聚苯胺/短纤维增强天然橡胶性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过原位聚合的方法制备了聚苯胺/玻璃纤维复合材料、聚苯胺/尼龙纤维复合材料,作为天然橡胶的新型增强材料,并利用机械混炼法制备短纤维增强天然橡胶复合材料(SFRC)。采用电镜(SEM)、热分析(TG)等手段对改性后的短纤维表面形态、有机物的分布方式及其在橡胶基体中的可分散性进行了研究,并对胶料进行了力学性能测试。
     实验发现,原位聚合使聚苯胺附着在短纤维表面,且随着短纤维含量的增加,产物的产率增加。随有机含量增高,纤维表面颗粒增多,且纤维间隙之间颗粒较多。
     聚苯胺/短纤维在橡胶基体中没有集束现象,具有很好的分散性,与橡胶基体的相容性也较好,在一定程度上改善了胶料的力学性能。
     研究表明,在短纤维用量一定的情况下,聚苯胺含量为10%-15%时,复合材料的撕裂、拉伸等力学性能较好;在聚苯胺含量一定的情况下,短纤维用量在4-6份时,复合材料的综合力学性能较好。
     短纤维与炭黑等填料相比,加入少量便可使复合材料的性能发生很大的变化(炭黑的用量一般为30-70份),这有助于节省原料和制品轻量化。短纤维在一定范围内甚至可以取代常用的长纤维纺织物骨架材料,却无需复杂的加工工艺,有利于简化生产过程,提高自动化和连续化的程度。
     本文对聚苯胺改性短纤维做了初步的研究,实验发现聚苯胺能在一定程度上改善短纤维与橡胶基体之间的相容性,提高橡胶制品的性能,但仍需要更多的实验进一步研究。
The polyaniline (PANI)/short glass fiber composites and the polyaniline/short nylon fiber composites were prepared by in-situ polymerization in this paper. Both of them as a new type of reinforcing agent were mixed with NR by mechanical mixing called SFRC. The study of the modified short fiber's surface morphology and its distribution in the rubber matrix were performed with the scanning electronic microscopy (SEM) and thermal analysis (TG) techniques. Also the mechanical properties of the SFRC were analyzed.
     Experimental results show that the polyaniline particles attached to the short fiber's surface by in-situ polymerization, the yield of the product increased with the number of the short fibers. And the particals of the short fiber's surface increased in the high organic content of polyaniline/fiber. The gap between fibers have more polyaniline particles.
     Polyaniline/fiber in the rubber matrix has good dispersion with no cluster phenomenon. And the compatibility with rubber matrix is also good. To a certain extent, it has improved the rubber's mechanical properties. The addition of the polyaniline does not affect the short fiber's thermal stability.
     When short fiber content was in certain circumstances, SFRC had stong tear strength and tensile strength with polyaniline content was between 10% and 15%.
     Compared with carbon black and many other reinforcing agents, short fiber had its own advantages, such as its small amount (while carbon black is 70 or 80 phr)We can get SFRC with significant performance changes, which helps to save raw materials and make products with light weight. In a certain range short fibers can even replace the commonly used fiber textile reinforcing materials.
     We have a preliminary study on the application of the polyaniline on short fiber's surface morphology and find that polyaniline can improve the compatibility between short fiber and rubber matrix.
