一种低速大惯量伺服系统的跟踪控制研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有低速、大惯量特征的机电伺服系统,普遍存在于国民经济的各个领域,例如天线、雷达等航天航空航海领域,机床进给系统、电动执行机构以及计测装置等。随着科学技术不断发展,需要系统运行更稳定,响应更快,跟踪精度更高,抗干扰性更强等。要满足这些要求,其机电控制系统必须具有合理的控制方法,具有性价比更强的硬件、软件系统。
     本文操作与研究了一种采用交流伺服系统作为具有低速大惯量特征的机电设备的控制系统设计,目的是将工业控制领域中的交流伺服系统技术应用到机电设备中,来提高产品控制精度和响应速度、降低系统能量损耗、提高部件使用寿命、降低系统维护成本等。具体的研究对象是伽玛刀源体、准直体控制系统,采用了微型计算机和多功能控制器为控制平台;采用伺服驱动器控制和驱动设备的各种动作;采用伺服电机作为执行机构;软件采用motion planner软件平台编程。通过对伺服系统位置环、速度环、电流环三闭环的控制,利用数字系统易于调节、灵活的特点,采用全数字式直接驱动方案实现对源体、准直体位置、速度的精确控制。主要研究内容如下:
     (1)设计一种驱动模式:以交流伺服电机代替同步电机,经过蜗杆蜗轮减速机构直接驱动源体与准直体,建立了电机主要选型参数的计算方法。
     (2)分析源体准直体的控制要求,构建控制系统的总体结构,并详细介绍系统硬件构成。
     (3)建立运动控制系统各环节的数学模型,并以此建立基于Simulink的仿真模型,根据试验参数进行了仿真试验。
     (4)根据控制要求和监控任务,开发控制系统软件,包括主程序、各功能子程序、检测程序等。
     经过性能测试,该系统实现了设计目标,具有控制精度高、响应速度快、能耗少、性能稳定等优点。预期在市场上具有一定的技术先进性和产品竞争优势。
The electrical and mechanical servo system with low-speed and high-inertia exists in various fields in the national economy, such as antennas, radar, and other maritime areas of aerospace, timing and feed systems, electrical implementing agencies, as well as measurement devices. With the continuous development of science and technology, this system has put forward higher requirements; operating system needs a more stable and faster response, higher accuracy, more of such interference. To meet these requirements, its electrical and mechanical control system must have reasonable control methods, a more cost-effective hardware and software systems.
     This paper introduced a kind of design that uses the alternating servo system as the ultra-low velocity and high-inertia servo system. The objective of the paper is to apply the alternating servo system technology in machine control system, so as to improve the precision and respond speed, avoid high energy loss, increase service life of device, and decrease cost of system requirement. The paper study radiator device of gamma knife sync and tracking control; the control system adopts the microcomputer and mufti-function controller conduct and actions control terrace; adopt the servo control and driver various action of the device; adopt the servo motor conduct; adopt motion planner software terrace. Through the position loop servo system, the velocity loop, current loop three closed-loop control, easy to use digital system regulation, flexible features, using all-digital direct drive to achieve the precision control of the radiator device of gamma knife of position, velocity. The main research content of this paper is as following:
     (1)A structure of drive system is proposed, the design is that instead of synchronous motor, permanent magnet synchronous motor (PMSM) is adapted to drive the gamma knife control system through the worm wheel. The feasibility of this drive structure is analyzed; a method of calculating motor power and torque is established.
     (2)Proceeding with control demand of the gamma knife, the whole structure of control system is established; all system hardware and function subsystems are all presented in details.
     (3)The mathematic model of control system is established, further more, with the mathematic model, the simulation model based on Simulink software is set up and the simulation on experiments are carried out according to the parameters of the system.
     (4)According to the demand of control and monitoring, the control system software is developed, including main program and function subprogram.
     It has fulfilled the designed requirement by the feature test. This instrument possesses high precision, fast respond, low power cost and so on. It is the modern technology, and it will have a good competitiveness on the market.
