基于SCoT标记分析甘蔗种质资源遗传多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗是我国重要的能源草本植物和最重要的糖料作物,甘蔗品种改良的科技贡献率高达60%,了解种质资源的遗传多样性是有助于指导杂交育种亲本选择和组合配置;了解我国甘蔗主要栽培品种和各育种单位新选育品种和高代品系的遗传相似性,对栽培品种的区域布局和更替以及有关单位后续杂交选育计划的制定,均具有重要的科学意义和应用价值。为此,本研究率先应用2009年国际最新开发的SCoT标记,在筛选多态性引物、建立PCR反应体系和程序的基础上,采用20条18碱基的SCoT引物,对107份甘蔗无性系进行SCoT标记,获得了这些甘蔗无性系的遗传多样性信息,主要结论如下:
     (1)利用20条18碱基的SCoT引物,对107份甘蔗无性系进行扩增,共扩增出176条条带,其中多态性条带163条,多态性百分比达到92.85%,有8条引物的多态性比率达到100%,多态信息量(PIC)在0.783~0.907之间,PIC平均值为0.861,因此,认为甘蔗SCoT标记具有丰富的多态性。
     (2)成功实现了对107份甘蔗无性系的遗传多样性分析,得到供试甘蔗无性系之间的遗传相似系数值11,449个,其数值分布在0.375~0.881之间,实现了对所有供试甘蔗无性系的遗传相似性定量分析。
     (3)采用SCoT标记数据对107份供试无性系进行聚类分析和主成分分析。在遗传相似系数为0.674处,107份甘蔗无性系可划分6个类群:类群Ⅰ主要分布Q、闽糖和粤糖系列中的粤甘系列;类群Ⅱ主要分布FN系列;类群Ⅲ主要分布崖城和部分CP系列;类群Ⅳ主要分布ROC、部分CP和印度Co系列;类群Ⅴ仅有ROC1和Q162;类群Ⅵ为3个粤糖和其他系列无性系。主成分分析结果显示,107份供试无性系分为国内种质资源和国外引进种质资源两大类,两类种质资源间的遗传基础差异大,两类种质的杂交利用有望明显提高杂交后代的遗传多样性。
     (4)聚类结果显示,占我国甘蔗种植面积80%以上的栽培品种ROC22、ROC16和ROC10,分别分布于类群Ⅰ、类群Ⅱ和类群Ⅳ中,ROC16和ROC10的相似系数仅为0.449,ROC22和ROC10的相似系数也只有0.455,ROC22和ROC16的相似系数为0.722,因此,三个ROC系列主栽品种的遗传多样性比较丰富,这对甘蔗产业的安全来说是有益的。此外,进入国家区试的22个品种的平均相似度也只有0.593,说明我国自育品种的遗传多样性也相对较丰富。
     (5)按照选育单位不同,将107份甘蔗无性系划分为FN、ROC、桂糖、闽糖、崖城、粤糖、Q、CP、巴西、印度Co、云蔗11个主要系列和其他杂系列,对这12个系列内及系列间的遗传多样性评价,得出12个系列的遗传多样性指数h的变化区间为0.1635~0.3619,其他杂系列最高(0.3619),ROC(0.3496)和CP(0.3466)系列次之,云蔗系列(0.1635)最低,显示了不同系列遗传多样性差异较大。107份甘蔗无性系总体的遗传多样性指数Ht(0.3656)是系列间的遗传多样性指数h(0.3615)的1.01倍,是系列内遗传多样性指数Hs(0.2586)的1.41倍,因此,认为107份甘蔗无性系总体的遗传多样性主要分布于11个系列间。
Sugarcane is an important energy herbs and is the most important sugar crop. The contribution rate for science and technology of sugarcane variety improvement is as much as 60%. Thus, the study of genetic diversity in sugarcane germplasm resources is the basis for the selection of crossing parents and the cross scheme. The study of genetic diversity in sugarcane main varieties and domestic newly released varieties is the basis of regional variety distribution and subrogation. Besides, it is beneficial to setting down the future scheme of sugarcane cross breeding in our country. Thus, the study is significant in science and in practice. In this study, on the basis of primers screening and PCR protocol estiblishement, 20 SCoT primers with 18 basepairs long were used in the SCoT fingerprintint for 107 sugarcane clones, and the analysis of the genetic diversity information existed in these clones were conducted. The main conclusions are as follows:
     Firstly, the detection of 20 SCoT primers with 18 basepairs long have abundant polymorphisms. The total number of bands amplified in the tested materials were 176, among which 163 were polymorphic and the polymorphism percentage reached 92.85%, while the polymorphism ratio of 8 primers reached 100%. And the polymorphic information content (PIC) at between 0.783 ~ 0.907, the average of PIC was 0.861. From above, it is indicated that the SCoT was an efficient fingerprinting technology with adequate polymorphism.
