梯度陶瓷喷嘴的设计理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据陶瓷喷嘴冲蚀磨损特性和梯度功能材料的优异性能,基于梯度功能的技术思想,首次将梯度功能材料的概念引入陶瓷喷嘴的设计及制造,提出梯度陶瓷喷嘴的设计理论和方法,研制开发出具有高性能、长寿命的SiC/(W,Ti)C梯度陶瓷喷嘴,并探索其冲蚀磨损机理。
     对喷嘴内磨料速度场和应力场进行了分析,揭示了喷嘴冲蚀磨损的力学机理。结合陶瓷喷嘴的冲蚀磨损特点和应力状态,提出梯度陶瓷喷嘴的设计理论和方法。建立了梯度陶瓷喷嘴的物理模型、组成分布模型及物性参数模型。
     提出了梯度陶瓷喷嘴材料设计目标,通过对梯度陶瓷喷嘴材料的物理化学相容性分析计算,确定了SiC/(W,Ti)C材料体系及其各组分的极限体积含量。建立了梯度陶瓷喷嘴残余应力分析模型,采用热-应力耦合方法深入分析了GN-1单向梯度陶瓷喷嘴和GN-2对称梯度陶瓷喷嘴的残余应力及其分布规律。结果表明:GN-1和GN-2梯度陶瓷喷嘴入口或出口处均产生了残余压应力。通过理论分析初步确定SiC/(W,Ti)C梯度陶瓷喷嘴最佳组成分布指数范围为0.5~1,最佳梯度层厚5mm,各梯度层SiC组分差应小于5Vol.%。
     对不同结构的梯度陶瓷喷嘴内的磨料运动及应力分布规律进行了研究。得出梯度陶瓷喷嘴最佳入口锥角为15°~20°,该入口锥角范围的梯度陶瓷喷嘴的磨料出口速度最高,且喷嘴应力最小。
     研制成功了多种SiC/(W,Ti)C梯度陶瓷喷嘴材料,试验确定了SiC/(W,Ti)C梯度陶瓷喷嘴材料的最佳热压工艺参数为:烧结温度1900℃,保温时间40min,烧结压力30MPa;最佳组成分布指数范围为0.5~0.8,各梯度层最佳SiC组分差为2Vol.%,试验结果与理论分析结果吻合。
     全面系统研究了梯度与非梯度陶瓷喷嘴材料的力学性能,梯度陶瓷喷嘴材料的力学性能随梯度层不同而异,其变化规律为梯度陶瓷喷嘴材料表层的硬度和断
The idea of functionally gradient material (FGM) theory was used to design of ceramic nozzle based on the erosion wear behaviors of the ceramic nozzles and on the outstanding properties of FGMs. The purpose is to reduce the tensile stress at the entry region of the nozzle during sand blasting processes. The design theory and methods of gradient ceramic nozzle were proposed. SiC/(W,Ti)C gradient ceramic nozzles with high performance and long life have been successfully developed by hot pressing. The erosion wear mechanisms of these gradient ceramic nozzles were investigated.
    The velocity of the abrasives particles and the stress inside the ceramic nozzle were analyzed. The mechanics mechanisms of the erosion wear of the ceramic nozzle was presented. The design theory and methods of gradient ceramic nozzle were proposed based on the erosion wear behavior and stress status of the ceramic nozzles. The physical, composition distribution, and property parameter models of gradient ceramic nozzle were established.
