高效阻燃剂聚磷酸铵的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚磷酸铵(APP)是一种高效的无卤阻燃剂。但聚合度的大小直接影响APP的水溶性、热稳定性及与基材的相容性。我国目前主要采用磷酸-尿素缩合法合成APP,由于生产工艺和条件落后,所得APP产品聚合度较低(<100),极大地限制了它的应用。
     本文以磷酸、尿素为原料,采用单因素实验和正交实验相结合,深入探讨了APP的合成工艺,确定了较佳工艺条件:磷酸与尿素的摩尔比为1:1.9,升温速率2~3℃/min,预聚温度135℃,固化温度230℃,固化时间2h。通过红外(IR)、X-射线衍射(XRD)、核磁共振(NMR)等手段对最佳条件下合成的APP产品进行了表征。结果表明,最佳条件下所得APP为I-型,平均聚合度为126。此工艺参数同样适用于以工业原料合成APP,平均聚合度变动不大。
     为解决APP应用中存在的易吸湿、热分解温度低、与基材相容性差、易迁移等问题,本文选择密胺甲醛树脂(MF)作囊壁材料,采用原位聚合技术对合成的APP产品进行微胶囊改性。深入研究了微胶囊的合成工艺,确定了较佳包覆条件:摩尔比n(MEL):n(HCHO)=1:3,预聚温度70℃~85℃,预聚时间30~60min,预聚阶段pH≈9.0,质量比m(壁材):m(芯材)=1:4,固化温度70~80℃,固化时间2h,固化阶段体系pH≈5。应用IR及X-射线光电子能谱(XPS)对囊壁的组成进行了分析,通过扫描电镜(SEM)、热重分析(TG)、粒径分析等手段对微胶囊的性能进行了表征。结果表明:APP被密胺树脂完全包覆,微胶囊表面致密,粒径分布较窄,几乎不溶于水,热分解温度显著提高到260℃,更有利于其在聚合物中的应用。
     选择浆内添加法将微胶囊APP应用于纸张中,极限氧指数试验(LOI)和垂直燃烧实验表明:MFAPP对纸张阻燃效果明显,添加35%可使纸张的LOI值达到25.0以上,达到难燃级别。
Ammonium polyphosphate(APP)is a highly effective halogen-free flameretardant. Many properties of APP depend on the degree of polymerization, suchas solubility in water, thermal stability and compatibility with materials. Atpresent time, APP was mainly prepared using phosphoric acid and urea as rawmaterials in our country. Due to the backwardness of production processes andconditions, average polymerization degree of APP obtained was low (<100),which had greatly limited its application.
     Therefore, the synthetic technology of APP was deeply investigated in thispaper using phosphoric acid and urea as raw materials. The preparation processwas optimized by the combination of the single factor and orthogonalexperiments. The optimal technological conditions were as follows: the moleratio of phosphoric acid to urea1:1.9, heating rate of pre-polymerization stage2~3℃/min, pre-polymerization temperature130℃, curing temperature230℃and curing time90min. The APP synthesized under the optimal conditions wascharacterized by IR spectra, XRD and NMR. The results indicated that APP-Iwas obtained under the optimal conditions, with an average degree ofpolymerization of126. Besides, the technological parameter was equallyapplicable to the synthesis of APP by industrial phosphoric acid and urea,without great change on the degree of polymerization.
     However, general APP has some shortcomings: low thermal decompositiontemperature, easily attacked by moisture and migrates to the surface of polymersin the practical applications. Microencapsulated APP was prepared withmelamine-formaldehyde (MF) resin as the shell layer by in situ polymerizationto deal with the problems above-mentioned. The synthetic technology ofmicrocapsules was studied in detail and the optimum conditions were as follows: the mole ratio of melamine to formaldehyde1:3, pre-polymerization temperature70℃~85℃, prepolymerization time30~60min, pH value of pre-polymerizationstage9.0, mass ratio of the shell material to the core material1:4, curingtemperature70~80℃, curing time2h and pH value of curing stage around5.0.The component of the wall was analyzed by IR and XPS spectra, and propertiesof microcapsules were characterized using SEM, TG, particle size analysis andso on.