     Secondly, the genetic diversity analysis of the tested 107 sugarcane clones successfully were successfully implemented, and 11,449 genetic similarity coefficients, which range from 0.375 to 0.881, were obtained, thus the measurement of the genetic similarity of the 107 sugarcane clones was achieved.
     Thirdly, cluster analysis and principal component analysis was carried out in the 107 sugarcane clones with SCoT fingerprinting method. At the genetic similarity coefficient of 0.674, 107 sugarcane clones could be divided into six groups of clones: GroupⅠ, mainly the Q, Mintang,Yuegan series; GroupⅡ, mainly the FN series; GroupⅢ, mainly the Yacheng and part of the CP series; GroupⅣ, mainly the ROC, part of the CP and India Co series; GroupⅤ, including two clones, ROC1 and Q162; and GroupsⅥincluding some Yuetang series and other series. Principal component analysis showed that 107 clones tested clones should be divided into two categories of germplasm, the domestic and imported germplasm, which demonstrated that the genetic basis between these two kinds of germplasm was to some extent great.The using of the domestic germplasm and the germplasm imported abroad in cross utilization is expected to significantly improve the genetic diversity among the hybridization lines.
     Fourly, the results of cluster analysis showed the main cultivars ROC22, ROC16 and ROC10, which taking about 80% of the total sugarcane cultivation areas in our country, were distrituted in GroupⅠ, GroupⅡand GroupⅣ, respectively. The genetic similarity coefficients between ROC16 and ROC10, ROC22 and ROC10 and ROC22 and ROC16 were 0.449, 0.455 and 0.722, respectively. It indicated the genetic diversity of three“ROC”varieties was relatively abundant. It is beneficial to sugarcane industrial safety. Besides, the average genetic similarity coefficient in 22 tested varieties entried national variety regional test was 0.593 only. It indicated the genetic diversity of varieties bred and released domestic was relatively abundant.
     Fifthly, according to the different breeding institute, 107 sugarcane clones could be assorted into 11 main ie. FN, ROC, Guitang, Mintang, Yacheng, Yuetang, Q, CP, Brazil, India Co, Yunzhe and other miscellaneous series. The results of the genetic diversity analysis showed that the genetic diversity (h) among the above 12 series ranged from 0.1635 to 0.3619. The highest h was found in the other series (0.3619), subsequently the h of the ROC and CP series was 0.3496 and 0.3466, respectively, while the lowest h existed in Yunzhe series (0.1635). The genetic diversity between two different series was much bigger than that among the clones in a single series. The genetic diversity among all the 107 sugarcane clones (0.3656) was 1.01 times the genetic diversity among different series (0.3615), and 1.41 times the genetic diversity among the clones in a single series. It is can be deduced that the genetic diversity among the tested 107 sugarcane clones was mainly existing among the 11 different series.
引文
[1]陈如凯等.现代甘蔗育种的理论与实践[M].中国农业出版社, 2003, 3: 1~2.
