含碳纤维复合象形阳极用于涂层电化学联合保护的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究一种新型的涂层-电化学联合保护体系,在该体系中,含碳纤维复合象形阳极埋设在涂层内部对涂层下的碳钢进行阴极保护,其特点是在被保护金属基体上涂覆不导电的普通防腐涂料,再覆盖由网状碳纤维和导电涂层共同组成的平行于阴极而且和阴极等面积的象形阳极。由于阳极平行于被保护金属的表面,可以得到较均匀的电力线,从而得到较均匀的保护效果。碳纤维虽然导电,但是其本身的电阻仍不可忽略,尤其对于长距离的保护来讲。因此,本文重点对碳纤维与基体金属之间的电位差沿经线方向(远离电源的方向)降低的规律进行了建模分析求解和实测检验,研究确定并量化了碳纤维经线欧姆电压降及最大电化学保护距离与碳纤维经线粗细、间隔以及底漆涂层湿电阻之间的对应关系。对已知阻值的电阻网络进行了实际电压分布的测量和数学模型的理论计算,结果表明二者所得出的电压分布曲线完全重合。证明了模型的正确性。又用一个一米长的涂层试件进行了实际阴极保护电位分布的测试,得出了实测和理论计算二者较吻合的满意结果,在该长试件的测试中,利用在一定的阳极电流范围内碳纤维阳极电位稳定的特点将电压分布曲线成功地转换为电位分布曲线,从而证明了该数学模型对保护系统工程设计的理论指导作用。
     采用碳纤维复合象形阳极的优点是可以用于一些分立阳极较难安装的场合,如一些介质电阻过高,远距离没有足够的空间安装阳极的场合。另一个可应用的场合就是船体的保护,因一般船体保护体系的分立阳极均突出船体表面数厘米而产生附加航行阻力,而本论文研究的碳纤维阳极就在涂层内部,而且测量电位用的参比电极也是埋设在涂层中,这样就可以大大减少航行的附加阻力。为此本论文对船体的保护进行了重点的讨论。
     论文还采用交流阻抗技术测试最佳保护电位,对碳纤维极化行为、埋设在涂层中的锌参比电极的安装和抗电流干扰性能以及采用恒槽压法作阴极保护控制方法的可能性等进行了详细的讨论。
The present dissertation studies a new cathodic protection system, inwhich carbon fiber sparse gauze was embedded in the coating andemployed as anode. Since carbon fiber anode and the metal base cathodeare parallel and have the same area, the power lines are parallel and thus aeven protection could be achieved. Although carbon fiber is electricallyconductive, its electric resistance is still not negligible. So thisdissertation emphasizes the study of the effect of carbon fiber resistanceon the distribution of cell voltage along the direction remote from powersource. Two mathematical models of current introduction from bothsingle side and double side for the computation of cell voltagedistribution were established respectively. The relation betweenprotection distance and the parameters of section area, inter-stranddistance of carbon fiber and coating resistance is discussed. A test ofelectric resistance network of which the values of resistance were knownwere carried out and the result shows the measured and theoreticalpotential distribution curves overlap each other, validating the correctnessof the mathematic model. A long specimen test result shows a good agreement between the theoretical and measured potential distributioncurves. In this long specimen test, taking advantage of the stability of thepotential for carbon fiber anode in a certain range of anodic current, thecell voltage distribution was successfully converted into potentialdistribution on the protected metallic base, demonstrating the feasibilityand guiding role of the mathematic model.
     The advantage of carbon fiber gauze anode is the possibleapplication in the field where the separated anodes are difficult to installand the field where the resistance of the medium is too high and there isno enough space for anodes to install in remote places. Another field isthe ship hull protection, for which the separated anodes protrude from thehull surface about several centimeters, leading to some additional sailingresistance. But in my study, the anode and reference electrode are allembedded in the coating. So the additional sailing resistance would bedecreased considerably. In this dissertation, a detailed discussion isemphasized on ship protection.
     AC impedance measurement was employed to select optimalprotection potential. The polarization behavior of the carbon fiber, theinstallation of zinc reference electrode and the potential control measureare also discussed.