     The results showed that APP was completely covered with MF resin. Themicrocapsules obtained possessed excellent properties such as dense surface,narrow particle size distribution, almost insoluble in water,the significantlyenhanced thermal decomposition temperature of260℃, which is moreconducive to apply in polymer.
     The flame-retardant paper was made by adding microencapsulated APP tothe pulp. Limiting oxygen index (LOI) tests and vertical burning tests showedthat MFAPP has an obvious effect of flame retardancy. The LOI value of thepaper/MFAPP at35%loading can reach above25.0,up to non-flammable level.
引文
[1]刘立华.环保型无机阻燃剂的应用现状及发展前景[J].化工科技市场,2005(7):8-11.
    [2]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001:57.
    [3]胡源,宋磊,尤飞,等.火灾化学导论[M].北京:化学工业出版社,2007:67-72.
    [4] Allen W Carlson.Flame retardant polypropylene compositions[P].US:4006114,1977-02-01.
    [5]李凤岭.聚烯烃的阻燃技术[J].化工新型材料,1999,27(5):14.
    [6]欧育湘.Exollit系列新型无卤低烟低毒阻燃剂[J].塑料科技,2001(1):1-3.
    [7] Balabanovich A I,Engelmann J.Fire retardant and charring effect of poly(sulfonyldiphen-ylene phenylphosphonate)in poly(butylene terephthalate)[J].Polym.Degrad.Stab.,2003,79:85-92.
    [8] Bourbigot S,Bras L,Delobel R.Carbonization mechanisms resulting association withan ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardantsystem[J].Carbon.,1995,33:283.
    [9] Jeng R,Shau S,Lin J,et al.Flame retardant epoxy polymers based on all phosphorus-containing components[J].European Polymer Journal,2002,38:683-693.
    [10] Ban D M,Wang Y Z,Yang B,et al.A novel non-dripping oligomeric flame retardantfor polyethylene terephthalate[J].European Polymer Journal,2004,40:1909-1913.
    [11]马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状[J].材料导报,2006,20:392.
    [12]赵丽芬,陈占勋,陈林书.阻燃聚烯烃类热塑性弹性体研究进展[J].弹性体,2003,13:56.
    [13] Gijsman P,Steenbakkers R,Furst C,et al.Differences in the flame retardant mechanismof melamine cyanurate in polyamide6and polyamide66[J].Polym.Degrad.Stab.,2002,78:219.
    [14]贾修伟,刘治国.硅系阻燃剂研究进展[J].化工进展,2003,22:818.
    [15] Bourbigot S, Duquesne S. Fire retardant polymers: recent developments andopportunities[J].Mater.Chem.,2007,17:2283-2300.
    [16] Carpentier F,Bourbigot S,Delobel R,et al.Charring of fire retarded ethylene vinylacetate copolymer-magnesium hydroxide/zinc borat formulations[J].Polymer Degradat-ion and Stability,2000,69(1):83-92.
    [17] Miyata S,Koresawa M,Kitano Y,et al.Magnesium hydroxide solid solutions,theirproduction method and use[P].US Patent:5891945,1999-04-06.
    [18] Cook M,Harper J F.Influence of magnesium hydroxide morphology and surfacecoating on physical and mechanical properties of heterophasic polypropylene[J].Plast.Rubber.Compos.Process.Appl.,1996,25:99.
    [19] Wang J,Tung J F,Fuad M Y A,et al.Microstructure and mechanical properties ofternary phase polypropylene/elastomer/magnesium hydroxide fire-retardant composition-s[J].Journal of Applied Polymer Science,1996,60:1425.
    [20] Monte S J,Sugerman G.Processing of composites with titanate coupling agents-areview[J].Polymer Engineering&Science,1984,24(18):1369-1382.
    [21] W Y Chiang,C H Hu.Approaches of interfacial modification for flame retardantpolymeric materials[J].Composites,PartA:Appl.S.,2001,32:517-524.
    [22]姚佳良,彭红瑞,张志.聚丙烯/纳米氢氧化镁阻燃复合材料的性能研究[J].青岛科技大学学报,2003,24:142.