    The aim of the design for gradient ceramic nozzle was proposed. The ultimate content of SiC and (W,Ti)C inside SiC/(W,Ti)C gradient nozzle materials were determined based on the physical and chemical compatibility analysis. Finite element models for residual stress analysis were established, and the residual stress statuses inside GN-1 and GN-2 gradient nozzle were analyzed. Results showed that compressive residual stresses were appeared both at the entry zone and at the exit area of the gradient nozzle. The optimum parameters of the component distribution exponent, the layer thickness, and the volume difference of SiC in various gradient layers of the SiC/(W,Ti)C
引文
1. Deng Jianxin, Taichiu Lee. Techniques for improved surface integrity and reliability of machined ceramic composites. Surface Engineering. 2000, 16 (5): 411-414
    2. A. Raykowski, M. Hader, B. Maragno, J. K. Spelt. Blast cleaning of gas turn in components: deposit removal and substrate deformation. Wear. 2001, 249 (1-2): 126-131
    3.任建新.物理清洗.北京:化学工业出版社,2000
    4.李诗卓,董祥林.材料的冲蚀磨损与微动磨损.北京:机械工业出版社,1987
    5. I. Finnie. Erosion of surface by solid particles. Wear, 1960, (3): 87-103
    6.康进兴,赵文轸,朱金华.材料抗冲蚀性的研究进展.材料保护.2001,34(10):22-23
    7.沈国良.喷丸清理技术.北京:化学工业出版社,2004
    8.孙家枢.金属的磨损.北京:冶金工业出版社,1986
    9.林福严,曲敬信,陈华辉.磨损理论与抗磨技术.北京:科学出版社,1993
    10.艾兴,萧红.陶瓷刀具切削加工.北京:机械工业出版社,1988
    11.曾德麟.粉末冶金材料.北京:冶金工业出版社,1969
    12.肖诗纲.刀具材料及其合理选择(第二版).北京:机械工业出版社,1990
    13.M.V.斯温.郭景坤译.陶瓷的结构与性能.北京:科学出版社,1998
    14.潭毅,李敬锋.新材料概论.北京:冶金工业出版社,2004
    15.潘牧,罗志平.材料的冲蚀问题.材料科学与工程.1999,17(3):92-96
    16. Nanduri, Madhusarathi. Wear characterization of abrasive water jet nozzles and nozzle materials. Ph.D. Thesis. University of Rhode Island, 1997
    17. Goney, Kayhan Halil. Investigations of internal nozzle multiphase flow and its effects on diesel sprays. Ph.D. Thesis. The University of Wisconsin-Madison, 1999
    18.侯凌云,侯晓春.喷嘴技术手册.北京:中国石化出版社,2002
    19.李成贤.喷砂在零件表面处理中的应用.材料保护.1994,27(8):78-81
    20. Deng Jianxin, Zhou Jun, Feng Yihua, Ding Zeliang. Microstructure and mechanical properties of hot-pressed B_4C/(W, Ti)C ceramic composites. Ceramics International. 2002, 28 (4): 425-430
    21.牟军,郦剑.金属及陶瓷材料冲蚀研究的进展.材料科学与工程.1994,12(2):9-15
    22.沈志坚,方中华,丁子上.几类典型结构陶瓷材料的冲蚀磨损行为研究.硅酸盐学报.1993, 21(5):385-392
    23.邓建新,艾兴.SiC_w增韧Al_2O_3/TiB_2陶瓷复合材料的研究.硅酸盐学报,1995,23(4):385-391
    24.邓建新,李兆前,艾兴.晶须的取向对Al_2O_3/SiC_w陶瓷刀具材料的力学和切削性能的影响.硅酸盐学报,1995,23(2):141-145
    25.邓建新,艾兴.SiC晶须增韧Al_2O_3陶瓷组成优化及其断裂行为的研究.材料科学与工程.1995,13(1):33-37
    26.邓建新,周军.B_4C/(W,Ti)C陶瓷复合材料的制备及其性能.硅酸盐通报.2002,21(1):16-20
    27. Deng Jianxin. Friction and wear behaviour of Al_2O_3/TiB_2/SiC_w ceramic composites at temperatures up to 800℃. Ceramics International. 2001, 27 (2): 135-141
    28.茅东升,郭绍义,郦剑等.SiC陶瓷的冲蚀磨损耐磨性.材料研究学报.1998,12(4):411-414
    29.张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展.航空制造技术.2003,(1):24-32
    30.陈波,凌志达,钱光人.SiC材料的制备及生成反应的分析.西南工学院学报.1999,14(41):33-37
    31.黄清伟,高积强,金志浩.反应烧结碳化硅材料研究进展.兵器材料科学与工艺.1999,22(1):49-54
    32.徐利华.多元系复相陶瓷力学性能及冲蚀磨损机理.博士学位论文.杭州:浙江大学,1994