    [2]殷瑶,谷勇,蔡丽莎,曹亚首.浅述生物多样性的价值及其保护[J].生物学通报,2009, 44(5): 8~10.
    [3]郑学项,冯素萍,李维国. DNA分子标记研究进展[J].安徽农业科学, 2009, 37(26): 12420~ 12422.
    [4]敖光辉,刘亚秋,李伯军.植物遗传多样性及种群生态学研究中的分子标记[J].内江师范学院学报, 2005, 20: 64~66.
    [5]刘公社,赵泓,刘杰,曹鸣庆.分子标记技术及其在芸苔属植物研究中的应用[J].植物学通报, 1998, 15(2): 67~68.
    [6]赵亚周,黄家兴,安建东,彭文君,高志鸿.蜜蜂遗传多态性的影响因素及主要研究方法[J].昆虫知识, 2009 , 46: 692~693.
    [7]杨虎,王金富,托乎提·阿吉,刘蓉芳,徐兴莉,院东.我国地方驴种遗传多样性研究进展[J].遗传育种, 2006, 7: 25~27.
    [8]冯夏莲,何承忠,张志毅,安新民,王冬梅.植物遗传多样性研究方法概述[J].西南林学院学报, 2006, 26: 71~72.
    [9]郭江波,赵来喜.中国苜蓿育成品种遗传多样性及亲缘关系研究[J].中国草地, 2004, 26(1): 9~13.
    [10]尚占环,姚爱兴.生物遗传多样性研究方法及其保护措施[J].宁夏农学院学报, 2002, 23: 66~68.
    [11]郝炯,渠云芳. DNA分子标记在作物育种中的应用[J].山西农业科学, 2009, 37(3): 81~85.
    [12]王海岗,吕建珍,彭锁堂.作物种质资源遗传多样性的评价方法[J].山西农业科学, 2007, 35(11): 26~27.
    [13] Andersen J R and Ltibberstedt T. Functional markers in plants[J]. Trends Plant Sci., 2003, 8(11): 554~560.
    [14]杨景华,王士伟,刘训言,杨加付,张明方.高等植物功能性分子标记的开发与利用[J].中国农业科学, 2008, 41(11): 3429~3436.
    [15]段思蒙,申佩弘,潘莉莉,李双喜,蒋承建,武波. PCR-RFLP分析桉树人工林土壤微生物的群落结构[J].基因组学与应用生物学, 2009, 28(5): 859~864.
    [16]翟文,王保莉,曲东,李杨.铬污染土壤修复过程中土壤细菌群落多样性的RFLP分析[J].西北农林科技大学学报(自然科学版), 2009, 37(4): 128~133.
    [17]肖关丽,李富生,杨清辉,杨生超. RAPD分子标记在甘蔗杂种鉴定中的应用研究[J].西南农业大学学报, 2003, 25: 207~209.
    [18]刘晓红,蔡为明,叶爱华,何金铃,董伟.杏鲍菇种质资源遗传多样性的RAPD分析[J].安徽农业科学, 2009, 37(32): 15728~15729.
    [19]白生文,范惠玲. RAPD标记技术及其应用进展[J].河西学院学报, 2008, 24: 52~54.
    [20]邹锋,谭晓风,袁德义,袁军. RAPD分子标记及其在油茶遗传育种研究中的应用(综述)[J].亚热带植物科学, 2009, 38(1): 70~73.
    [21]陈辉,范源洪,蔡青. RAPD分子标记技术及其在甘蔗育种上的应用[J].中国糖料, 2004, 1: 46~49.
    [22]徐丽,李明莹,林凤. DNA分子标记在作物遗传育种中的应用[J].沈阳师范大学学报, 2006, 24(4): 466~469.
    [23]王英,庄南生,黄东益,高和琼,吴文嫱.甘蔗祖亲种RAPD标记的序列特征性片段扩增区域(SCAR)转化分析[J].农业生物技术学报, 2009, 17(4): 713~721.
