时间步进自由尾迹方法建模及水平轴风力机气动性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在风力机的设计和校核过程中,气动性能预测是非常重要的环节。设计出风力机的桨叶气动外形后,计算其气动性能,可以作为对设计结果的评价;反之,气动性能计算结果可以作为反馈,为桨叶气动外形的修正提供依据。但是风力机运行在复杂的自然环境中,风剪切、来流风速及风向的改变以及塔影效应等使得准确预估风轮的气动载荷成为非常困难的工作。因此,在现阶段的风力机设计中,主要采用安全因子来补偿未知载荷,使得风力发电的投资增加,竞争力下降。
     风力机在旋转过程中会从桨叶后缘拖出尾迹,形成强烈的卷起涡和内部涡面,这些尾涡旋绕在桨叶附近,会对转子的气动性能产生重要的影响。尾涡的强度由叶素的几何参数、运动参数及桨叶气动载荷决定;反过来,涡的诱导效应又会改变转子的速度场,进而影响涡的强度。因此,桨叶和尾迹之间存在相互干扰,对尾涡的计算是风力机气动载荷分析的关键,也是开展风力机空气动力学研究的基础,具有重要的科学意义和工程实际意义。本文基于时间步进自由尾迹方法对风力机的尾迹及气动性能进行了研究,主要内容包括:
     ①针对目前风力机气动载荷预测中常用的动量—叶素理论(BEM)不能计入偏航入流影响的缺陷,采用涡柱理论替代动量理论对其进行修正。应用修正的理论对TUDelft模型风力机的气动性能分析表明:即使风力机处于来流风速较小的稳定偏航状态,BEM理论的计算误差仍然较大,不适合于风力机气动载荷分析,因此需要建立新的性能预测方法。
     ②建立了风力机转子时间步进自由尾迹分析模型。对转子后拖出的尾迹采用自由尾迹方法进行分析,并给出了能处理桨尖涡湍流效应的Vatistas涡模型对Biot-Savart定律进行修正,以消除可能出现的数值奇点;然后对时间步进差分算法展开研究,由待定系数法构造了一种新的3步3阶预估校正差分格式,以提高尾迹求解的精度。对风力机桨叶涡系采用Weissinger-L升力面模型进行描述,并推导了桨叶附着环量的求解方程及桨尖涡强度、释放位置的确定方法。最后建立了完整的风力机转子自由尾迹分析模型,该模型既能用于风力机定常气动性能分析,也能用于复杂来流时的非定常气动性能分析。
     ③风力机桨叶产生动态失速时,采用二维静态翼型数据进行载荷预测会低估风轮的动力产生,从而对风轮的结构设计产生严重的影响,因此在设计、校核过程中必须认真考虑动态失速的作用。本文将原本用于直升机旋翼分析的动态失速Beddoes-Leishman半经验模型进行相应的修改后,应用于S809翼型的正弦俯仰振荡计算,并与实验数据进行比较,结果表明:在平均攻角较小时计算值与实验数据吻合较好,随着平均攻角的增大,计算误差增大,但总体趋势是正确的,从而验证了模型的有效性。然后将失速模型耦合入②所建立的时间步进自由尾迹模型,以更准确地预测桨叶的气动载荷。
     ④对数值离散算法的精度和稳定性进行分析。采用根轨迹法对几种差分格式的线性稳定性进行分析,结果表明:Euler显式是不稳定的,PCC格式是中性稳定的,而PC2B及本文推导的PC3B格式均满足稳定性条件。由修正方程的推导对离散差分格式的精度及非线性稳定性的分析表明:本文推导的3阶PC3B格式能够减小尾迹时间步进计算时的误差累积,从而提高尾迹求解精度,且方程中包含与速度梯度无关的耗散项,离散格式是强稳定,具有明显的优势。
     ⑤应用时间步进自由尾迹分析模型对TUDelft风力机和NREL PhaseⅥ风力机在轴流和偏航时的尾迹形状和气动性能进行计算,并与文献实验数据进行比较,结果表明:当风力机处于来流风速较小的轴流工况时,尾迹涡不能被输运到下游较远的地方,使得涡-涡干扰较大,桨尖涡的位置及气动载荷的计算误差较大,随着风速的增大,涡的诱导影响减小,计算值与实验值吻合非常好;稳定偏航时,本文模型能够在不添加任何修正模型的情况下较好地预测偏航引起的尾迹结构的非对称性及周期载荷,从而验证了模型的有效性。
     ⑥对风力机处于变桨、稳态风剪切、极端动态来流等非定常风况时的气动性能计算表明:复杂来流时,转子尾迹会出现瞬时畸变,同时桨叶上的涡在脱落并向下游传输的过程中,需要一定的时间才能使尾迹从一个流态变成另一个流态,导致诱导速度的时间滞后响应,本文的自由尾迹模型能够较好的体现这种滞后响应对气动性能的影响,具有明显的优势。在此基础上,得到了一些有意义的结论,为风力机的优化设计及选型提供支持。
During Horizontal Axis Wind Turbine (HAWT)’s design and checking process, aerodynamic performance prediction is very important. Calculation of blades’aerodynamic performance after the design of aerodynamic shape is an evaluation for design results; conversely, aerodynamic performance results can be used as feedback for the amendment of aerodynamic shape of blades. But the load prediction is very difficult, because HAWT operates in complex natural environment, such as wind shear, variation of wind speed and direction, tower influence and so on. Currently, wind turbine designers rely on safety factors to compensate for the effect of unknown loads acting on the turbine, which results in components that are overdesigned because precise load level and load paths are unknown. In order to advance wind turbine technology, the forces acting on the turbine structure must by accurately characterized.
