装备,2006,32(4):17~21.
    [14] 许荔珉,李澍,胡炯宇.注塑成型质量缺陷分析.模具技术,2005(2):43~46.
    [15] 陈金伟,彭响方,刘婷等.新型气辅注塑成型方法及发展趋势.轻工机械,2004(4):6~9.
    [16] 曹彬,许承德,等.概率论与数理统计.哈尔滨:哈尔滨工业大学出版社,1996.258~290.
    [17] 王旭东.气辅成型技术及其应用.现代塑料加工应用,2002,14(3):15~18.
    [18] 申长雨,余晓容,王利霞等.塑料注塑成型浇口位置优化.化工学报,2004,55(3):445~449.
    [19] 郭建明,申开智.气体辅助注射成型制品常见缺陷及其改进措施.现代塑料加工应用,2001,13(5):22~24.
    [20] 韩志霞,张玲.P值检验和假设检验.边疆经济与文化,2006(4):62~63.
    [21] 郑子军,欧长劲.气辅注塑工艺的计算机辅助模拟分析.轻工机械,2006,24(1):23~25.
    [22] 袁乐健.气体辅助注射成型模拟工艺参数优化及系统设计:[硕士学位论文].武汉:武汉理工大学材料加工工程,2006.
    [23] 李义.汽车复杂塑料件气辅注塑成型装备关键技术的研究:[博士学位论文].长春:吉林大学材料加工工程,2006.
    [24] 李倩,申长雨,王利霞等.管状模腔的气辅注射成型气体穿透机理的数值模拟分析.化工学报,2003,54(4):575~579.
    [25] 董金虎.气体辅助注射成型工艺参数优化及工艺控制实验研究:[硕士学位论文].郑州:郑州大学材料加工工程,2004.
    [26] 肖正明.气体辅助注射成型数值模拟与工艺优化:[硕士学位论文].昆明:昆明理工大学机械制造及自动化,2006.
    [27] 孙晓林.气辅成型制品与模具设计.辽宁师专学报,2005,7(2):82~84.
    [28] S.C. Chen,Simulation of the Melt front Advancement in Injection Molded Plate With a Rib of Semicircular Cross Section,Numerical Heat Transfer. Part A, 1995, (28)
    [29] 于昕世,王小新,邵振.气体辅助注塑成型技术在电视机模具中的应用.模具技术,2002(4):18~20.
    [30] Parvez, M. A.. Gas-assisted injection molding:The effects of process variables an-d gas channel geometry[J].Journal of Materials Processing Technology, v 121 n 1 Feb 14 2002.
    [31] 陈立恒.气体辅助注射成型关键技术的研究:[硕士学位论文].长春:吉林大学材料科学与工程,2005.
    [32] Zhou H., Li D.. A Numerical Simulation of the Filling stage in Injection Molding Based on Surface Model[J].Advances in Polymer Technology, 2001, (2).
    [33] 匡唐清,柳和生,周国发.气体辅助注射成型关键技术.橡塑技术与装备,2001,27(9):1~6.
    [34] 张波.气体辅助注射成型模拟及工艺优化:[硕士学位论文].武汉:武汉理工大学材料加工工程,2004.
    [35] 余玲.杂物盒的气体辅助注射成型模拟及工艺优化:[硕士学位论文].成都:西华大学材料加工工程,2006.
    [36] Kapoor,Deepak;Kazmer,David. Consistency of multi cavity melt control injection molding in a commercial application [C].Annual Technical Conference ANTEC, 1998,414-418.
    [37] L. S Turng, V. W Wang. Simulation of co-injection and gas-assisted inject-ion molding. Annual Technical Conference [J]. ANTEC, 1991,297-300.
    [38] 郑子军.气体辅助注射成型工艺参数优化及设定方法研究:[硕士学位论文].杭州:浙江工业大学机械制造及白动化,2005.
    [39] MPI高级培训手册.美国MOLDFLOW公司上海代表处,2004:248~252.
    [40] 匡唐清,柳和生,周国发.气体辅助注射成型关键技术.橡塑技术与装备,2001,27(9):1~6.
    [41] 陈美美.97cm彩电前壳气体辅助注射模.模具工业,1999(6):32~36.
    [42] 柳和生,辛勇,何成宏等.气体辅助注射成型CAE分析前处理技术.机械科学与技术,2003,22(1):165~170.
    [43] McRoskey, Joseph J. Introduction to Co-injection Molding [C].Technical Paper-Society of Manufacturing Engineers, 1999, CM(CM99-198):1~5.
    [44] V. Goodship, K. Kirwan. Interfacial Instabilities in Multi-material Co-injection Moldings Part 1-Background and initial Experiments [J]. Plastic, Rubber and Composites, 2001, 30(1): 11~15.
    [45] Rush K C. Gas-assisted injection molding——a new technology is commercialized [J]. PlasticsEngineering, 1989(7): 35~38.
    [46] 黄晓燕.注塑模浇口位置优化新方法)))经验搜索法.塑料工业,2006,34(5):28~33.
    [47] 张响.基于数值模拟的气体辅助注射成型工艺参数优化研究:[硕士学位论文].郑州:郑州大学材料加工工程,2004.
    [48] TURNG L S. Development and Application of CAE Technology for the Gas-Assisted Injection Molding Process [J], Advances in Polymer Technology, 1995, 14(1): 1~13.
    [49] Hieber C A., Melt viscosity characterization and its application to injection m-olding, In: Isayev A I eds. Injection and compression molding foundamentals, New York: Marcel Dekker, 1987, 1~81.
    [50] 傅沛福,孙志斌,梁继才等.气辅零件和模具的设计.模具工业,2001(4):29~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700