    33.郭大展,王良建,李汾兰.氮化硅陶瓷冲蚀磨损特性研究.硅酸盐通报.1995,(2):22-26
    34. G. L. Sheldon, I. Finnie. On the ductile behavior of nominally brittle materials during erosive cutting. Tans ASME. 1966, 88 (B):387-392
    35. K. A. Schwetz, L. S. Sigl, J. Greim, H. Knoch. Wear of boron carbide ceramics by abrasive water jets. Wear. 1995, 181-183 (1): 148-155
    36. S. M. Wiederhorn, B. H. Hockey. Effect of material parameters on the erosion resistance of brittle materials. Journal of Materials Science. 1983, 18: 766-780
    37. S. Srinivasa, R. O. Scatterrgood. Effect of erodent hardness on erosion of brittle materials. Wear. 1988, 128 (1): 115-139
    38. S. Bouzid, N. Bouaouadja. Effect of impact angle on glass surfaces eroded by sand blasting. Journal of the European Ceramic Society. 2000, 20 (5): 481-488
    39. S. Beltaos, N. Rajaratnam. Impinging circular turbulent jets. J. Hydraulics Div., Proc. ASCE. 1976, 102 (HY9): 1177-1192
    40. A. J. Burnet, S. R. De Silva, A. R. Reed. Comparision between sand blast and centripetal effect accelerator type erosion testers. Wear. 1995, 186-187 (1): 168-178
    41. M. Dunder, O. T. Inal, J. Stringer. The effect of particle size on the erosion of ductile material at the low particle size limit. Wear. 1999, 233-235:727-736
    42. G. T. Burstein, K. Sasaki. Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel. Wear. 2000, 240 (1-2): 80-94
    43. A. V. Levy, P. Chik. The effects of composition and shape on the erosion of steel. Wear. 1983, 89 (1): 151-162
    44. I. Finnie, G. R. Stevick, J. R. Ridgely. The influence of impingement angle on the erosion of ductile metals by angular abrasive particles. Wear. 1992, 152 (1): 91-97
    45. S.K. Li, J. A. C. Humphrey, A. V. Levy. Erosive wear of ductile metals by a particle-laden high velocity liquid-jet. Wear. 1981, 73 (2): 295-309
    46. L. Kahlman, K. M. C. Ojmertz, L. K. L. Falk. Abrasive-water jet testing of thermo-mechanical wear of ceramics. Wear. 2001, 248 (3): 16-28
    47. W. Tabakoff. High-Temperature Erosion Resistance of Coatings for Use in Turbo machinery. Wear. 1995, 186-187 (1): 224-229
    48. U. Beste, L. Hammerstrom, H. Engqvist, S. Rimlinger, S. Jacobson. Particle erosion of cemented carbides with low Co content. Wear. 2001, 250 (3): 809-817
    49. K. Shimizu, T. Noguchi, H. Seitoh, E. Muranaka. FEM analysis of the dependency on impact angle during erosive wear. Wear. 1999, 233-235:157-159
    50. Z. Feng, A. Ball. The erosion of four materials using seven erodents-towards an understanding. Wear. 1999, 233-235:674-684
    51. M. Gustavsson. Fluid dynamic mechanisms of particle flow causing ductile and brittle erosion. Wear. 2002, 252 (11-12): 845-858
    52. Q. Fang, H. Xu, P. S. Sidky, M. G. Hocking. Erosion of ceramic materials by a sand/water slurry jet. Wear. 1999, 224 (1-2): 183-193
    53. S. Lathabai, D. C. Pender. Microstructural influence in slurry erosion of ceramics. Wear. 1995, 189 (1-2): 122-135
    54. J. L. Routbort, R. O. Scattergood. Anomalous solid-particle erosion rate of hot-pressed silicon. Wear. 1981, 67 (2): 227-232