     When HAWT is rotating, wake vortices are released from blades’trailing edge, form an inboard vortex sheet and rolled up to strong tip vortex. The strength of the vortex is determined by the geometry and motion parameters of airfoils, also the aerodynamic loads on blades, conversely; the induced effect of the vortex changes the velocity field around the rotor, consequently effect the strength of vortex, which means that blades and vortex interference each other. The calculation of the vortex wake is the key factor to wind turbine’s aerodynamic load analysis, and also carry out wind turbine’s aerodynamics research. It also has important scientific and practical significance when in-depth research of vortices wakes. In this paper, a time-marching free wake method was developed to analyze aerodynamic load of HAWT, the major contributions of the author’s word are as follows:
     ①The widely used method in aerodynamic airload prediction of HAWT is blade element theory (BEM theory), but which cannot account for yaw inflow’s influence. Aiming at this shortcoming, vortex cylinder theory is used to replace momentum theory in BEM. Aerodynamic performance of TUDelft based on the modified BEM model is put forward, which shows large error even turbine works at low wind speed and steady yaw condition. So develop a new method for aerodynamic performance prediction of HAWT is urgent needed.
     ②An integrated HAWT rotor wake model is developed by combination of free vortex wake model and blade aerodynamic model. Free vortex wake model is used to represent the wake behind the rotor, and Vatistas turbulence vortex core model, which is suitable for the turbulent effects of tip vortex, is introduced to eliminate numerical singularity of Biot-Savart law. Then a general method used to deduce multi-step differencing scheme is given, and base upon this method, a new 3-step 3-order accurate predictor-corrector with backward difference algorithm—named PC3B is deduced to improve the accuracy of wake solution. On the other hand, blade aerodynamic model is based on Weissinger-L lifting surface model, which can be used to deduce blades bound circulation distribution, tip vortices strength and release point. The integrated rotor wake model is not only suitable for turbine’s aerodynamic performance analysis during steady inflow conditions, but also complex inflow, which is absolutely unsteady.
     ③Using 2-D static airfoil data to calculate airloads on HAWT’s blades will underestimate turbine’s power generation seriously when blades experiencing dynamic stall, so dynamic stall phenomena’s influence must be considered seriously during design and checking process. The Beddoes-Leishman dynamic stall model, which is used for helicopter rotor’s dynamic stall analysis originally, is introduced to HAWT’s dynamic stall model after some modification. Good agreement is obtained between the predictions and the experimental results for pitch oscillations of S809 at several mean angles of attack and reduced frequencies.
     ④The linear stability, accuracy, nonlinear stability and convergence are analyzed by deduced modified equations, which provide key insight into the nonlinear behavior of the numerical solution. Results shows that 3-step 3-order difference algorithm is stable for all values of time discretization, and which introduces extra implicit dissipation that is independent of the velocity gradients. Finally, numerical experiments were performed for a wind turbine to better understand the concept of the nonlinear stability and wake convergence of the time-marching method.