引文
[1]敖荣庆,袁坤编.伺服系统[M].北京:航空工业出版社,2006.9
    [2]专家谈2006伺服控制的发展趋势[J].伺服控制,2006,1:8-10
    [3]VA NIOORLS Adaptive predictor enhanced differentiation[C]//Instum entaton and Measurement technology conference,1999,MTC/99.Proceedings of the 16th IEEE,1999,1:551-555
    [4]ECONNMOUD A,MAVORD IS C B,ANTONIADIS I A,Experiment on robust vibration suppression in mechatronic systems using DR digital filters[C]//20011EEE/ASME International conference on advanced Intelligent Mechatronics Proceedings.Como,ITALY,2001,2:731-737
    [5]舒志兵编.交流伺服运动控制系统[M].北京:清华大学出版社,2006.3
    [6]Hongjun Jeon,Dirk Grunwald.Design of servo control systems with quadratic optimal control and observed-state feedback control for meres-based storage device.Mierosystems Technology 2005(11):1005-1012
    [7]郭庆鼎,孙宜标.现代永磁电动机交流伺服系统[M].北京:中国电力出版社,2006.8
    [8]郭阳宽,李庆祥,李玉和.低速高精度轴系跟踪控制系统方案设计[J].仪器仪表学报,2004年8月第25卷第4期增刊
    [9]陈涛,陈娟,蒋风华.伺服系统两种低速非线性补偿方法的对比实验[J].光学精密工程,2003年2月第11卷第1期
    [10]李学雷.超低速跟踪伺服系统研究[D].西北工业大学硕士学位论文,2002年3月
    [11]陈娟.伺服系统低速特性与抖动补偿研究[D].中国科学院博士学位研究生学位论文,2005.8
    [12]韩昌佩.低速大惯量高精度扫描控制系统的电流环研究[J].红外,2005,6:27-32
    [13]郭刚宽,李庆祥,李玉和.低速高精度轴系跟踪控制系统方案设计[J].仪器仪表学报,2004,25(4):901-902
    [14]黄效国.一种高精度大惯性液压伺服控制系统及其控制方法[J].液压与气动,2003年第8期
    [15]袁利才.大惯性柔性负载对电液速度伺服系统特性影响的分析与研究[D].太原理工大学硕士学位论文,2004年5月
    [16]王广雄,何朕.工业伺服系统[J].电机与控制学报,2006,10(3):329-332
    [17]曾玉金.高性能交流伺服系统及其复合控制策略研究[D].浙江大学博士学位论文,2004年6月
    [18]G.C.D.Sousa,B.K.Bose,K.S.Kim,"Fuzzy logic based on-line tuning of slip gain fro an indirect vector controlled induction motor drive," in IEEE/IECON Conf.Proc.,pp.1003-1008,1993.
    [19]王永骥等,神经元网络控制[M],北京:机械工业出版社,1999.
    [20]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社.2001
    [2l]高为炳著,变结构控制理论基础[M],北京:中国科学技术出版社,1990
    [22]Krzeminski Z.,"Nonlinear control of induction motor," Proc.Of IFAC 87,Vol.3,pp.349-354.
    [23]夏晓华,高为炳,非线性系统控制及解耦[M].北京:科学出版社,1997.
    [24]葛宝明,王祥晰,苏鹏声,蒋静坪.交流传动系统控制策略综述[J].电气传动自动化,2001,23(4)
    [25]陈洁,丙延年,刘文杰,郭旭红.多机传动系统智能同步控制方法的研究[[J].江苏电器,2003,5
    [26]姜淑忠.交流伺服运动系统的开发[J].中小型电机,2005,32(1):49-52
    [27]W.J.Wang,C.C.Wang,"Composite adaptive position controller for induction motor using feedback linearization," IEEE Proe.-Control Theory Appl,Vol.145,No.1,1998,PP25-32
    [28]王立新,自适应模糊系统与控制[M],北京:国防工业出版社,1995.
    [29]刘建涛,王钦泽,张尊泉.多电机高精度同步控制系统的研制[J].现代电子技术,20055:109-110
    [30]张新华,李伟.多伺服电机的同步控制[J].机床与液压,2003,4:90-91
    [31]刘福才,张学莲,刘立伟.多级电机传动系统同步控制理论与应用研究[J].控制工程,2005,9(4):87-90
    [32]李曼珍.伺服系统控制方法研究.[研究报告].EIC Vol.12,2005,No.4
    [33]Hughes,W.M.Johnson,C.D.A new digital servo-tracking control theory using subspace stabilization techniques[J]1997(3):17-22
    [34]M.Depenbrock,"Direct self controlled(DSC)of inverter-fed induction machine",IEEE Trans.Power Electronics,Vol.3,No.4,1998
    [35]Schei T S.Automatic tuning of PID controllers based on transfer function estimation. Automatica 1994,30(12):1983-1989
    [36]Song Juming,Zhou Ming,Su Yanmin,Study of Optimal Efficient Control of Permanent Magnet Synchronous Motor,Proceedings of Electrical Machines and Systems,2003,1(11):41-44.