    55. G. E. D. Errico, S. Bugliosi, D. Cuppini. Erosion of ceramics and cermets. Journal of Materials Processing Technology. 2001, 118 (1-3): 448-453
    56. R. Zibbell, E. Ness. Abrasion and erosion of hard materials related to wear in the abrasive water jet. Wear. 1996, 196 (1-2): 120-125
    57. Taichiu Lee, Deng Jianxin. Ultrasonic erosion of whisker-reinforced ceramic composites. Ceramics International. 2001, 27 (7): 755-760
    58. I. Y. Oka, H. Ohnogi. The impact angle dependence of erosion damage caused by solid particle impact. Wear. 1997, 203-204:573-579
    59. M. Lesser. Thirty years of liquid impact research-A tutorial review. Wear. 1995, 186-187 (1): 28-34
    60. P. M. Rogers. I. M. Hutchings. J. A. Little. Coatings and Surface Treatments for Protection against Low-Velocity Erosion in Fluidized Beds. Wear. 1995, 186-187 (1): 238-246
    61. P. H. Shipway, I. M. Hutchings. The influence of particle properties on the erosive wear of sintered boron carbide. Wear. 1991, 149 (1): 85-98
    62. I. Finnie, D. H. Mcfadden. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence. Wear. 1978, 48 (1): 181-187
    63. S. L. Palasamudram, S. Bahadur. Partical characterization for angularity and the effects of particle size and angularity on erosion in a fluidized bed environment. Wear. 1997, 203-204: 455-463
    64. H. M. I. Clark, K. K. Wong. Impact angle, particle energy and mass loss in erosion by dilute slurries. Wear. 1995, 186-187 (2): 454-464
    65. A. V. Levy, P. Chik. The effects of composition and shape on the erosion of steel. Wear. 1983, 89 (1):151-162
    66.刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    67.邵荷生,曲敬信,许小棣等.摩擦与磨损.北京:煤炭工业出版社,1992
    68. L. Ham, J. A. Yeomans, J. F. Watts. Effect of temperature and particle velocity on the erosion of a silicon carbide continuous fibre reinforced calcium aluminosilicate glass-ceramic matrix composite. Wear. 1999, 233-235:237-245
    69. J. E. Reaugh, A. C. Holt, M. L. Wilkins. Impact Studies of Five Ceramic Materials and Pyrex. International Journal of Impact Engineering. 1999, 23 (1): 771-782
    70. Y. I. Oka, M. Nishimura, K. Nagahashi, M. Matsumura. Control and evaluation of particle impact conditions in a sand erosion test facility. Wear. 2001, 250 (1-12): 736-743
    71. Y. Ballout, J. A. Mathis, J. E. Talia. Solid particle erosion mechanism in glass. Wear. 1996, 196 (1-2): 263-269
    72. J. Zhou, S. Bahadur. Erosion characteristics of alumina ceramics at high temperatures. Wear. 1995, 181-183 (3): 178-188
    73. M. Wakuda, Y. Yamauchi, S. Kanzaki. Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials. Precision Engineering. 2002, 26 (2): 193-198
    74. H. E. Eaton, R. C. Novak. Particulate Erosion of Plasma-Sprayed Porous Ceramic. Surface and Coatings Technology. 1987, 30 (1): 41-50
    75. S. Lathabai. The effect of grain size on the slurry erosive wear of Ce-TZP ceramics. Scripta Materialia. 2000, 43 (5): 465-470
    76. H. M. Clark, B. R. Hartwich. A re-examination of the 'particle size effect' in slurry erosion. Wear. 2001, 248 (2): 147-161