     ⑤The time-marching free wake model is comprehensively validated against experimental measurements for rotor wake geometry and aerodynamic performance of TUDelft and NREL PhaseⅥ, with which operate under axial and yaw inflow condition. The results shows that: when the wind turbine suffers small axial inflow wind, the wake vortex can not be transported to distant places downstream, vortex-vortex interferences are significant, resulting in the blade tip vortex location and aerodynamic loads calculation error, but with wind speed increases, the vortex induced effects on the blade reduce, and the calculated values are good agreement with experimental data; when turbine suffers steady yaw, the present model needn’t any amendments to predict asymmetric wake structure and cyclic loading caused by yaw error, which verify the validity of the free wake model.
     ⑥When wind turbine suffers pitch operation, steady wind shear or extreme dynamic inflow conditions, the aerodynamic performance predicted by the free wake model shows that: there will be instantaneous rotor wake distortion, and the vortex shedding and transmitting to the downstream will take some time to make the wake from one flow pattern into another, resulting in induced velocity response lag, and the free wake model is able to reflect the lagged response of the aerodynamic performance. In additional, wind shear and dynamic inflow will create substantial asymmetries and non-periodicities in the structure of the wake. Conclusions reached by the calculation could support the optimized design and selection of HAWTs.
引文
[1]施鹏飞.从世界发展趋势展望我国风力发电前景[J].中国电力, 2003, 36(9): 56-62.
    [2] S.Sawyer, K.Rave. Wind energy forecast for 2011-2015[R]. Brussels: Global Wind Energy Council, 2010.
    [3]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海口:海南出版社, 2010.
    [4]王承煦,张源.风力发电[M].北京:中国电力出版社, 2002.
    [5]郭新生.风能利用技术[M].北京:化学工业出版社, 2007.
    [6]戴庚,徐璋,皇甫凯林等.垂直轴风力机研究进展[J].流体机械, 2010, 38(10): 39-43.
    [7]姚英学,汤志鹏.垂直轴风力机应用概况及其展望[J].现代制造工程, 2010(03): 136-144.
    [8]金鑫.风力发电机组系统建模与仿真研究[D].重庆:重庆大学, 2007.
    [9]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报, 2005, 26(6).
    [10] J.G.Leishman. Principles of helicopter aerodynamics[M]. New York: Cambridge University Press, 2006.
    [11] H.D.Curin. A dynamic prescribed vortex wake model for the FAST/AeroDyn wind energy conversion simulation code[D]. Reno: University of Nevada, 2007.
    [12]杨瑞.水平轴风力机尾流结构及空气动力学性能的研究[D].兰州:兰州理工大学, 2009.
    [13]胡丹梅.水平轴风力机尾迹气动特性研究[D].上海:上海交通大学, 2007.
    [14] J.G.Leishman. Challenges in modeling the unsteady aerodynamics of wind turbines[J]. Wind Energy, 2002, 5(2): 85-132.
    [15] D.Simms, S.Schreck, M.Hand, L.J.Fingersh. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements[R]. Colorado: National Renewable Energy Laboratory, NREL/TP-500-29494, 2001.
    [16] M.J.Bhagwat, J.G.Leishman. Time-accurate modeling of rotor wakes using a free-vortex wake method[C]. Denver: 18th AIAA Applied Aerodynamics Conference, 2000.
    [17] R.H.Miller, D.B.Bliss. Direct periodic solutions of rotor free wake calculations[J]. Journal of American Helicopter Society, 1993, 38(2).
    [18] A.J.Landgrebe. An analytical method for predicting rotor wake geometry[C]. Atlanta: AIAA/AHS VTOL Research, Design & Operations Meeting, 1969.
    [19] S.G.Sadler. A method for predicting helicopter wake geometry, wake induced inflow and wake effects on blade airloads[C]. Washington, DC: American Helicopter Society 27th Annual National Forum, 1971.
    [20] J.Whale, K.H.Papadopoulos, C.G.Anderson, C.G.Helmis, D.J.Skyner. A study of the nearwake structure of a wind turbine comparing measurements from laboratory and full-scale experiments[J]. Solar Energy, 1996, 56(6): 621-633.