    [24]李原园,张映. AFLP技术及其应用[J].国外畜牧学-猪与禽, 2009, 6: 94~96.
    [25]李鸣,梁朝旭,方位宽,梁俊,李杨瑞,谭裕模,何为中. AFLP分子标记技术在甘蔗遗传育种上的应用[J].中国糖料, 2006, 1: 43~45.
    [26]林剑伟,阙友雄,陈天生,许莉萍. AFLP技术及其在植物和病原真菌研究中的应用[J].亚热带农业研究, 2008, 2(4): 67~71.
    [27]劳方业,刘睿,何慧怡,邓海华,李奇伟,陈仲华,陈健文,符成,齐永文,张垂明.甘蔗常用亲本及优良组合双亲间遗传相似性分析[J].分子植物育种, 2009, 7(3): 505~512.
    [28]劳方业,刘睿,何慧怡,邓海华,陈仲华,陈健文,符成,张垂明,杨业后.崖城系列甘蔗亲本遗传多样性的AFLP标记分析[J].分子植物育种, 2008, 6: 517~522.
    [29]丁锦平,高国庆,周瑞阳.花生SRAP反应体系的建立与优化[J].安徽农学, 2008, 36(10):4009~4010.
    [30]海燕,何宁,康明辉.新型分子标记SRAP及其应用[J].河南农业科学, 2006, 9: 7~12.
    [31]郭长奎,于静,罗淑萍.新型分子标记TRAP应用研究进展[J].生命科学研究, 2009, 13(4): 367~369.
    [32]张杰,吴迪,汪春蕾,屈红军,邹学忠,杨传平.应用ISSR-PCR分析蒙古栎种群的遗传多样性[J].生物多样性, 2007, 15(3): 292~299.
    [33]廖信军,常洪,张桂香,王冬蕾,宋卫涛,韩旭,张自富.中国5个地方牦牛品种遗传多样性的微卫星分析[J].生物多样性, 2008, 16(2): 156~165.
    [34]丁艳来,赵团结,盖钧镒.中国野生大豆的遗传多样性和生态特异性分析[J].生物多样性, 2008, 16(2): 133~142.
    [35]凌英会,成月,王艳萍,关伟军,韩建林,傅宝玲,赵倩君,何晓红,浦亚斌,马月辉.应用微卫星标记分析23个中国地方马种的遗传多样性[J].生物多样性, 2009, 17(3): 240~247.
    [36]田华,康明,李丽,姚小洪,黄宏文.中国板栗自然居群微卫星(SSR)遗传多样性[J].生物多样性, 2009, 17(3): 296~302.
    [37]梁宏伟,李忠,罗相忠,王长忠,呼光富,邹桂伟,杨永铨.基于微卫星标记的5个尼罗罗非鱼品系的遗传多样性分析[J].生物多样性, 2009, 17(1): 82~87.
    [38]李巧英. SSR标记技术在种子纯度鉴定中的研究进展[J].中国种业, 2009, 11: 23~25.
    [39]马金石.绿色荧光蛋白[J].化学通报, 2009, 3: 85~92.
    [40]张忠智,孙珊珊,王欲晓,罗一菁.绿色荧光蛋白标记在MEOR中的应用研究[J].石油化工高等学校学报, 2009, 12: 34~37.
    [41]刘艳丽,鲁澄宇.绿色荧光蛋白的特性及其在药学研究中的应用[J].药物生物技术, 2009, 16 (2): 170~174.
    [42] Halfhill M D, Good L L, Basu C. Transformation and segregation of GFP fluore scence and glyphosate resistance in horse weed (Conyza canadensis) hybrids[J]. Plant Cell Reports, 2007, 26(3): 303~311.
    [43] Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic marker (ACGM) in Brassica napes from Arabidopsis thaliana sequences of known biological function [J]. Genome,1999, 42: 387~402.
    [44]贺欣,刘国道,刘迪秋.利用ACGM和EST-SSR标记对云贵高原野生山蚂蝗属种质的遗传多样性分析[J].草业学报, 2008, 12: 102~111.