    77. M. Hashish. Observations of wear of abrasive-water jet nozzle materials. Journal of Tribology. 1994, 116 (3): 439-444
    78. M. A. Verspui, G. de, A. Corbijn, P. J. Slik kerveer. Simulation model for the erosion of brittle material. Wear. 1999, 233-235:436-443
    79. R. J. K. Wood, D. W. Wheeler, D. C. Lejeau. Sand erosion performance of CVD boron carbide coated tungsten carbide. Wear. 1999, 233-235:134-150
    80. Q. Fang, P. S. Sidky, M. G. Hocking. The effect of corrosion and erosion on ceramic materials. Corrosion Science. 1997, 39 (3): 511-527
    81. J. L. Routbort, R. O. Scattergood. Anomalous solid-particle erosion rate of hot-pressed silicon. Wear. 1981, 67 (2): 227-232
    82. R. J. K. Wood, D. W. Wheeler. Design and performance of a high velocity air-sand jet impingement erosion facility. Wear 1998, 220 (2): 95-112
    83. A.N.J. Stevenson, I. M. Hutchings. The influence of nozzle length on the divergence of the erodent particle stream in a gas-blast erosion rig. Wear. 1995, 189 (1-2): 66-69
    84. L. G. Yu, S. Bahadur, Q. J. Xue. An investigation of the friction and wear behaviors of ceramic particle filled polyphenylene sulfide composites. Wear. 1998, 214 (1): 54-63
    85. D. W. Wheeler, R. J. K. Wood. Solid particle erosion of CVD diamond coatings. Wear. 1999, 233-235:306-318
    86. A. V. Levy, B. Q. Wang. Erosion of Hard Material Coating Systems. Wear. 1988, 121 (2): 325-346
    87. R. Kingswell, D. S. Rickerby, S. J. Bull, K. T. Scott. Erosive Wear of Thermally Sprayed Tungsten Coatings. Thin Solid Films. 1991, 198 (1): 139-148
    88. R. G. Wellman, C. Allen. A effect angle of impact and material properties on the erosion rates of ceramics. Wear. 1995, 186-187 (1): 117-122
    89. M. Hashish. Observation of Wear of Abrasive-water jet Nozzle Materials. Journal of Tribology. 1994, 116 (2): 439-444
    90. P. J. Slikkerveer, P. C. P. Bouten, F. H. in't Veld, H. Scholten. Erosive and damage by sharp particles. Wear. 1998, 217 (2): 237-250
    91. E. Ness, R. Zibbell. Abrasion and erosion of hard materials related to wear in abrasive waterjet. Wear. 1996, 196 (1-2): 120-125
    92. M. Nanduri, D. G. Taggart, T. J. Kim. The effects of system and geometric parameters on abrasive water jet nozzle wear. International Journal of Machine Tools and Manufacture. 2002, 42 (5): 615-623
    93. A. Raykowski, M. Hader. Blasting cleaning of gas turbine components: deposit removal and substrate deformation. Wear. 2001, 249 (1): 127-132
    94. P.H. Shipway. The effect of plume divergence on the spatial distribution and magnitude of wear in gas-blast erosion. Wear. 1997, 25 (1-2): 169-177
    95. P. H. Shipway, N. K. Ngao. Microscale abrasive wear of polymeric materials. Wear. 2003, 255 (1-6): 742-750
    96. Deng Jianxin, Feng Yihua, Ding Zeliang, Shi Peiwei. Wear behaviors of the ceramic nozzles in sand blasting treatments. Journal of the European Ceramic Society. 2003, 23 (2): 323-329
    97.邓建新,冯益华,史佩伟等.陶瓷喷嘴的冲蚀磨损机理研究.硅酸盐学报.2003,31(5):494-497