    [21]高志鹰,汪建文,东雪青,韩晓亮,白杨,由志刚.水平轴风力机叶尖涡流动的PIV测试[J].工程热物理学报, 2010, 31(3): 414-418.
    [22]胡丹梅,田杰.水平轴风力机尾迹的测量与分析[J].动力工程, 2006, 26(5): 751-755.
    [23]王芳,王同光.基于涡尾迹方法的风力机非定常气动特性计算[J].太阳能学报, 2009, 30(9): 1286-1291.
    [24] L.J.Vermeer, J.N.Sorensen, A.Crespo. Wind turbine wake aerodynamics[J]. Progress In Aerospace Sciences, 2003, 39(6-7): 467-510.
    [25] M.M.Hand, D.A.Simms. Unsteady aerodynamic experiment PhaseⅥ: wind tunnel test configurations and available data campaigns[R]. Golden: National Renewable Energy Laboratory, NREL TP-500-29955, 2001.
    [26] J.G.Schepers, H.Snel. Model experiments in controlled conditions[R]. Dutch, NL: Energy Research Centre of the Netherlands, ECN-E-07-042, 2007.
    [27] A.P.H, J.A.Dahlberg. A preliminary wind tunnel study of windmill wake dispersion in various flow conditions [R]. Stockholm: The Aeronautical Research Institute of Sweden, FFA- AU-1499, Part 7, 1979.
    [28] A.P.H, J.A.Dahlberg. Measurements of wake interaction effects on power output from small wind turbine models[R]. Stockholm: The Aeronautical Research Institute of Sweden, FFA-HU-2189, Part 5, 1981.
    [29] L.J.Vermeer. A review of wind turbine wake research at TUDelft[C]. New York: 2001 ASME Wind Energy Symposium, 2001.
    [30] Y.Shimizu, Y.Kamada. Studies on a horizontal axis wind turbine with passive pitch-flap mechanism(Performance and flow analysis around wind turbine)[J]. Journal of Fluid Engineering, 2001, 123(3): 516-522.
    [31] G.P.Corten. Visualization of the stalled area on large wind turbine blades[C]. Sweden: European Union Wind Energy Conference, 1996.
    [32] G.P.Corten, H.F.Veldkamp. Visualization of the stalled area on large wind turbine blades[J]. Nature, 2001, 412(5): 41-42.
    [33] L.J.Vermeer. Video recordings of root vortex flow visualization. Unpublished video material, 2002.
    [34] M.A.Kotb, H.A.Soliman. Peformance aanylsis of a horizontal axis wind turbine under nonuniform flow with swirl[J]. Journal of wind energy and industrial aerodynamics, 1991, 37(1): 103-111.
    [35] P.Vermeulen. A wind tunnel study of the wake of a horizontal axis wind turbine[R]. Netherlands: TNO's Gravenhage, 78-09674, 1978.
    [36] J.Whale, C.G.Anderson, R.Bareiss, S.Wagner. An experimental and numerical study of the vortex structure in the wake of a wind turbine[J]. Journal of wind energy and industrial aerodynamics, 2000, 84(1): 1-21.
    [37] E.H.M.Mast. Estimating the circulation distribution using near wake velocity measurements [D]. Delft: Delft University of Technology, 2003.
    [38] I.Grant, M.Mo, X.Pan, P.Parkin, J.Powell, H.Reinecke, K.Shuang, F.Coton, D.Lee. An experimental and numerical study of the vortex filaments in the wake of an operational, horizontal-axis, wind turbine[J]. Journal of wind energy and industrial aerodynamics, 2000, 85(2): 177-189.
    [39] F.Rasmussen, M.H.Hansen. Present status of aeroelasticity of wind turbines[J]. Wind Energy, 2003, 6(3): 213-228.
    [40]杜朝晖.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型-II.模型改进[J].太阳能学报, 2000, 21(2): 145-150.
    [41] W.Castles, L.Durham. Distribution of normal component of induced velocity in lateral plane of a lifting rotor[R]. Washington: National Advisory Committee for Aeronautics, 1956.
    [42] W.Shicun. Generalized vortex theory of the lifting rotor of helicopter[R]. AD 286576, 1961.