    [45] Yong-quan LU, Zi-hong YE, Wei-ren WU.Analysis of the phylogenetic relationships among several species of gramineae using ACGM markers[J]. Acta Genetica Sinica, 2006, 33(12): 1127~1131.
    [46]杨昶,高玉龙,胡重怡,周兆华,郭旺珍,张天真.棉花RGAP、DGAP和DDRT标记的定位研究[J].棉花学报, 2009, 21(2): 133~137.
    [47]陈国跃,董攀,魏育明,何坤,李伟,郑有良.普通小麦背景中长穗偃麦草(Lophopyrum elongatum)E染色体组的RGAP特异标记[J].作物学报, 2007, 33(11): 1782~1787.
    [48]周铭涛,高洪,肖鹏,周辉. PCR-SSCP技术应用研究进展[J].动物医学进展, 2009, 30(6): 90 ~93.
    [49]杨玉敏,丁建平,张子军,章孝荣,胡敏兰,张育军.黄淮山羊FSHβ基因第2外显子SSCP多态性研究[J].安徽农业大学学报, 2009, 36(3): 461~463.
    [50]张征锋,肖本泽.基于生物信息学与生物技术开发植物分子标记的研究进展[J].分子植物育种, 2009, 7(1): 130~136.
    [51]宋伟,王凤格,易红梅,李翔,赵久然.功能标记及在品种鉴定和辅助育种中的应用前景[J].分子植物育种, 2009, 7(3): 612~618.
    [52]贺道华,雷忠萍,邢宏宜.功能标记的开发、特点和应用研究进展[J].西北农林科技大学学报, 2009, 1: 432~436.
    [53]赵雪,谢华,马荣才.植物功能基因组研究中出现的新型分子标记[J].中国生物工程杂志, 2007, 27(8): 104~110.
    [54]梁欢新,洪彦彬.浅谈SNP标记的开发研究[J].农家之友·现代农业研究, 2009, 14: 24~28.
    [55]刘越,吕社民.单核苷酸多态性影响基因功能的机制[J].生命的化学, 2008, 28(2): 214~215.
    [56]杨永强,王巍杰,徐长波.单核苷酸多态性研究进展[J].化学与生物工程, 2009, 26(8): 19~ 21.
    [57]郝转芳,苏治军,李亮,张世煌,李新海.基于SNP标记的关联分析在玉米耐旱研究中的应用[J].作物杂志, 2009, 6: 1~6
    [58]李晓琪,李锡香,罗越华.萝卜自交不亲和基因SLG6的CAPS标记的开发[J].植物遗传资源学报, 2009, 10(1): 118~120.
    [59]刘学军,闫双勇,刘小红,苏京平,马忠友,孙林静,卢百关.植物SNP数据库及转化CAPS的方法[J].分子植物育种, 2006, 4(3): 443~447.
    [60]于拴仓,柴敏,郑晓鹰,姜立纲.番茄叶霉病抗性基因cf-5的CAPS标记建立[J].分子植物育种, 2005, 3(l): 57~60.
    [61]李晶晶,王述彬. EST-SSRs研究进展及其在辣椒胞质不育性研究中的应用前景[J].中国蔬菜, 2008, 10: 40~44.
    [62] Bertrand C Y, Collard & David J, Mackill. Start Codon Targeted (SCoT) Polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants[J]. Plant Mol Biol Rep, 2009, 27: 86~93.
    [63]王林生,李毓珍,马晓玉.植物数量性状的QTL定位分析[J].安徽农业学, 2006, 34(18): 4527~4529.
    [64]蒋锋,刘鹏飞,杜世州,王晓明.作物QTL定位方法研究进展[J].安徽农业科学, 2009, 37 (26): 12496~12497.
    [65]王阳,于永涛,王天宇,黎裕.作物耐旱性QTL定位和分析的思路[J].植物遗传资源学报, 2009, 10(1): 146~151.