    98. Deng Jianxin, Zhang Xihua, Niu Pingzhang, Liu Lili, Wang Jinghai. Wear of ceramic nozzles by dry sand blasting. Tribology International. 2006, 39 (3): 274-280
    99. Deng Jianxin. Erosion wear of boron carbide ceramic nozzles by abrasive air-jet. Materials Science and Engineering A. 2005, 25 (1-2): 227-233
    100. Deng Jianxin, Ding Zeliang, Yuan Dongling. Erosion wear mechanisms of coal water slurry (CWS) ceramic nozzles in industry boilers. Materials Science and Engineering A. 2006, 417 (1-2): 1-7
    101.冯益华.新型陶瓷喷嘴研究开发及其冲蚀磨损机理研究.博士学位论文.济南:山东大学,2003
    102.邓建新,刘莉莉,刘建华,杨学锋.陶瓷喷砂嘴的冲蚀磨损特性及其损坏机理.稀有金属材料与工程.2005,34:223-226
    103. Deng Jianxin, Zheng Zhongcai, Ding Zeliang, Wang Jinghal. Erosion wear of ceramic and cemented carbide nozzles in dry sand blasting process. British Ceramic Transactions. 2003, 102 (2): 61-65
    104. Ding Zeliang, Deng Jianxin, Li Jianfeng, Sun Gaozuo, Ai Xing. Wear behavior of ceramic nozzles in coal water slurry burning. Ceramics International. 2004, 30 (4): 591-596
    105.丁泽良.新型组合式陶瓷水煤浆喷嘴的设计开发及其损坏机理研究.博士学位论文.济南:山东大学,2004
    106. S.W. Gong, K. Y. Lam, J. N. Reddy. The elastic response of functionally graded cylindrical shells to low-velocity impact. International Journal of Impact Engineering. 1999, 22 (4): 397-417
    107 J. E. Dolbow, M. Gosz. On the computation of mixed-mode stress intensity factors in functionally graded materials. International Journal of Solids and Structures. 2002, 39 (9): 2557-2574
    108. Z.Q. Yue, H. T. Xiao, L. G. Tham. Boundary element analysis of crack problems in functionally graded materials. International Journal of Solids and Structures. 2003, 40 (13-14): 3273-3291
    109. P.K. Panda, T. S. Kannan, J. Dubois, C. Olagnon, G. Fantozzi. Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment. Science and Technology of Advanced Materials. 2002, 3 (4): 327-334
    110. N. Schmitt, A. Burr, Y. Berthaud, J. Poirier. Micromechanies applied to the thermal shock behavior of refractory ceramics. Mechanics of Materials. 2002, 34 (11): 725-747
    111. N. Noda, Z. H. Jin. Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures. 1993, 30 (8): 1039-1056
    112. Z.H. Jin, N. Noda. Transient thermal stress intensity factors for a crack in a semi-infinite plane of a functionally gradient material. International Journal of Solids and Structures. 1994, 31 (2): 203-218
    113.渡边龙三.倾斜机能材料合成法.工业材料.1990,38(2):39-47
    114.张联盟,涂溶,张清杰.TiC/NiAl_3系梯度功能材料在温度状态下的隔热应力及其组成分布优化.硅酸盐学报.1996,24(4):418-422
    115.唐新峰,张联盟,袁润章.PSZ-Mo系梯度功能材料的热应力缓和设计与制备.硅酸盐学报.1994,22(1):44-49
    116.王继辉,张清杰,吴代华.金属-陶瓷梯度材料的热弹塑性分析.复合材料学报,1996,13(2):89-93
    117.张联盟,唐新峰,陈福义,张清杰.MgO_2/Ni系梯度功能材料的设计与制备.硅酸盐学报.1993,21(5):406-412
    118.赵军.新型梯度功能陶瓷刀具材料的设计制造及其切削性能研究.博士学位论文.济南:山东大学,1998
    119. Zhao Jun, Ai Xing, Huang Chuanzhen, Zhang Jianhua, Deng Jianxin. An analysis of unsteady thermal stresses in a functionally gradient ceramic plate with symmetrical structure. Ceramics International. 2003, 29 (3): 279-285
