MCM-41和硅铝微孔—介孔复合分子筛的合成、表征和催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用水热法制备了一系列MCM-41和硅铝复合分子筛催化剂,采用XRD、BET、IR、SEM、TEM、TG-DTA和NH3-TPD等现代分析手段对其进行了表征,以三异丙基苯为反应物对催化剂进行催化裂化性能评价。
     1、在本实验室条件下,水热法合成MCM-41分子筛的最佳条件为nSiO_2/nAl_2O_3=70、nCTAB/nSiO_2=0.12,pH=9、晶化温度120℃,晶化时间56h;水热法合成硅铝复合分子筛的最佳条件为nSiO_2/nAl_2O_3=90、nCTAB/nAl_2O_3=22、nTEAOH/nAl_2O_3=30、nH_2O/nAl_2O_3=1400、晶化温度120℃,晶化时间12~84h。
     2、N_2吸附-脱附结果显示,MCM-41分子筛具有2.8nm的均一孔径。合成的硅铝复合分子筛同时具有微孔和介孔结构,而且硅铝复合分子筛的表面积最大达到了1120m~2/g,优于MCM-41分子筛的782m~2/g。
     3、SEM照片显示MCM-41分子筛晶体呈团聚状地生长在一起,晶粒大小比较均匀,每个球状晶粒的尺寸约10μm左右。硅铝复合分子筛晶体呈团聚状地生长在一起,复合分子筛晶粒聚集,有的在大颗粒上附晶生长了小颗粒,有的晶粒聚合,晶界不再明显。
     4、TEM照片显示MCM-41分子筛的孔道剖面呈指纹状,孔径尺寸约2nm以上,与N_2吸附-脱附测得的2.8nm左右的孔径尺寸一致。硅铝复合分子筛表面分布着较密集的孔道,而且孔道尺寸不均一,这验证了此种硅铝复合分子筛是微孔-介孔复合的结构。
     5、吡啶红外光谱显示,硅铝复合分子筛与ZSM-5分子筛相比,B酸和L酸中心数量要少,强度也要低。NH_3-TPD测试结果表明硅铝复合分子筛存在弱酸和中强酸中心。随着nSiO_2/nAl_2O_3的增加,硅铝复合分子筛的酸量呈现逐渐减少的趋势。
     6、TG-DTA测试表明,MCM-41分子筛的骨架在780℃发生坍塌,硅铝复合分子筛的骨架坍塌发生在900℃,说明硅铝复合分子筛具有更好的热稳定性。
     7、HMCM-41分子筛催化裂化三异丙基苯的反应转化率可达56.1%。随着nSiO_2/nAl_2O_3的增加,转化率呈下降趋势。产物苯、间二异丙苯和对二异丙苯的选择性也随着nSiO_2/nAl_2O_3的增加而降低。硅铝复合分子筛的nSiO_2/nAl_2O_3在30~150之间变化时,三异丙基苯几乎全部发生了反应。随着nSiO_2/nAl_2O_3的增加,苯和异丙苯的选择性逐渐降低,而间二异丙苯和对二异丙苯的选择性逐渐增加。
     8、具有相同nSiO_2/nAl_2O_3的HZSM-5、HMCM-41、硅铝复合分子筛和机械混合分子筛,其催化裂化三异丙基苯的活性对比表明,硅铝复合分子筛的转化率最高,原料几乎全部发生裂解,且异丙苯、间二异丙苯和对二异丙苯的选择性也较高。HMCM-41的初活性为34.6%,其反应产物里有苯、对二异丙苯和间二异丙苯,选择性都不高。HZSM-5分子筛催化裂化三异丙基苯的转化率最低,仅15.9%,产物中仅有间二异丙苯。机械混合分子筛ZM1比ZM2的活性高,这可能与ZM1中ZSM-5分子筛的含量少有关。硅铝复合分子筛与机械混合分子筛的催化裂化转化率相差悬殊的结果,证明了硅铝复合分子筛的确是一种微孔-介孔复合的产物,它完全不同于HMCM-41和机械混合物,它的催化裂化性能优越于微孔分子筛、介孔分子筛和机械混合分子筛。
A series of MCM-41 and Si-Al composited zeolites were synthesized byhydrothermal method and characterized by XRD, BET, IR, SEM, TEM,TG-DTA and NH_3-TPD techniques. The catalytic cracking of 1,3,5-triiso-propylbenzene were carried out over the zeolites.