    [23]王永宏,魏忠杰.火灾与环保[J].时代消防,2003(7):42-43.
    [24] Bufalini M.Oxidation of Sulfur Dioxide in polluted Atmosphere[J].EnvironmentalScience and Technology,1971(5):685-700.
    [25]王效科,庄亚辉,冯宗炜.森林火灾释放的含碳温室气体量的估计[J].环境科学进展,1998,6(4):1-15.
    [26] Cruzten P J,Heidt L E,Krasnec J P,et al.Biomass Burning as a Source of AtmosphericGases CO,H2,N2O,NO,CH3Cl and COS[J].Nature,1979,282(5736):253-256.
    [27] Seiler W,Crutzen P J.Estimates of Gross and Net Fluxes of Carben between theBiosphere and the Atmosphere from Biomass Burning[J].Climate Change,1980,2(3):207-247.
    [28] Crutzen P J,Andreae M O.Biomass Burning in the Tropics:Impact on the AtmosphericChemistry and Biogeochemical Cycles[J].Science,1990,250(4988):1669-1678.
    [29] Dixon R K,Krankina O N.Forest Fires in Russia:Carbon Dioxide Emissions to theAtmosphere.Can.J.For Res.,1993,23(4):700-705.
    [30]翟保钧,陈伟,谢荣才,等.低烟无卤阻燃聚烯烃的研究进展和应用前景[J].功能高分子学报,2002,15(3):361-367.
    [31]欧育湘.无卤生态型阻燃高分子材料[J].塑料科技,2003(2):1-2.
    [32]欧育湘.新世纪前10年全球阻燃剂发展预测[J].精细与专用化学品,2000(1):8-10.
    [33]骆介禹,骆希明,孙才英,等.聚磷酸铵及应用[M].北京:化学工业出版社,2006:2.
    [34] James E Mark,Harry R Allcock,Robert West.Inorganic polymers[M].New York:Oxford University Press,2005:9-18.
    [35]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001:84-89.
    [36] Shen C Y,Stahlheber N E,Dyroff D R.Preparation and Characterization of CrystallineLong-chain Ammonium Polyphosphates[J].J.Am.Chem.Soc.,1969,91(1):62-67.
    [37]聂颖.聚磷酸铵的生产工艺及改性技求[J].精细化工原料及中间体,2007(9):19-22.
    [38]马永轩.聚磷酸铵的晶体结构[J].东北林业大学学报,2001(2):130-133.
    [39]丁著明.无机磷系阻燃剂的研究进展[J].阻燃材料与技术,2004(5):5-9.
    [40]章元春,杨荣杰.聚磷酸铵的研究进展[J].无机盐工业,2004,36(4):16-19.
    [41]张亨.聚磷酸按的生产和应用[J].辽宁化工,2001(1):17-19.
    [42]金栋.聚磷酸铵的生产工艺及改性技术进展[J].化工文摘,2007(5):50-52.
    [43]张健.聚磷酸铵合成工艺研究[D].四川:四川大学,2005.
    [44]李蕾,杨荣杰,王雨钧.聚磷酸铵(APP)的合成与改性研究进展[J].消防技术与产品信息,2003,6:43-45.
    [45]骆介禹,骆希明,孙才英,等.聚磷酸铵及应用[M].北京:化学工业出版社,2006:92-120.
    [46]郭立艳,张浩,于宏伟.阻燃剂聚磷酸铵的表面改性研究现状和发展方向[J].化工科技市场,2008,31(10):5-7.
    [47]桑永,吴昌龙,郑家房,等.阻燃HiPS材料的研制[J].合成树脂及塑料,2001,18(6):2l-23.
    [48]鲁健,刘柯.三嗪衍生物的合成及其用于ABS的阻燃研究[J].阻燃材料与技术,2003,20(1):1l-13.
    [49]高瑜,姜志国.增效膨胀阻燃聚乙烯的制备与性能研究[J].阻燃材料与技术,2000,10(6):7-11.