    [37]K.J.Astrom,Direction in Intelligent Control,IFAC International Symposium,1991,PP,15-17
    [38]许超等,预测控制技术及其应用发展,化工自动化及仪表,2002 3 29(3)1-10.
    [39]费敏锐,陈伯时,智能控制方法的交叉综合及其应用[J].控制理论与应用,1996
    [40]王爱祥,刘日宝.全数字交流伺服驱动器的研究[J].现代雷达,2006,28(3):66-69
    [40]迟艳.双电机驱动旋转机械同步控制的研究[D],东北大学学位论文,2005
    [41]杜宗潆.国内外动态[J].微特电机,2006,10:47
    [42]Johnson,C.D.A General Theory of "Multivariable" Servo-Tracking Control-Design For MIMO Linear Dynamical Systems;Framework for a Unified Theory of Modern Linear Control,System Theory,2007.SSST '07.Thirty-Ninth Southeastern Symposium on,2007(3):104-114
    [43]丁东,郭锐锋.数控机床中伺服系统的现状及展望[J].机械工人,2005,3:19-21
    [44]陈进,许建凤,杨志兵.伺服电机的直接数字控制[J].控制工程,2003,10(2):179-181
    [45]王宏.机载雷达伺服系统设计[J].现代雷达,2005,27(11):71-74
    [46]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2001
    [47]罗传冀等.控制工程与信号处理[M].北京化学工业出版社,2004.
    [48]李凤.异步电动机直接转矩控制[M].北京:机械工业出版社,1998.
    [49]http://www.hngmd.com/hngmd_article/eb/130.html
    [50]http://www.51 report.com/free/detail/39064.html
    [51]http://www.jdzyjs.com/dianqi/dzjc/10173.html
    [52]http://www.gkong.com/learn/learn_detail.asp?leam_id=727
    [53]http://www.parkermotion.com/
    [54]成大先主编.机械设计手册减(变)速器电机与电器[M].北京:化学工业出版社,2004.4
    [55]金裕,胡枯德,李向春.伺服系统设计指导[M].北京理工大学出版社,2000年2月
    [56]张平等.MATLAB基础与应用简明教程[M].北京:北京航空航天大学出版社,2001
    [57]魏克新等.MATLAB语言与自动控制系统设计[M].北京:机械工业出版社,1997
    [58]孙亮.MATLAB语言与控制系统仿真[M].北京:北京工业大学出版社,2001
    [59]朱国力,吕风华,段正澄.开放式全身伽玛刀控制系统[J].机电一体化,2001(3)
    [60]金云翔.智能焊缝跟踪控制系统研究[D].北京化工大学研究生学位论文,2006,5
    [61]李林.基于伺服电机直接驱动的压力机控制系统研究[D].南京理工大学硕士学位论文,2006,6
    [62]Yasutake Fujimoto,Atsuo Kawamura,"Robust servo-system based on two-degree of freedom control with sliding mode," IEEE Trans.Ind.Electron.,1995,Vol.42,No.3,pp.272-280.
    [63]Junho Yang,Sang-Hoon Kim,Jang Hyun Kim,Hyunseok Yang,Joo-Youn Park[]No-Cheol Park,Young-Pil Park.Real time servo control of the holographic data storage system with an additional servo beam.Microsyst Technol 2007(13):1397-1402
    [64]C.Canudas de Wit,P.Noel and A.Aubin.Adaptive Friction Compensation in Robot Manipulators:Low Velocities.The Inter.Journal of Robotics Research 1991 10(3):189-199
    [65]AI-VI anum A,IESS Precision control of haul click clrices[J].IEEE CoatroLS.sten.sMrzgazuae,2005,25(4):14-19
    [66]Todd D Batzel "Commutation torque ripple minimization for permanent magnet synchronous motor with Hall effect portion feedback".IEEE Transaction on energy conversion.Vol.13.NO.3.September.1998.
    [67]孙业.电动伺服脊柱治疗机的研制[D].山东大学硕士学位论文,2006,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700