越野车电液主动悬架系统控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合吉林大学“985工程”二期汽车工程科技创新平台建设项目,就越野车主动悬架系统及其控制策略进行深入研究。论文提出基于伺服阀控伺服液压缸的液压主动悬架系统,建立了1/2车四自由度主动悬架系统的机械系统动力学模型和液压伺服系统动力学模型。综合考虑主动悬架系统各种控制方法,应用控制系统仿真软件Matlab6.5+Simulink,分别对最优控制、轴距预见控制和轴间预见控制电液主动悬架系统进行了仿真分析。仿真结果表明:最优控制电液主动悬架系统可有效的降低车身加速度,悬架动挠度和轮胎动位移,使车辆行驶平顺性和操作稳定性得到改善,从而验证了所提出电液主动悬架系统方案的可行性;轴距预见和轴间预见控制与最优控制相比较,前轮部分基本没有变化,后轮部分的性能有进一步的明显改善,并且轴间预见控制改善的效果更加明显。同时,运用多学科仿真软件AMESim分析了时变因素及模型简化时一些被忽略的非线性因素对主动悬架系统性能的影响。最后,在多功能液压实验台上进行了伺服阀控制液压缸实验,主要对伺服阀的空载流量特性和液压缸的位移动态响应特性进行了实验,实验结果表明,本文采用的伺服阀控液压缸结构能够满足本课题对主动悬架执行机构的要求。
To maintain a good stability of off-road vehicle which is running when the road bumps. So we hope that the suspension of off-road vehicle not only can lower and make automobile possess good handing stability and ride comfort when it runs along straight line, speed up, brakes and turns, but also can improve the pass ability. And it should have an additional function that adjusts the height, to adapt to the need of transportation and battle.
     The suspension system is one of the most important devices of automobile. It links the vehicle body and wheel flexibly, in order to achieve the goal that make the vehicle running normally ,the suspension transfers the force and the moment between vehicle body and wheel, and mitigate the body vibrancy that is brought by impact force. It has been proved that the choice of suspension structure not only determine the pass ability, but also is subjected to the stability of steering. So the significance of designing excellent suspension system is very important. Now the researches into active suspension focus on two fields, one is the control theory and the other is the actuator, adopt different math models and control theories, to attain a good controlled effect.
     This dissertation mainly combined the Jilin University 985 automobile innovation project "The research on large working space of active and semi-active suspension ", It mainly made research into the active suspension control theory of off-road vehicle.
     Below are the main jobs of this dissertation:
     1 .This dissertation advances that using the technology of active-suspension on the off-road vehicle, and take the cylinders controlled by the electro-hydraulic servo valve as the actuator, And the active-suspension hydraulic servo system is designed according to the traits of suspension system of off-road vehicle and the variety of road, and fix on the primary parameters of hydraulic servo system and choose the primary elements with correlative technical parameters according to the structure coefficient of a kind of heavy off-road vehicle.
     2. The mathematical model for active suspension system of off-road vehicle is established, and then compute the transferable functions based on the parameter that acquired in chapter three, and establish the road surface model with filter white noise as the input.
     3. Do some research on the influence of factor change with time to the active suspension system. The factor includes road surface、speed、load and so on. Through analyzing the performance index curve through simulation, though factor change with time influence the system a little, all are controlled under the perfect range, this also show that the validity of using active control to the suspension.
     4.Generally considering characteristics of researching system and all kinds of strategies, mainly do some researches on optimal control and part preview control base on optimal theory, determine the controllable and observable facet of system, and systemic performance index is expressed with secondary model, calculate the matries Q、R、N with the motorial equation, figured out the suspension model based on full states feedback, build the performance function under the primary abilities, and get the control function U = -KX , At the same time respectively do some research on two ways of control which are wheelbase preview control and axial middle preview control, ratiocinate the state equations of different control ways.
     5.Use Maflab/Simulink to establish the simulation model of passive suspension and optimal active suspension based on the half of vehicle, and attain the active suspension simulation model of wheelbase preview control and axial middle preview control through do a little modification on the latter. Analyzing the performance index curve through simulation, we can know that use of optimal control hydro-electric active suspension in off-road vehicle brings a perfect result. the body acceleration、suspension working space、dynamic tyre displacement are all improved, able to ensure the need of stability of steering and pass ability of the vehicle. And wheelbase preview control and axial middle preview control improve the performance of latter part more efficiently.