    [43] H.H.Heyson, S.Katzoff. Induced velocities near a lifting rotor with nonuniform disc loading[R]. Washington: National Advisory Committee for Aeronautics, TR-1319, 1957.
    [44] W.Castles, H.L.Deleeuw. The normal component of the induced velocity in the vicinity of a lifting rotor and some examples of its application[R]. Washington: National Advisory Committee for Aeronautics, TR 1184, 1954.
    [45] N.Sezer-Uzol, L.N.Long. High-accuracy wake and vortex simulations using a hybrid euler/discrete vortex method[C]. Hawaii: Proceeding of the 6th AIAA/CEAS Aeroacoustics Conference, 2000.
    [46] J.Katz, A.Plotkin. Low-speed aerodynamics:from wing theory to panel methods[M]. New York: McGraw-Hill, Inc., 1991.
    [47] H.C.Curtiss. The influence of the rotor wake on rotorcraft stability and control[C]. Amsterdam: Proceedings of the 15th European Rotorcraft Forum, 1989.
    [48]黄水林,李春华,徐国华.基于自由尾迹和升力面分析的双旋翼悬停气动干扰计算[J].空气动力学学报, 2005, 25(3): 390-395.
    [49]高正.直升机空气动力学的新成果[M].北京:航空工业出版社, 1999.
    [50]徐国华.应用自由尾迹分析新型桨尖旋翼气动特性研究[D].南京:南京航空航天大学,1996.
    [51] A.Bagai, J.G.Leighman. Rotor free-wake modeling using a psuedoimplicit relaxation algorithm[J]. Journal of Aircraft., 1995, 32(6): 1276-1285.
    [52] D.R.Clark, A.C.Leiper. The free wake analysis-a method for prediction of helicopter rotor hovering performance[J]. Journal of the American Helicopter Society, 1970, 15(1): 3-11.
    [53]李春华.时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析[D].南京:南京航空航天大学, 2007.
    [54] M.P.Scully. Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads[R]. Cambridge: Massachusetts Institute of Technology,ASRL-178-1, 1975.
    [55] W.A.Johnson. General free wake geometry calculation for wings and rotors[C]. FT.Worth, TX: Proceedings of the American Helicopter Society 51st Annual Forum, 1995.
    [56] R.H.Miller. A simplified approach to the free wake analysis of a hovering rotor[C]. Germany: DGLR Seventh European Rotorcraft and Powered Lift Aircraft Forum, 1981.
    [57] T.Nagashima,K.Nakanishi.Optimum performance and wake geometry of co-axial rotor in hover[C].Federal Republic of Germany:Proceedings of 7th European Rotorcraft Forum, 1981.
    [58] J.G.L.Crouse, J.G.Leishman. A new method for improved rotor free wake convergence[C]. Reno, NV: 31st AIAA Aerospace Sciences Meeting and Exhibit, 1993.
    [59] J.D. Berry. Prediction of time-dependent fuselage pressures in the wake of a helicopter rotor[C]. Collage Park: Proceedings of 2nd International Conference on Basic Rotorcraft Research, 1988.
    [60] D.B.Bliss, W.O.Miller. Efficient free wake calculations using analytical/numerical matching[J]. Journal of the American Helicopter Society, 1993, 38(2): 43-52.
    [61] T.R.Quackenbush, C.M.G.Lam, D.A.Wachspress. Analysis of high resolution unsteady airloads for helicopter rotor blades[C]. Washington: Proceedings of the American Helicopter Society 50th Annual Forum, 1994.
    [62] M.M.Soliman. A force-free rotor wake model for advanced research applications[C]. Brighton, UK: Proceedings of 22nd European Rotorcraft Forum, 1996.
    [63] T.Sant. Improving BEM-based aerodynamic models in wind turbine design codes[D]. Malta: University of Malta, 2007.
    [64] S.Gupta. Development of a time-accurate viscous Lagrangian vortex wake model for wind turbine applications[D]. Maryland: University of Maryland, 2006.
    [65]沈昕,竺晓程,杜朝辉.两种自由尾迹模型在风力机气动性能预测中的应用[J].太阳能学报, 2010, 31(7):923-927.
    [66]沈昕.水平轴风力机气动性能预测[D].上海:上海交通大学, 2007.