    120. Zhao Jun, Ai Xing, Li Yanzheng, Zhou Yonghui. Thermal shock resistance of functionally gradient solid cylinders. Materials Science and Engineering, 2006, 418 (1-2): 99-110
    121. Zhao Jun, Ai Xing, Deng Jianxin, Wang Jinghai. Thermal shock behaviors of functionally graded ceramic tool materials. Journal of the European Ceramic Society. 2004, 24 (5): 847-854
    122.赵军,艾兴,邓建新,张建华,黄传真.对称型梯度功能陶瓷材料的非定常热应力.机械工程学报,2001,37(11):22-27
    123.王保林,韩杰才,张幸红.非均匀材料力学.北京:科学出版社,2003
    124.孙中亮.气力输送喷射器性能的研究.硕士论文.合肥:合肥工业大学,1995
    125.G.伊曼纽尔.周其兴,周精华译.气体动力学的理论与应用.北京:航空出版社,1992
    126.契尔米诺夫.潘文泉译.流体工程简明手册.北京:宇航出版社,1989
    127.芩可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990
    128.郑洽馀,鲁钟琪.流体力学.北京:机械工业出版社,1980
    129. L. J. S. Bradbury. The impact of an axisymmetric jet onto a normal ground. Aeroautical Quarterly. 1972, 23 (2): 141-147
    130.董智勇.射流力学.北京:科学出版社,2005
    131.柏实义(美).施宁光,严家祥,夏玉顺译.两相流动.北京:国防工业出版社,1985
    132.徐进,葛满初.气固两相流动的数值计算.工程热物理学报.1998,19(2):233-236
    133.K.L.Johnson.徐秉业,罗学富,刘信声等译.接触力学.北京:高等教育出版社,1992
    134.铁摩辛柯 古地尔.徐芝纶译.弹性理论.北京:高等教育出版社,1990
    135.殷绥域.弹塑性力学.武汉:中国地质大学出版社,1990
    136.杨桂通.弹性力学.北京:高等教育出版社,2005
    137. Liu Lili, Deng Jianxin, Zhou Jun. Erosion wear and design model of functionally gradient ceramic AJM nozzle. Key Engineering Materials. 2006, 315-316:637-640
    138. T. Y. Kam, F. M. Lal, T. M. Chao. Optimum design of laminated composite foam-filed sandwich plates subjected to strength constraint. International Journal of Solids and Structures. 1999, 36(12): 1754-1778
    139.南策文.非均质材料显微结构的物理模型.博士学位论文.武汉:武汉工业大学,1992
    140. C. W. Nan. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993, 37(1): 1-116
    141. J. D. Eshelby. The determination of the elastic field of an ellisoidal inclusion, and related problems. Proceedings of the Royal Society of London, 1957, 241(A): 376
    142. T. Mori, K. Tanaka. Average stress in matrix and average elastic energy, of materials with misfitting inclusions. Aeta Metall., 1973, 21:571-576
    143. W. D. Kingery. The thermal conductivity of ceramic dielectrics. In: Burke J E eds., Progress in Ceramic Science, New York, Pergamon Press, 1962, 2:181-175
    144. E. H. Kerner. The elastic and thermal-elastic properties of composite media. Proc. Phys. Soc., 1956, 69(B): 808-813
    145.叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    146.关振铎,张中太,焦金生.无机材料物理机械性能.北京:清华大学出版社,1992
    147.邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究.博士学位论文.济南:山东工业大学,1995
    148.邓建新,艾兴.热胀失配对Al_2O_3/TiB_2陶瓷材料高温断裂韧性的影响.硬质合金.1995,12 (4):207-210
    149.机械工程材料性能数据手册编委会.机械工程材料性能数据手册.北京:机械工业出版社,1994
    150.邱关明.新型陶瓷.北京:兵器工业出版社,1992
    151.王洪纲.热弹性理论概论.北京:清华大学出版社,1989
    152.米谷茂.朱荆璞,邵会孟译.残余应力的产生和对策.北京:机械工业出版社,1983
    153.F.A.霍兰,R.M.穆尔斯,F A.沃森,J.K.威尔金森.传热学.北京:化学工业出版社,1980
    154.严宗达,王洪礼.热应力.北京:高等教育出版社,1993
    155.韩晓娟.轴对称稳定温度场应力函数的建立及应用.机械设计.2002,19(2):47-49
    156. K. S. Ravichandran. Thermal residual stresses in a Functionally Graded Material system. Material Science and Engineering. 1995, 201(1-2): 269-276
    157.包亦望,苏盛彪,黄肇端.对称型陶瓷层状复合材料中的残余应力分析.材料研究学报.2002,16(5):449-457