引文
1. 顾震隆.短纤维复合材料力学[M].长沙:国防工业出版社,1987
    2. 朱玉俊.弹性体的力学改性—填充补强及共混[M].北京:北京科学技术出版社,1991
    3. Boustany K,Coran A Y. Discontinuous cellulose reinforced elastomer [P]. USA:US3 697 364. 1972.
    4. 张立群.短纤维补强技术在橡胶工业中的应用.橡胶工业,1995:42(3):169-174
    5.李汉堂.短纤维—橡胶复合材料的发展前景.合成技术及应用,2006,21(2):28-29
    6.李汉堂.短纤维—橡胶复合材料的发展前景.现代橡胶技术,2006,32(4):5-8
    7. 张立群,钦焕宇,耿海萍等.短纤维—橡胶复合材料的发展前景及DN系列预处理短纤维的介绍.橡胶工业,1996,43(3):138-141
    8. 张立群.短纤维橡胶基复合材料结构性能及应用基础技术研究.博士学位论文,北京化工大学,1995
    9. 李汉堂.短纤维补强橡胶在轮胎中的应用(一).橡胶科技市场,2006,1:22-25
    10.张立群,周彦豪.尼龙和聚酯短纤维新预处理方法及其对复合材料性能的影响[J].橡胶工业,1994,41(3):132-137
    11.乔生儒.复合材料细观力学性能[M].西安:西北工业大学出版社,1987,52-85
    12.张立群,周彦豪,李晨等.短纤维预处理技术的开发.合成橡胶工业:1996,19(5):261-264
    13. Leo T J, Johansson A H. Homogeneous Predispersed Fiber Compositions. US:US4 263 184, 1981
    14. Crossman J A. Ploymer-Fiber Mixture. US:US4 543 377,1985
    15.陈伦纪,崔时虎.短纤维增强胶管取向机头的研究.特种橡胶制品,1991,(2):46-51
    16. A.Saritha Chandran, Sunil K.Narayankutty. An elastomeric conducting composite based on polyaniline coated nylon fiber and chloroprene rubber. European Polymer Journal,2008, (44): 2418-2429
    17.袁世珍,薛川华,赵振华.橡胶的织物增强.北京:化学工业出版社,1982:88-98
    18.傅敏华.浅谈纤维骨架材料与橡胶的粘合.橡胶工业,1992(4):239-242
    19.鲍续进,罗东山,杜成泽.纤维素短纤维的表面改性与溶胀性质[J],橡胶工业,1988,6
    20.鲍续进,罗东山,杜成泽.纤维素短纤维的表面改性与溶胀性质[J],橡胶工业,1988,6
    21.王孟钟,黄应昌.胶粘剂应用手册.北京:化学工业出版社,1999:535-551
    22. Edwards DC, Crossman J A. Mixing polymers and Fibrous Materials Brit UK Pat Appl, GB2 138 430A.1984
    23. Mukul B, Suprakas S R. J Appl Polym Sci,2000,77:2948
    24.何红.橡胶弯管挤出成型规律及机头研究:[学位论文].北京:北京化工学院,1991
    25.姜发启,苏华强.短纤维—橡胶复合材料在V带中的应用.橡胶工业,1996,43(2):82-85
    26. France A. Fiber containing Particulate Elastomeric Composition. US4 514 541,1985
    27. Hamed P. Discontinuous Celluose Fiber Treated with Plastic Polymer and Lubricant. US3 943 079,1976
    28.吴小华,李吉波,贾德民.直接黏合剂体系在尼龙纤维—微孔橡胶复合材料中的应用.橡胶工业,1992,39(1):9
    29. Set ua D K., Desk. Short Silk Fiber Reinforced Nitrile Rubber Composites. MATEDIAL SCIENCE,1984,19:983
    30.袁静译.一种用于织物增强橡胶制品的新型粘合体系.橡胶译丛,1989,(3):21
    31.龙志庭译.电子照射对橡胶/纤维素纤维复合材料的物理性能的影响.世界橡胶工业,1998,25(5):37
    32. William MA., Pauman BD.. Incorpration of Surface-Modified UHMWPE Poeder and Fibers in Tough Polyurethane Composites. POLYMER ENGINEERING AND SCIENCE, 1991,31(13):992
    33.曾泽新译.芳纶纤维与橡胶的新粘合体系.橡胶工业,1998,45(9):541