    [67]胡国才,向锦武,张晓谷.直升机旋翼/机体耦合非线性系统的动稳定性分析[J].中国航空学报(英文版), 2003, 16(1): 22-28.
    [68]徐国华,招启军.直升机旋翼计算流体力学的研究进展[J].南京航空航天大学学报, 2003, 35(3): 338-344.
    [69]招启军,徐国华.新型桨尖旋翼悬停气动性能试验及数值研究[J].航空学报, 2009, 30(3).
    [70] M.J.Barnsley, J.F.Wellicome. Wind tunnel investigation of stall aerodynamics of a 1.0m horizontal rotor[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 39(1-3).
    [71] J.C.Narramore, R.Vermelandt. Navier-Stokes calculations of inboard stall delay due to rotation[J]. Journal of Aircraft, 1992, 29(1): 73-78.
    [72] J.A.Ekaternaris, M.F.Plater. Computational prediction of airfoil dynamic stall[J]. Progress in Aerospace Science, 1998, 33(12-12): 759-846.
    [73] E.P.N.Duque, C.P.Van Dam. Navier-Stokes simulation of the NREL combined experiment Phase II rotor[C]. Reno:34th AIAA Aerospace Sciences Meeting, 1999.
    [74] S.G.Voutsinas, J.P.Glekas, A.Zervos. Investigation of the effect of the initial velocity profile on the wake development of a wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 39(1-3): 293-301.
    [75] G.Xu, L.N.Sankar. Computational study of horizontal axis wind turbines[J]. Journal of Solar Energy Engineering, 2000, 122(1): 35-39.
    [76] G.Xu, L.N.Sankar. Application of a viscous flow methodology to the NREL Phase VI rotor[C]. ASME Conference Proceedings, 2002, 2002(7476X): 83-93.
    [77] J.N.Sorensen, W.Z.Shen. Numerical modeling of wind turbine wakes[J]. Journal of Fluid Engineering-Transactions of the ASME, 2002, 124(2): 393-399.
    [78] F.R.Menter, R.B.Langtry, S.R.Likki, Y.B.Suzen, P.G.Huang, S.Volker. A correlation-based transition model using local variables---Part I: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422.
    [79] F.Menter, P.Sharkey, S.Yakubov, M.Kuntz. Overview of gluid-dtructure voupling in ANSYS-CFX[C]. ASME Conference Proceedings, 2006, 2006(47497): 579-585.
    [80] J.Johansen, N.N.Sorensen, J.A.Michelsen, S.Schreck. Detached-eddy simulation of flow around the NREL Phase VI blade[C]. ASME Conference Proceedings, 2002, 2002(7476X).
    [81] P.R.Spalart. Strategies for turbulence modeling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263.
    [82] R.Michel. Etude de la Transition sur les Profiles d'Ailes[R]. Toulouse,FR: ONERA Rept.1/1578A, 1951.
    [83] H.W.Stock, E.Degenhart. A simplified eN method for transition prediction in two dimensional incompressible boundary layers[J]. Zeitschrift fuer Flugwissenschaften undWeltraumforschung, 1989, 13: 16-30.
    [84] J.A.Michelsen, N.N.Sorensen. Current developments in Navier-Stokes modeling of wind turbine rotor flow[C]. Copenhagen: Proceedings from EWEC 2001, 2001.
    [85] J.Johansen, N.N.Sorensen. Prediction of laminar/turbulent transition in airfoil flows[J]. Journal of Aircraft, 1999, 36(4): 731-734.
    [86] R.R.Brodeur, C.P.vAN Dam. Transition prediction for a two dimension Navier-Stokes solver applied to wind turbine airfoils[J]. Wind Energy, 2000, 4(2): 61-75.
    [87]符松,王亮.湍流转捩模式研究进展[J].气体物理-理论与应用, 2006, 1(2): 94-102.
    [88]肖中天.旋翼流场数值模拟方法研究[D].绵阳:中国空气动力研究与发展中心, 2007.
    [89]伍艳,谢华.风力机叶片的非定常气动特性计算方法的改进[J].工程力学, 2008(10).
    [90]雷延生,周正贵.风力机振荡翼型动态失速特性的CFD研究[J].太阳能学报, 2010, 31(03).