    158. Shuyi Qin, Dongliang Jiang, Jingxian Zhang, Jining Qin. Design fabrication and properties of layered SiC/TiC ceramic with graded thermal residual stress. Journal of the European Ceramic Society. 2003, 23(9): 1491-1497
    159. Deng Jianxin. Effect of thermal residual stress on the high temperature toughening behaviour of TiB_2/SiC_w composites. Journal of Materials Processing Technology. 2000, 98(3): 292-298
    160.张国瑞.有限元法.北京:机械工业出版社,1991
    161.甘舜仙.有限元技术与程序.北京:北京理工大学出版社,1989
    162.叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003
    163.刘鸿文.材料力学(第三版).北京:高等教育出版社,1992
    164.郭长立.气固两相流中颗粒加速运动规律研究.硕士学位论文.西安:西安科技学院,2002
    165.韩占忠,王敬,兰小平.流体工程仿真计算实例与应用.北京:北京理工大学出版社,1992
    166. Z. Zhang, M. Ghadiri. Impact attrition of particulate solids. Part 1: A theoretical model of chipping. Chemical Engineering Science. 2002, 57(17): 3659-3669
    167. T. L. Becker, R. M. Cannon, R. O. Ritchie. An approximate method for residual stress calculation in functionally graded materials. Mechanics of Materials. 2000, 32(2): 85-97
    168.宋世学.高性能系陶瓷刀具材料的研制及其性能研究.博士学位论文.济南:山东大学,2002
    169.张雪.疲劳短裂纹在残余应力场中的闭合和扩展.机械强度.2000,22(2):137-139
    170. S. H. Chi, Y. L. Chung. Cracking in coating-substrate composites with multi-layered and FGM coatings. Engineering Fracture Mechanics. 2003, 70(10): 1227-1243
    171. J. Vigneau, P. Bordel. Influence of the microstructure of the composite ceramic tools on their performance when machining nickel alloys. Annals of the CIRP. 1987, 36:13-16
    172. Jorge A banto-Bueno, John Lambros. Investigation of crack growth in functionally graded materials using digital image correlation. Engineering Fracture Mechanics. 2002, 69 (14-16): 1695-1711
    173.赵军,邓建新,艾兴等.梯度功能材料的裂纹问题.陶瓷学报.1999,20(3):134-136
    174. B. R. Lawn, A. G. Evans, D. B. Marshall. Elastic/plastic indentation damage in ceramics: the median/radial crack system. Journal of American Ceramic Society. 1980, 63, (9-10): 574-581
    175. D. B. Marshall, B. R. Lawn, A. G. Evans. Elastic/plastic indentation damage in ceramics: the lateral crack system. Journal of American Ceramic Society. 1982, 65(11): 561-566
    176. L. Prchlik, S. Sampath, J. Gutleber, G. Bancke, A. W. Ruff. Friction and wear properties of WC-Co and Mo-Mo_2C based functionally graded materials. Wear. 2001,249(12): 1103-1115
    177.赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社,2003
    178.哈宽富.金属力学性质的微观理论.北京:科学出版社,1983
    179.David J Green.龚江宏译.陶瓷材料力学性能导论.北京:清华大学出版社,2003
    180. C. S. Seoka, K. L. Murty. A study on the decrease of fracture resistance curve under reversed cyclic loading. International Journal of Pressure Vessels and Piping. 2000, 77(6): 303-311
    181. C. Tekmen, I. Ozdemir, E. Celik. Failure behaviour of functionally gradient materials under thermal cycling conditions. Surface and Coatings Technology. 2003, 174-175:1101-1105
    182. I. E. Reimanis. A review of issues in the fracture of interracial ceramics and ceramic composites. Material Science and Engineering. 1997, 237(2): 159-167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700