    34.杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005
    35.周彦豪.聚合物加工流变学基础.西安:西安交通大学出版社,1988:219-274
    36.李银环,黄茂芳,谭海生.菠萝叶短纤维补强NR复合材料的加工性能和动态力学性能[J].橡胶工业,2005,52(4):210-212
    37.金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000
    38.朱玉俊.弹性体的力学改性—填充补强及共混[M].北京:北京科学技术出版社,1991
    39. Bay R.S., C.L.Tucker Ⅲ. Polym Eng Sci.1992,32:4
    40. Toll S., P.O.Anderson.[J]. Composites 1991,22:4
    41. Ho K.C., M.C.Jeng.[J]. Plast Rub Compos Proc Appl.1996,25:10
    42. Darlington M.W.A.C.Smith.[J]. Polym Compos.1987,8:1
    43.龚积球.橡胶件的工程设计及应用[M].上海:上海交通大学出版社,2003
    44.高琼芝,周彦豪,陈福林等.尼龙短纤维接枝橡胶复合材料增强胎面胶[J].合成橡胶工业,2005,28(3):216-218
    45.郑元锁.芳纶短纤维增强胶管的研究[D].硕士论文,西安交通大学,1989
    46.马培瑜,裘立群.短纤维橡胶复合体在声系胶管中的应用[J].特制橡胶制品,1989,36(2):44-46
    47.马培瑜.短纤维橡胶复合体钢丝铠装吸引胶管[J].橡胶工业,1991,38(10):637
    48.姜发启,苏华强.短纤维—橡胶复合材料在V带中的应用[J].橡胶工业,1996,43(2):82-85
    49.吴贻珍.切边带的结构与制造工艺[J].橡胶工业,1989,36(8):463-469
    50.陈志宏.我国轮胎原材料现状与发展趋势[J].橡胶工业,1999,46(10):621-628
    51.周彦豪.国产预处理尼龙短纤维在轮胎中的应用[J].特种橡胶制品,1999,20(6):10-12
    52. Walker L A, Harber J B. Improved Durability in otr mining tires. Kautschuk Gummi Kunstatoffe,1985,38(6):494-498
    53. Ripkema B. The Use of Short Fiber to Reduce the Rolling Resistance of Tires. Plastomere Elastomere Duromere,1994,47(10):748-752
    54.谢苏江,蔡仁良.纤维增强软木橡胶密封材料的研制[J].润滑与密封,1995,(3):14-17
    55.谢苏江,蔡仁良.麻纤维增强软木橡胶非石棉密封材料的制备及性能研究[J].复合材料学报,1998,15(4):6-13
    56.马培瑜.短纤维橡胶复合体新型矿工安全帽研制成功(快讯).橡胶工业,1990,37(11):698
    57.黄美荣,李新贵,王健.导电聚苯胺纳米粒子的合成与应用[J],石油化工,2004,33(3):286-288
    58.朱道本,王佛松.有机固体[J],上海科学技术出版社,宇航材料工艺,2002,(4):25-26
    59. Huang W S, Humphrey B D, Macdiarmid A G. J. Chem Soc Faraday,1996,8:28-35
    60. Kitani A, Kaya M, Tsujiokaetal. J. Polym sci part A:Polym Chem,1998,26:15-31
    61. Wessling B, Volk H. Synth Met,1986,16:137
    62.谷亚新,翟玉春,刘运学等.导电聚苯胺/橡胶复合材料研究进展.高分子通报,2008,(4):57-61
    63.曾幸荣,杨卫,吴振耀等.华南理工大学学报(自然科学版),1994,22(6):99-104
    64.赵立群,李刚,牛继辉等.分子科学学报,21(5):29-35.
    65. Ding K, Jia Z B, Ma W S et al. Materials Chemistry and Physics,2002, (76):137-142.
    66. Mukul B, Suprakas S R. Water-dispersible nanocomposites of polyaniline and montmorillonite[J]. J Appl Polym Sci,2000,77(13):2948-2956
    67.吴秋菊,薛志坚,漆宗能等.具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征[J].高分子学报,1999,(5):551-556

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700