     6.Do some experiments about cylinders controlled by the electro-hydraulic servo valve on the multifunctional hydraulic test bench, mainly research on flux without load and dynamic response of displacement of cylinder, the results of them indicate that cylinders controlled by the electro-hydraulic servo valve this dissertation used can satisfy the need of active suspension actuator of this project.
引文
[1]余志生.汽车理论[M].机械工业出版社,1989.4.
    [2]陈家瑞.汽车构造下册[M].机械工业出版社,2001.
    [3]曹树平,易孟林等.越野车半主动天棚悬架振动响应特性研究[J].机床与液压,2005(2):78-79.
    [4]段俊法,陈思忠.越野车辆悬架系统的评价研究[J].北京汽车,2005(2)
    [5]洪福生.国外越野车发展的新动态[J].汽车与配件,1996.24:17-21.
    [6]孟爱红,王良曦等.车辆主动悬架液压伺服控制系统设计与仿真[J].液压与气动,2004(1):14-16.
    [7]周云山,于秀敏.汽车电控系统理论与设计[M].北京理工大学出版社,1999.11(1):143-219.
    [8]Hoogterp F B.Active suspension in the automotive industry and the military.SAE paper 961037,1996:2142-2153.
    [9]姚嘉,韩明辉.汽车悬架系统的发展与控制理论[J].佳木斯大学学报,2004.7(3):450-452.
    [10]陈翔,张林燕.汽车可控悬架及其控制策略的研究动态[J].公路与汽运,2005(1).
    [11]吴志成,陈思忠等.越野车辆可控悬架及其控制理论的发展现状[J].兵工学报,2006,9(5):903-910.
    [12]王荣本,李兵,施树明,李斌.世界智能车辆研究概述[J].公路交通科技,2001(5).
    [13]M.R.Sirouspoun,S.E.Salcudean.Nonlinear control of a hydraulic parallel manipulator.Processing of the 2001 IEEE:3760-3765.
    [14]史建鹏,徐满年.日本越野车的特点和核心技术[J].汽车技术,2005(1).
    [15]张玉春,王良曦等.汽车主动悬挂控制的研究现状和未来挑战[J].控制理论与应用,2004.(1):139-144.
    [16]袁伟,陈思忠,杨林.越野车主动悬架控制策略研究[J].广西交通科技2003,(28)4.
    [17]王国丽,顾亮.车辆主动悬架技术的现状和发展趋势[J].兵工学报,2000(1).
    [18]李军,成思源,卢海峰.汽车主动悬架控制方法的现状与发展[J].渝州大学学报,1999,12.
    [19]万钢,秦明,吴宪.轿车悬架技术现状及发展趋势[J].上海汽车2004,7.
    [20]孙建民.车辆主动悬架系统控制技术研究[D].哈尔滨工程大学博士学位论文,2003,5.
    [21]王占林.近代电气液压伺服控制[M].北京航空航天大学出版社,2005.
    [22]喻凡,郭孔辉.车辆悬架的最优自适应与自校正控制[J].汽车工程,1998,20(4):193-200.
    [23]汤靖,高翔.基于最优控制的四自由度汽车主动悬架控制器[J].农业机械学报,2005.4(4):9-12.
    [24]董波.主动悬架最优控制整车模型的研究[J].汽车工程,2002(5):422-425
    [25]Moran A,Nagai M.Optimal preview control of rear suspension using nonlinear neural networks.Vehicle System Dynamics,1993,22:321-334.
    [26]刘哲.主动悬架的控制策略与仿真研究[D].吉林大学硕士学位论文,2007,4.
    [27]朱浩,刘少军等.车辆主动悬挂最优预见控制模型[J].交通运输工程学报,2005年9月,第5卷第3期.
    [28]Moran A,Nagai M.Optimal active control of nonlinear vehicle suspensions using neural networks.JSME Int.J.Dynamics,Control,Robotics,Design and Manufacturing,1994,37(4):707-718.
    [29]何将三,李艳.汽车主动悬架的最优预见控制[J].汽车工程,1999,(6):333-337.