     (1) The best synthesis conditions of MCM-41 zeolites synthesized byhydrothermal method in laboratory were nSiO_2/nAl_2O_3=70, nCTAB/nSiO_2=0.12, pH=9, crystal temperature 120℃and crystal time 56h; The bestsynthesis conditions of Si-Al composited zeolites by hydrothermal method inlaboratory were nSiO_2/nAlO_3=90, nCTAB/nAl_2O_3=22, nTEAOH/nAl_2O_3=30,nH_2O/nAl_2O_3=1400, crystal temperature 120℃and crystal time 12~84h。
     (2) The result of N_2 adsorption-desorption showed that MCM-41 zeolitehad symmetrical aperture of 2.8nm and Si-Al composited zeolite had bothmicropore and mesopore structure. The surface area of Si-Al compositedzeolite reached 1120m~2/g, larger than 782 m~2/g of MCM-41 zeolite.
     (3) The SEM photos showed that crystalloid of MCM-41 zeolites grew all round, the grain of crystalloid was homogeneous and the dimension of themwas nearly 10μm. The crystalloid grain of Si-Al composited zeolite assembled,small grain grew over big grain, and the aggregation of some grain made thecircumscription blurry.
     (4) The TEM photos showed that the aperture section of MCM-41 zeolitelike dactylogram and aperture was bigger than 2nm, which was similar to2.8nm of N_2 adsorption-desorption result. The Si-Al composited zeolite haddense aperture and inhomogeneous dimension, which validated that the Si-Alcomposited zeolite was really micro-mesopore structure.
     (5) Pyridine adsorbed IR showed that, the Si-Al composited zeolite hadless B and L acidic sites and weaker acidity than ZSM-5 zeolite. The result ofNH_3-TPD indicated the acidic amount of Si-Al composited zeolite decreasedgradually with the increase of nSiO_2/nAl_2O_3.
     (6) The TG-DTA result demonstrated that the framework of MCM-41zeolite collapsed at 780℃, while that of Si-Al composited zeolite collapsed at900℃, so the Si-Al composited zeolite had better heat stability.
     (7) Initial catalytic convertion of the HMCM-41 zeolite for the crackingof 1,3,5-triisopropylbenzene was 56.1%, and the convertion declined with theincrease of nSiO_2/nAl_2O_3.The selectivity of benzene, m-diisopropylbenzeneand p-diisopropylbenzene decreased with the increase of nSiO_2/nAl_2O_3.The1,3,5-triisopropylbenzene had been converted almost completely over the Si-Al composited zeolite with nSiO_2/nAl_2O_3 of 30~150.The selectivity ofbenzene and isopropylbenzene decreased and the selectivity ofm-diisopropylbenzene and p-diisopropylbenzene increased gradually with theincrease of nSiO_2/nAl_2O_3.
     (8) Initial catalytic activities for the cracking of 1,3,5-triisopropylbenzeneover HZSM-5, HMCM-41, Si-Al composited zeolites and mechanical mixedzeolites with same nSiO_2/nAl_2O_3 indicated that the Si-Al composited zeolitepossessed the highest activity, and almost all 1,3,5-triisopropylbenzene hadbeen converted absolutely, and the selectivity of all production were reallyhigh, which prove the Si-Al composited zeolite has pure mico-mesoporestructure, and it was different from HMCM-41 and mechanical mixed zeolites,its catalytic cracking performance was superior to micopore zeolites,mesopore zeolites and mechanical mixed zeolites. The initial convertion ofHMCM-41 was 34.6%, the selectivity of production benzene, m-diisopropyl-benzene and p-diisopropylbenzene were not high. HZSM-5 had the lowestconvertion 15.9%, and the production only had m-diisopropylbenzene. Themechanical mixed zeolites ZM1 showed higher convertion than ZM2 becausethe content of ZSM-5 in ZM1 was lower than that in ZM2.