    [91]查顾兵,竺晓程,沈昕等.水平轴风力机在偏航情况下动态失速模型分析[J].太阳能学报, 2009, 30(9).
    [92]李岩,原豐.基于叶素动量复合理论的小型风力机设计与实验[J].农机化研究, 2009(9).
    [93]赵峰,段巍.基于叶素-动量理论及有限元方法的风力机叶片载荷分析和强度计算[J].机械设计与制造, 2010(08).
    [94] R.E.Wilson, P.B.S.Lissaman. Aerodynamic performance of wind turbines[M]. Department of Mechanical Engineering: Oregon State University, 1976.
    [95] H.Glauert. The analysis of experimental results in the windmill brake and vortex ring states of an airscrew[R]. Report and Memoranda, 1926.
    [96] C.N.H.Lock, H.Bateman. An extension of the vortex theory of airscrews with applications to airscrews of small pitch including experimental results[J]. ARC R&M, 1926:1026.
    [97] L.Prandtl. Applied hydro and aeromechanics[M]. New York: Dover Publications, 1957.
    [98] T.Burton, D.Sharp, N.Jenkins. Wind energy handbook[M]. New York: Wiley & Sons, 2001.
    [99] H.Glauert. A general theory of the autogyro[J]. ARCR R&M. 1926:1111.
    [100] R.P.Coleman, A.M.Feingold, C.W.Stempin. Evaluation of the induced velocity field of an idealized helicopter rotor[R]. Langley: National Aeronautics and Space Administration, NACA-ARR-L5E10, 1945.
    [101] S.Oye. Induced velocities for rotors in yaw[C]. Holland: Proceedings of the Sixth IEA Symposium, 1992.
    [102] W.Haans, T.Sant. HAWT near-wake aerodynamics,Part I: axial flow conditions.[J]. Wind Energy, 2008, 11: 245-264.
    [103]楼武疆,王适存.直升机旋翼尾迹研究的进展[J].航空学报, 1990, 11(3): 113-119.
    [104] A.J.Landgrebe. Overview of helicopter wake and airloads technology[C]. SecondInternational Conference on Rotorcraft Basic Research, 1988.
    [105] F.N.Conton, T.Wang. The prediction of horizontal wind turbine performance in yawed flow using an unsteady prescribed wake model[J]. Journal of Power and Energy, 1999.
    [106] D.Korcurek. Lifting surface performance analysis for horizontal wind axis turbines[R]. Golden: SERI, STR217-3613, 1987.
    [107]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998.
    [108] P.G.Saffman. Vortex dynamics[M]. New York: Cambridge University Press, 1992.
    [109] H.Lamb. Hydrodynamics[M]. New York: Cambridge University Press, 1936.
    [110] M.P.Scully. A method of computing helicopter vortex wake distortion[R]. Boston: Massachusetts Institute of Technology, ASRL TR 138-1, 1967.
    [111] G.H.Vatistas, V Kozel, W.C.Mih. A simpler model for concentrated vortices[J]. Experiments in Fluids, 1991, 11: 73-76.
    [112] A.Bagai, J.G.Leishman. Flow visualization of compressible vortex structures using density gradient techniques[J]. Experiments in Fluids, 1993, 15: 431-442.
    [113] G.H.Vatistas. Simple model for turbulent tip vortices[J]. Journal of Aircraft, 2006, 43(5).
    [114] I.Dobrev, B.Maalouf, N.Troldborg, F.Massouh. Investigation of the wind turbine vortex structure[C]. Lisbon:14th Int Symp on Applications of the Laser Techniques to Fluid Mechanics, 2008.
    [115] M.J.Bhagwat. Transient dynamics of helicopter rotor wakes using a time-accurate free-vortex method[D]. Maryland: University of Maryland, 2001.
    [116] S.Ananthan, J.G.Leishman, M.Ramasamy. The role of filament stretching in the free-vortex modelling of rotor wake[C]. Montreal, Canada:58th Annual Forum and Technology Display of the American Helicopter Society International, 2002.
    [117] M.J.Bhagwat, J.G.Leishman. Generalized viscous vortex model for application to free-wake and aeroacoustic calculations[C]. Montreal, Canada:58th Annual Forum and Technology Display of the American Helicopter Society International, 2002.