    [50]张志龙,郑裕,古连宝,等.膨胀型无卤阻燃聚乙烯材料研究[J].塑料,2000,29(3):15-21.
    [51] Kovar J.Fall surface-applied fluid P movement into soil limits potential loss toerosion[J].Fluid Journal,2006,14:14-16.
    [52] Venugopalan M V,Prasad R.Relative efficiency of ammonium polyphosphate andorthophosphates for wheat and their residual effects on succeeding cowpea fodder[J].Nutrient cycling in agroecosystems,1989,20(2):109-114.
    [53] Holloway R,Frischke B,Brace D,et al.APP fluid surpasses granular in Australian graintrials[J].Fluid Journal,2005,13(2):14-16.
    [54] Ruehl E C F.Use of an aqueous system as extinguishing water (fire fighting water)[P].DE:3735707,1989-05-03.
    [55]崔健.聚磷酸铵阻燃技术进展及应用[J].现代塑料加工应用,1999,12(2):36-38.
    [56]李云东,古思廉.聚磷酸啊阻燃剂的应用[J].云南化工,2005.32(3):51-54.
    [57]贾云,陈君和.无机阻燃剂高聚合度聚磷酸铵的研制[J].石油化工,2006,35(1):56-59.
    [58]韩文佳,赵传山.阻燃纸制品的发展现状[J].湖北造纸,2008(1):4.
    [59]李秉铖,李牧.功能纸及纸制品的制[M].北京:中国轻工业出版社,1989:99-108.
    [60]陈先斌,与春华.纸的阻燃技术[J].纸和造纸,2003(5):82.
    [61]宁永成.有机化合物结构与有机波谱学[M].北京:科学出版社,2000:27-43.
    [62]谌芳,龙萍,何以能.核磁共振法测定聚磷酸铵聚合度[J].无机盐工业,2008,40(7):58-59.
    [63]马庆文.高聚合度聚磷酸铵(APP)的制备[D].云南:昆明理工大学,2007.
    [64]焦立强,汤建伟,化全县,等.聚磷酸铵的研发、生产及应用[J].无机盐工业,2009,41(4)4-7.
    [65] Staffel,Thatras,Sansing J E,et al.Process for the preparation of ammoniumpolyphosphate[P].US:5277887,1994-01-11.
    [66]孙才英,骆介禹,苏晓丽.用红外光谱法测定聚磷酸铵晶体结构[J].东北林业大学学报,2004,32(1):94-95.
    [67]吴兆强,曾繁森,刘春英等.磺化三聚氰胺甲醛树脂的合成与水溶性及稳定性研究[J].高分子材料科学与工程,1998(4):103-106.
    [68]耿妍,陶杰,崔益华,等.聚磷酸铵微胶囊化的工艺研究[J].玻璃钢/复合材料,2006(3):39-41.
    [69] Bugajny M,Lebras M,Bourbigot S,et al.The origin and nature of flame retardance inethylene-vinyl acetate copolymers containing hostaflam AP750[J].Polym.Int.,1999,48(4):264-270.
    [70] Wu Q,Lv J,Qu B.Preparation and characterization of microcapsulated red phosphorusand its flame-retardant mechanism in halogen-free flame retardantpolyolefins[J].Polym.Int.,2003,52:1326-1331.
    [71] Camino G,Grassie N,McNeill IC.Influence of the fire retardant,ammoniumpolyphosphate,on the thermal degradation of poly(methyl methacrylate)[J].Polym.Chem.Ed.,1978,16:95-106.
    [72] Kay M,Price A F,Lavery I.A Review of Intumescent Materials,with Emphasis onMelamine Formulations[J].J.Fire Ret.Chem.,1979,6:69-91.
    [73] Broadbent J R A,Hmschler M M.Red phosphorus as a flame retardant for athermoplastic nitrogen-containing polymer[J].European Polymer Journal,1984,20(11):1087-1093.
    [74] Wang Z Y,Han E H,Ke W.Effect of nanoparticles on the improvement in fire-resistantand anti-ageing properties of flame-retardant coating[J]. Surface and CoatingsTechnology,2006,200:5706-5716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700