引文
[1] Kresge G T, Leonowica M E, Rolh W J, el al. Ordered mesoporous molecular sieves svnthesized by liquid-crvslal template mechanism[J], Nature, 1992, 359:710-718
    [2] Beck J S, Vartwli J E, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid-crystal template mechanism[J]. J Am. Chem. Soc, 1992, 114: 10834-10843
    [3] Cheng C F, et al. The role of sucfacLant micelles in the synthesis of the mesoporous molecular sieve MCM-41 [J]. Langmuir, 1995, 11:2815-2819
    [4] Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261: 1299-1303
    [5] Steel A, Carr S W, Anderson. ~(14)N NMR study of surfactant mesophases in Lhe synthesis of mesoporous silicates[J]. J Chem. Soc. Chem Commun, 1994:1571-1572
    [6] Matijasil A, Aoegllin A C, PoLrin J, et al. Chem. Commun, 1996:1123
    [7] 沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997
    [8] 张波,周春晖,卢晗锋,等.MCM-41介孔分子筛结构的XRD表征.浙江工业大学学报,2001,29(2):185-190
    [9] 陈长鑫,陈文哲.MCM-41分子筛的合成与表征.材料及成型技术:239-243
    [10] 郑岩,娄旭东,李猛,等.pH值及模板剂川量对MCM-41合成的影响[J].北京服装学院学报,2005,25(2):54-57
    [11] 韩朝辉,潘大海,马静红,等.表面活性剂性能对MCM41中孔分子筛稳定性的影响[J].日用化学工业,2003,33(6):375-392
    [12] 冯芳霞,窦涛,萧墉壮,等.干粉法合成中孔分子筛MCM-41 [J].石油学报(石油加工),1998,14(3):89-92
    [13] 高雄厚,毛学文,张永明,等.高温法合成MCM-41分子筛及其结构和性能表征[J].分子催化,1997,11(5):379-382
    [14] Corma A.J Physical,1994,99(26):756
    [15] 金英杰,沈健,袁兴东,等.厚壁MCM-41中孔分子筛的合成[J].1999,28(8):524-527
    [16] 高雄厚,毛学文,唐荣荣,等.晶化条件对MCM-41分子筛孔壁厚度与性能的影响[J].石油学报(石油加工),1998,14(3):17-20
    [17] 张迈生,姚云峰,杨燕生.XRD粉末衍射法研究全微波合成的MCM-41介孔分子筛[J].无机化学学报,2000,6(1):119-122
    [18] 孙克宁,曹莹,邵延斌.MCM 41分子筛的合成及~(129)Xe核磁共振的研究无机化学学报[J].2000,16(1):115-118
    [19] 何农跃,李大塘,沈俭一,等.MCM-41介孔分子筛材料的氨微量吸附量热法酸性研究[J].催化学报,1999,20(4):475-478
    [20] Luan Z. J Physical Chemistry,1995, 99(3): 1018
    [21] 袁忠勇,王澜,李赫晅,等.MCM-41中孔分子筛的结构和性能研究[J].石油学报(石油加工),1999,15(5):14-19
    [22] 高雄厚,张永明,张忠东,等.MCM-41分子筛合成机理探讨及其性能改进的研究[J].石油炼制与化工,1999,30(7):59-63
    [23] 袁忠勇,王敬中,陈铁红,等.MCM-41分子筛的合成与表征[J].南开大学学报,1996, 29(3):107-109
    [24] 高雄厚,毛学文,曹镭,等.MCM-41超大孔分子筛的催化裂化性能考察[J].石油炼制与化工,1997,28(5):16-20
    [25] 高雄厚,祝玉杰,马燕青,等.MCM-41分子筛的合成及其对煤油的脱色性能.石油炼制与化工,1997,28(8):28-30
    [26] 苏建明,等.超大孔分子筛MCM-41的研究进展[J].齐鲁石油化工,1998,26(3):2
    [27] US 5344553
    [28] Sun Y, Lin W. Proceedings of International Symposium on Zeolite in China, Nanjing, 1995
    [29] 尹泽群,阮彩安,王安杰,等.MCM-41分子筛加氢裂化催化剂的研究[J].工业催化,2003,11(6):12-13
    [30] Kloetstra K R, Zandbergen H W, Jansen J C, et al. Overgrowth of Mesoprous MCM - 41 on Faujasite[J]. Microporous Mater, t996, (6): 287-293
    [31] 张晔,吴东,孙予罕,等.微孔-介孔复合SiO_2-Al_2O_3分子筛的水热合成研究[J].燃料化学学报,2001,29(增刊):28-29
    [32] 申宝剑,黄海燕,李海丽,等.一种中微孔复合分子筛组合物的分步晶化合成方法[P].中国,CN 1393403 A.2003
    [33] 申宝剑,陈洪林,潘惠芳.一种组合分子筛及其制备方法[P].中国,CN 1435374 A.2003
    [34] Karlsson A, S tocker M, Schm idt R. Composites of Micro-and Mesoporous Materials: Simultaneous Syntheses of MFI/MCM-41 Like Phases by a Mixed Temp late Approach[J]. Microporous Mesoporous Mater, 1999, 27:181-192
    [35] Raja H P, Poladi R, Christopher C L. Synthesis, Characterization, and Catalytic Properties of a Microporous/Mesoporous Material, MMM -1[J]. J Solid Sta te Chem, 2002, 167: 363-369
    [36] Huang Limin, Guo Wanping, Deng Peng, et al. Investigation of Synthesizin MCM-41/ZSM-5 Composites[J]. J Phys Chem B, 2000, 104:2817-2823
    [37] 黄立民,李全芝,陈海鹰.复合中微孔分子筛及其合成方法[P].中国,CN 1208718.1999
    [38] Guo Wanping, Huang Linmin, Deng Peng, et al. Characterization of Beta/MCM-41 Composite Molecular Sieve Compared with the Mechanical Mixture[J]. Microporous Mesoporous Mater, 2001, 44 : 427-434