    [66]田再民,张立平,孙庆林,单福华,田自华.小麦重要农艺性状QTL研究方法及研究进展[J].内蒙古农业大学学报, 2007, 28(4): 243~247.
    [67]余爱丽,张木清,陈如凯. ISSR分子标记在甘蔗及其近缘属分类上的应用[J].福建农林大学学报(自然科学版), 2002, 31(4): 484~488.
    [68]郑益凤.甘蔗亲本遗传多样性的SSR荧光标记分析与指纹图谱构建[J].福建农林大学硕士学位论文, 2009 (指导老师:许莉萍).
    [69]黄晓弟.基于SSR位点的甘蔗种质资源遗传多样性和DNA指纹图谱[J].福建农林大学硕士学位论文, 2009 (指导老师:许莉萍).
    [70]宋弦弦.甘蔗及其近缘植物遗传多样性的SRAP和TRAP标记分析[J].福建农林大学硕士学位论文, 2009 (指导老师:许莉萍,阙友雄).
    [71]徐景升,许莉萍,张木清,陈如凯.应用RAPD技术研究甘蔗属及其近缘属种问亲缘关系[J].江西农业大学学报, 2003, 25(6): 925~928.
    [72]陈平华,张辉,陈如凯.利用RAPD技术进行甘蔗育种亲本辅助选择[J].分子植物育种, 2004, 2(5): 675~681.
    [73]阙友雄,陈天生,许莉萍,陈如凯.甘蔗重要种质的TRAP标记遗传多样性分析[J].农业生物技术学报, 2009, 17(3): 496~503.
    [74]蔡青,范源洪.利用AFLP进行“甘蔗属复合体”系统演化和亲缘关系研究[J].作物学报, 2005, 31(5): 551~559.
    [75]王英,庄南生,高和琼,黄东益.甘蔗种质遗传基础的ISSR分析[J].湖南农业大学学报:自然科学版, 2007, 33: 177~183.
    [76]劳方业,刘睿,何慧怡,邓海华,李奇伟,陈仲华,陈健文,符成,齐永文,张垂明.我国甘蔗亲本遗传多样性的AFLP标记分析[J].基因组学与应用生物学, 2009, 28(3): 503~508.
    [77]齐永文,樊丽娜,何慧怡,陈勇生,敖俊华,邓海华.广东割手密资源农艺性状遗传多样性评价[J].甘蔗糖业, 2009, 3: 127~131.
    [78] Mudge J, Andersen W R and Fairbanks D J. A RAPD genetic map of saccharum officinarum[J]. Crop Science, 1996, 36: 1362~1366.
    [79] Daugrois J H, Grivet L, Roques D, Hoarau J Y and Lombard H. A putative major gene forrustre sistance linked with a RFLP marder in sugarcane cultivar“R570”[J]. Theor. App1. Genet., 1996, 92: 1059~1064.
    [80] Madan V K, Mandal B and Mandal B, Misra S R. RAPD-PCR analysis of molecular variability in the red rotpathogen (Collectotrichun falcatum) [J]. Surarcane Internationa1, 2002, 3: 5~8.
    [81] Aitken K S, Jackson P A and Mcintyre C L. A combination of AFLP and SSR marker sprovides extensive map coverage and identification of homoeologous linkage group sina sugarcane cultivar[J]. Theor. App1. Genet., 2005, 110(5): 789~801.
    [82] Kwok S, Kellogg D E, McKinney N, Spasic D, Goda D, Levenson C. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 modelstudies[J]. Nucleic Acid Res., 1990, 18: 999~1005.
    [83] Botstein D, White R L, Skolnick M, David R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32:314~331.
    [84] Yeh FC, Boyle T, Yang R C, Ye Z, Xiyan J M. POPGENE, The user friendly shareware for population genetic analysis version1.31. University of Alberta and Centre for International Forestry Research, 1999, 28: 45~47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700