引文
[1]张磊.船舶金属腐蚀极其防护[J].中国水运,2007,5(9):28-29
    [2]许友林,姚智刚,熊玲.船舶防腐蚀技术应用及其发展[J].中国修船,2008,21(S1):17-20
    [3]陈光章,吴建华,许立坤,徐海波,王洪仁.舰船腐蚀与防护[J].舰船科学技术,2001,2:38-43
    [4]李兵.金属的腐蚀与防护[J].金属世界,2005,4:42-44
    [5] Diaz E S, Adey R. Optimising The location of Anodes in Cathodic Protection Systems toSmooth Potential Distribution [J]. Advances in Engineering Software,2005,36:591-598
    [6] DeGiorgi V G, Wimmer SA. Geometric Details and Modeling Accuracy Requirementsfor Shipboard Impressed Current Cathodic Protection System Modeling[J]. EngineeringAnalysis with Boundary Elements,2005,29(1):15–28
    [7]陈秀新.钢制海船的腐蚀与阴极保护[J].广西大学学学报,2011,29(S1):250-251
    [8] Kiuchi M. Technology required for protection of the environment in the field of metalforming[J]. Journal of Materials Processing Technology,1996,59(3):239-241
    [9]刘土星.地下金属管道和设备的腐蚀与防护分析[J].化工进展,1995,6:18-20
    [10] Kautek W, Sahre M, Paatsch W. Transition metal effects in the corrosion protection ofelectroplated zinc alloy coatings[J]. Electrochimica Acta,1994,39(8-9):1151-1157
    [11] Souza S D. Smart coating based on polyaniline acrylic blend for corrosion protection ofdifferent metals[J]. Surface and Coatings Technology,2007,201(16-17):7574-7581
    [12]李静. TiO,2纳米管复合膜的光生阴极保护研究[D].厦门:厦门大学,2007
    [13] Margarit I C P, Mattos O R. About coatings and cathodic protection: Properties of thecoatings influencing delamination and cathodic protection criteria[J]. ElectrochimicaActa,1998,44(2-3):363-371
    [14]王德增.管道防腐涂层防腐性能优化研究[D].北京:中国石油大学,2009
    [15] Kyeong K D, Muralidharan S, Ha T H, Bae J H, Ha Y C, Lee H G, Scantlebury G D.Electrochemical studies on the alternating current corrosion of mild steel under cathodicprotection condition in marine environments[J]. Electrochimica Acta,2006,51(25):5259-5267
    [16]胡士信.管道阴极保护技术现状与展望[J].腐蚀与防护,2004,25(3):93-101
    [17] Tiba C, Oliveira E M. Utilization of cathodic protection for transmission towers throughphotovoltaic generation[J]. Renewable Energy,2012,40(1):150-156
    [18] Allahar K N, Orazem M E. On the extension of CP models to address cathodic protectionunder a delaminated coating[J]. Corrosion Science,2009,51(5):962-970
    [19] Wrobel L C, Miltiadou P. Genetic algorithms for inverse cathodic protection problems[J].Engineering Analysis with Boundary Elements,2004,28(3):267-277
    [20] Kim J G, Kim Y W. Cathodic protection criteria of thermally insulated pipeline buried insoil[J]. Corrosion Science,2001,43(11):2011-2021
    [21]杜秀玲,吴希革,李楠.浅谈埋地钢质管道阴极保护对3PE涂层的影响[J].腐蚀与防护,2007,28(5):249-252
    [22]曹备,杨海.埋地管线的阴极保护技术[J].管道技术与设备,2000,4:38-41
    [23]胡舸.海底管线腐蚀检测与腐蚀预测的研究[D].重庆:重庆大学,2007
    [24] Chang J J. A study of the bond degradation of rebar due to cathodic protection current[J].Cement and Concrete Research,2002,32(4):657-663
    [25] Gurrappa I. Cathodic protection of cooling water systems and selection of appropriatematerials[J]. Journal of Materials Processing Technology,2006,166(2):256-267
    [26] Montoya R, Aperador W, Bastidas D M. nfluence of conductivity on cathodic protectionof reinforced alkali-activated slag mortar using the finite element method[J]. CorrosionScience,2009,51(12):2857-2862
    [27]宋曰海,郭忠诚,樊爱民,龙晋明.牺牲阳极材料的研究现状[J].腐蚀科学与防护技术,2004,16(1):24-28
    [28]张国华,李妍.导管架复合牺牲阳极系统和铝基牺牲阳极系统的对比分析[J].中国造船,2007,48:36-42