    [30]孙晋厚,索双富,肖丽英.车辆悬架主动控制系统发展现状和趋势[J].机械设计与制造,2007,(10):198-200.
    [31][日]土谷武士,江上正.最新自动控制技术——数字预见控制[M].北京科学技术出版社,1994.
    [32]吴启谊,王海林.汽车主动悬架比例液压系统的设计[J].流体传动与控制,2007,(6):20-21.
    [33]S.Thiruvarudchelvan,A novel hydraulic-pressure augmented deep-drawing process for high draw ratios,J.Mater.Process.Technol.54(1995):355-361.
    [34]Allenyne,Andrew,Liu,Rui.A simplified approach to force control for electro-hydraulic systems.Control Engineering Practice Volume:8,Issue:12,December,2000:1347-1356.
    [35]Louam N,Wilson D A.Optimisation and Performance Enhancement of Active Suspensions for Automobiles under Preview of the Road.Vehicle System Dynamics,1992,21.
    [36]王淑琴.越野车电液主动悬架模糊控制的研究[D].吉林大学硕士学位论文,2006.12:16-18.
    [37]檀润华,陈鹰,姚东方,路甬祥.路面随机激励下的汽车振动仿真[J].振动、测试与诊断,2000,6.
    [38]Esmailzadeh.Optimal active vehicle suspensions with full state feedback control.SAE Papers,1992.
    [39]赵济海,王哲人,关朝雳.路面不平度的测量、分析与应用[M].北京理工大学出版社,2000.10:14-15.
    [40]赵春雷.自适应控制器及其在阀控非对称缸速度系统中的应用[D].哈尔滨工业大学硕士学位论文,2006.6:5-6.
    [41]马长林,黄先祥.基于AMESIM的电液伺服系统仿真与优化研究[J].液压气动与密封,2006(1):32-35.
    [42]涂华刚.基于闭环力反馈的液压半主动悬架研究[D].浙江大学硕士学位论文,2002.2.
    [43]IMAGINE公司.AMESIM用户手册[M].
    [44]Bret R.Given.An engineering design simulator for advanced distributed simulation.IEEE,1996:565-571.
    [45]余佑官,龚国芳等.AMESIM仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-32.
    [46]方洋旺.随机系统最优控制[M].清华大学出版社,2005:163-186.
    [47]年晓红,曹莉.基于微分对策的最优状态观测器和最优状态反馈控制器的设计[J].自动化学报,2006.9(5):807-812.
    [48]兰波,喻儿.车辆主动悬架LQG控制器的设计与仿真分析.农业机械学报,第35卷,第1期,2004年1月.
    [49]周宇星.汽车主动悬架轴距预估LOG控制的研究[D].东北大学硕士学位论文,2003,3.
    [50]秦民,董波等.基于轴间预瞄的主动悬架研究[J].汽车工程,2004,4(2):193-196.
    [51]D.C.Kamopp,M.J.Crosby and R.A.Harwood."Vibration Control Semi-Active Force Generators".ASME Journal of Engineering for Industry,May 1974,619/622.
    [52]A.G.Thompson."Optimal and Sub-optimal Linear Active Suspension for Road Vehicles".Vehicle System Dynamics,13(1984).
    [53]FelezJ,Vera C.Bond graph assisted models for hydro-pneumatic suspensions in crane vehicles.Vehicle System Dynamics,1987,8(16):313-312.
    [54]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.4.
    [55]曹秉刚,王健.离散时间控制问题——使用MATLAB及其控制系统工具箱[M].西安交通大学出版社,2004.8(1):188-195.
    [56]施阳.MATLAB语言工具箱——TOOLBOX实用指南[M].西安工业大学出版社,1999,6-49.
    [57]施阳.MATLAB语言精要及动态仿真工具Simulink[M].西北工业大学出版社,1997.
    [58]姜玉宪.控制系统仿真[M].北京航空航天大学出版社,1998.
    [59]吴沛容.动态系统的计算机控制[M].哈尔滨工业大学出版社,1991.
    [60]付永领,祁晓野.AMESim系统建模和仿真——从入门到精通[M].北京航空航天大学出版社,2006.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700