    [118]杨大地,涂光裕.数值分析[M].重庆:重庆大学出版社, 1998.
    [119] J.G.Leishman, T.S.Beddoes. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3): 3-17.
    [120] J.Weissinger. The lift distribution of swept-blade winds[R]. Washington:National Advisory Committee for Aeronautics, NACA TM 1120, 1947.
    [121] S.Ananthan. Analysis of rotor wake aerodynamics during maneuvering flight using a free-vortex wake methodology[D]. Maryland: University of Maryland, 2006.
    [122] L.Tauszig. Numerical detection and characterization of blade vortex interactions using a freewake analysis[D]. Pennsylvania: Pennsylvania State University, 1998.
    [123] R.R.Ramsay, M.J.Hoffman, G.M.Geregorek. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. Golden: National Renewable Energy Laboratory,TP-442-7817, 1995.
    [124] P.Moriarty, A.C.Hansen. AeroDyn theory manual[R]. Golden: National Renewable Energy Laboratory, NREL/EL-500-36881, 2005.
    [125] B.Thwaites. Incompressible aerodynamics[M]. New York: Dover Publications, 1987.
    [126] J.G.Leishman, T.S.Beddoes. A generalized model for airfoil unsteady behavior and dynamic stall using the indicial method[C]. Washington: Proceedings from the 42nd Annual Forum of the American Helicopter Society, 1986.
    [127] J.G.Leishman, T.S.Beddoes. Modeling sweep effects on dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3): 18-29.
    [128] J.G.Leishman. Validation of approximate indicial aerodynamic functions for two-dimension subsonic flow[J]. Journal of Aircraft, 1988, 20(10).
    [129] W.J.McCroskey, K.W.McAlister, S.L.Carr, S.L.Pucci. An experimental study of dynamic stall on advanced airfoil sections[R]. Washington: National Advisory Committee for Aeronautics, NASA TM-84245, 1982.
    [130]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社, 2001.
    [131] M.J.Bhagwat, J.G.Leishman. Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms[J]. Journal of the American Helicopter Society,2001, 46(1).
    [132] D.H.Wood, D.Li. Assessment of accuracy of representing a helical vortex by straight segments[J]. AIAA Journal, 2002, 40(4): 647-651.
    [133] R.I.Lewis. Vortex element methods for fluid dynamic-an analysis of engineering systems[M]. New York: Cambridge University Press, 1991.
    [134]李庆扬,关治,白峰杉.数值计算原理[M].清华大学出版社:北京, 2000.
    [135]任玉欣,陈海昕.计算流体力学基础[M].北京:清华大学出版社, 2006.
    [136] P.Giguere, M.S.Selig. Design of a tapered and twisted blade for NREL combined experiment rotor[R]. Colorado: National Renewable Energy Laboratory, NREL/SR-500-26173, 1999.
    [137] A.Suzuki. Application of dynamic inflow theory to wind turbine rotors[D]. Salt Lake City: University of Utah, 2000.
    [138] N.Sezer-Uzol, L.N.Long. 3-D time-accurate CFD simulaitons of wind turbine rotor flow fields[C]. Reno, NV: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
    [139] L.A.Viterna, R.D.Corrigan. Fixed-pitch rotor performance of large HAWTs[C]. Cleveland: DOS/NASA Workshop on Large HAWTs, 1981.
    [140] J.J.Corrigan, J.J.Schillings. Empirical model for stall delay due to rotation[C]. San Francisco:Proceeding of the American Helicopter Society Aeromechanics Specialists Conference, 1994.
    [141] Z.Du, M.Selig. A 3-D stall delay model for horizontal axis wind turbine performance prediction[C]. Reno: Proceedings of the 17th ASME Wind Energy Symposium and the 36th AIAA Aerospace Sciences Meeting, 1998.
    [142] N.V.Raj. An improved semi-empirical for 3-D post-stall effects in horizontal axis wind turbines[D]. Urbana Champaign,IL:University of Illinois at Urbana Champaign, 2000.
    [143]李媛,毛竹.风力发电机组载荷计算中的极端风况分析[J].沈阳工业大学学报, 2008, 30(4): 409-413.
    [144] International Electrotechnical Commission. IEC 61400-1 Wind Turbines, Part 1: Design Requirements[S]. Hamburg, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700