    [39] 郭万平,黄立民,陈海鹰等.新型MCM-41-β-沸石中孔-微孔复合分子筛[J].高等学校化学学报,1999,20(3):356-357
    [40] Guo Wanping, Xiong Chunrong, Huang Linmin, et al. Synthesis and Characterization of Composite Molecular Sieves Comprising Zeolite Beta with MCM-41 Stuctures[J]. J Mater Chem, 2001, 11:1886-1890
    [41] Prokesova P, Mintova S, Bein T, et al. Preparation of Nanosized Micro /Mesoporous Composites Via Simultaneous Synthesis of Beta/MCM-48 Phases[J]. Microporous Mesoooous Mater, 2003, 64:165-174
    [42] 黄海燕,申宝剑,徐春明,等.新型中微孔复合分子筛的研究[J].化学学报,2002,60(7):1350-1352
    [43] 申宝剑,黄海燕,李海丽,等.一种核壳分子筛的合成方法[P].中国,CN 1393400 A.2003
    [44] 申宝剑,黄海燕,李海丽,等.一种中微孔复合分子筛组合物的合成方法[P].中国,CN 1393404 A.2003
    [45] Schm idt I, Madsen C, Jacobsen J H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites[J]. Inorg Chem, 2000, 39:2279-2283
    [46] Naik S P, Chiang A S, Thompson R W. Synthesis of Zeoliteic Mesoporous Materials by Dry Gel Conversion under Controlled Humidity [J]. J Phys Chem B, 2003, 107:7006-7014
    [47] Liu Yu, Zhang Wenzhong, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures A ssembled from Zeolite Type Y Seeds[J]. J Am Chem Soc, 2000, 122:8791-8792
    [48] Li Yongsheng, Shi Jianlin, Chen Hangrong, et al. One-Step Synthesis of Hydrothermally S table Cubic Mesoporous Aluminosilicates with a Novel Particle Structure[J]. Microporous Mesopoous Mater, 2003, 60:51-56
    [49] Do TO, Kaliaguine S. Zeolite-Coated Mesostructured Cellular Silica Foams[J]. J Am Chem Soc, 2003, 125 (3): 618-619
    [50] Do TO, Nossov A, Springuel M A. Zeolite Nanoclusters Coated onto the Mesopore Walls ofSBA-15[J]. J Am Chem Soc, 2004, 126 (44) : 14324-14325
    [51] 张晔,吴东,孙予罕,等.微孔-介孔复合SiO_2-Al_2O_3分子筛的水热合成研究.燃料化学学报[J].2001,29(增刊):28-29
    [52] 马广伟,葛学贵,黄少云.新型中微孔复合分子筛的合成[J].工业催化,2003,11(1):40-42
    [53] Kloetdtra K R, Van Bekkum H, Jacobus Jansen C. Mesoporous Material Containing Framework Tectsilicate by Pore-Wall Recrystallization[J]. Chem Commun, 1997, 2281-2282
    [54] Goto Y, Fukushima Y, O gura M, et al. Mesoporous Material from Zeolite[J]. J PorousMa ter, 2001, 9:43-48
    [55] 李福祥,吴岚,窦涛,等.中孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报,1998,26(2):102-106
    [56] Tao Yousheng, Kanoh H, Kaneko K. Uniform Mesopore-Donated Zeolite Y U sing Carbon Aerogel Templating[J]. J Phys Chem B, 2003, 107:10 974-10 976
    [57] Zhang Cunman, Liu Qian, Xu Zheng, et al. Synthesis and Characterization of Composite Molecular Sieves with Mesoporous and Microporous Structure from ZSM- 5 Zeolites By Heat Treatment[J]. Microporous Mesoporous Mater, 2003, 62:157-163
    [58] 陈洪林,中宝剑,潘惠芳.ZSM-5/Y复合分子筛的酸性及其重油催化裂化性能[J].催化学报,2004,25(9):715-720
    [59] 申宝剑,陈洪林,潘惠芳,等.ZSM-5/Y复合分子筛在烃类催化裂化催化剂中的应用研究[J].燃料化学学报,2004,32(6):745-749
    [60] Zhang Zongtao, Han Yu, Zhu Lei, et al. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure[J]. Angew Chem, 2001,113 (7):1298-1302
    [61] Zhang Zongtao, Han Yu, X iao Fengshou, et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothennal Stability at High Temperatures[J]. J Am Chem Soc, 2001, 123:5014-5021
    [62] Zhou Qun, Li Baozong, Qiu Shilun, et al. Synthesis of Low Si/A1β-Zeloite by U sing Nucleation Gel[J]. Chem J Chin Univ, 1999, 20(5) : 693-695
    [63] 李工,阚秋斌,吴通好,等.含有沸石结构单元体介孔材料的合成及催化性能[J].化学学报,2002,60(5):759-763

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700