    [29]胡学文,吴丽蓉,许崇武,黄杰.外加电流阴极保护用辅助阳极的研究现状及发展趋势[J].腐蚀与防护,2000,21(12):546-549
    [30] Martinez S, Valek Zulj L, Kapor F. Disbonding of underwater-cured epoxy coatingcaused by cathodic protection current[J]. Corrosion Science,2009,51(10):2253-2258
    [31]Darowicki K, Orlikowski J, Cebulski S, Krakowiak S. Conducting coatings as anodes incathodic protection[J]. Progress in Organic Coatings,2003,46(3):191-196
    [32]姜春花.强制电流阴极保护中阳极地床的合理设计[J].新疆石油科技,2003,13(1):57-59
    [33]杨海恩,杨全安,程碧海,姜毅.长庆油田户外可更换深井阳极套管阴极保护试验[J].腐蚀与防护,2008,29(2):89-91
    [34] Eltai E O, Scantlebury J D, Koroleva E V. Protective properties of intact unpigmentedepoxy coated mild steel under cathodic protection[J]. Progress in Organic Coatings,2012,73(1):8-13
    [35]詹宏昌.天然气管道外腐蚀与防护[J].广州化工,2011,39(11):127-129
    [36] Pedeferri P. Cathodic protection and cathodic prevention[J]. Construction and BuildingMaterials,1996,10(5):391-402
    [37]张远声,龚敏,林修洲.用电位衰减数据计算阴极保护下金属的腐蚀电流密度[J].四川化工与腐蚀控制,2001,4(4):8-11
    [38] Christodoulou C, Glass G, Webb J, Austin S, Goodier C. Assessing the long termbenefits of Impressed Current Cathodic Protection[J]. Corrosion Science,2010,52(8):2671-2679
    [39]徐茂伟.聚丙烯腈基碳纤维改性及相关复合材料性能研究[D].西安:西安科技大学,2011
    [40]李海涛.循环伏安法对PAN基高模碳纤维阳极氧化的研究[D].北京:北京化工大学,2010
    [41]郝文奇.碳纤维用丙烯腈共聚合的研究[D].上海:东华大学,2004
    [42] Edie D D. The effect of processing on the structure and properties of carbon fibers[J].Carbon,1998,36(4):345-362
    [43] Park S J, Seo M K, Lee Y S. Surface characteristics of fluorine-modified PAN-basedcarbon fibers[J]. Carbon,2003,41(4):723-730
    [44] Yue Z R, Jiang W, Wang L, Gardner S D, Pittman C U. Surface characterization ofelectrochemically oxidized carbon fibers[J]. Carbon,1999,37(11):1785-1796
    [45]闫佳,楚増勇,程海峰,孙良奎,张东玖. PAN基碳纤维改性的研究进展[J].新技术新工艺,2011,8:121-124
    [46] Hong S H, Korai Y, Mochida I. Development of mesoscopic textures in transversecross-section of mesophase pitch-based carbon fibers[J]. Carbon,1999,37(6):917-930
    [47]唐绍裘,肖茜虹.碳/陶复合材料的制法与应用研究[J].陶瓷学报,17(2):58-63
    [48] Pierozynski B, Jankowski J, Sokolski W. Application of nickel-coated carbon fibrematerial in cathodic protection of underground-buried steel structures[J]. CorrosionScience,2009,51(11):2605-2609
    [49] Qian H, Bismarck A, Greenhalgh E S, Shaffer M S P. Carbon nanotube grafted carbonfibres: A study of wetting and fibre fragmentation[J]. Composites Part A: AppliedScience and Manufacturing,2010,41(9):1107-1114
    [50] Toyoda M, Katoh H, Shimizu A, Lnagaki M. Exfoliation of nitric acid intercalatedcarbon fibers: effects of heat-treatment temperature of pristine carbon fibers andelectrolyte concentration on the exfoliation behavior[J]. Carbon,2003,41(4):731-738
    [51] Ko T H, Lin J S. The effect of a chemical vapor deposited carbon film from acetylene onthe properties of graphitized PAN-based carbon fibers[J]. New Carbon Materials,2006,21(4):297-301
    [52]赵稼祥.世界碳纤维生产能力[J].高科技纤维与应用,2005,1(30):1-15
    [53]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展[J].高科技纤维与应用,2009,34(5):38-42
    [54]韩文佳.碳纤维的改性及其在燃料电池用纸中的应用[D].山东:山东轻工业学院,2008
    [55]张美云,钟林新,陈均志,吴养育.碳纤维导电纸的性能及应用[J].中国造纸,2008,27(3):13-17
    [56]金立国.我国碳纤维工业现状和碳纤维应用[J].合成纤维,2009,10:1-5
    [57]钟林新.碳纤维导电屏蔽纸的研制及其性能研究[D].陕西:陕西科技大学,2008
    [58]李明昕.船舶牺牲阳极的阴极保护设计研究[J].装备制造技术,2007,8:31-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700