温度场及变形界面对液粘传动特性影响规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体粘性传动(简称液粘传动)是利用油膜的剪切力传递动力的一种新型流体传动形式,具有高效节能、无级调速、启动冲击小和同步传动等特点,在带式输送机、风机、水泵等大功率重载设备的调速启动方面有着广泛的应用前景,因此在我国开展液粘传动技术的研究具有极其重大的现实意义。针对目前研究中存在的问题,本文在以下几个方面进行了深入的研究。
     对工作油的粘度随温度的变化特性进行了实验研究,得出其粘温方程,研究了界面间温度分布特性;在此基础上推导出变粘度条件下无沟槽和有沟槽摩擦副间油膜压力、油膜的动压承载力和传递扭矩的解析解,并与常粘度条件下油膜的传动特性进行对比分析,揭示了温度对油膜传动特性的影响规律。
     基于热传导理论建立了混合摩擦状态下摩擦副瞬态热应力耦合场理论模型,确定了摩擦副间热流分配系数和热流密度,综合考虑热流密度、初始条件和边界条件,利用有限元法对所建立的瞬态热应力耦合场进行求解,得到了对偶片温度场和应力场的分布特性,分析了时间、对偶片厚度、摩擦衬片材料等因素对其影响规律,并利用CNC三坐标测量仪分析了对偶片的变形形式。
     建立了平行界面和变形界面间油膜的三维物理模型,利用计算流体动力学软件FLUENT进行数值模拟计算,得到了油膜温度场、压力场、速度场和流线分布特性,以及温度场、压力场沿径向和周向的分布规律,并得出温度场和变形界面对传递扭矩的影响规律。
     研制了专门的液粘传动实验台,通过大量的实验,研究了流量、转速差和变形界面对油膜温度场、压力场和传递的扭矩的影响;实验结果与理论分析基本吻合,证明了理论分析的正确性。研究取得的成果对液粘传动技术的深入研究具有指导意义,为液粘传动装置的设计和液粘传动技术的应用推广提供技术支持。
Hydro-viscous drive (HVD) transmits power by using shear force of oil film, which is a new type of fluid power transmission, and has characteristics of high-efficiency and energy-saving, synchronous drive, small start impact and stepless speed regulation. HVD has tremendous potentials in a wide range of applications such as speed regulation and start in large belt conveyors, fans, and pumps. Therefore, it has great practical significance to carry out HVD technology research in our country. According to the existing problems, the following aspects are thoroughly researched in the dissertation.
     Variation of working oil viscosity with temperature is measured in experiment. The viscosity-temperature equation of the working oil is obtained. Based on the distribution of temperature between interfaces, the analytic solutions for pressure, dynamic load capacity, and torque transferred by oil film between friction pair with and without grooves are deduced. Compared with constant viscosity, the transmission characteristics of oil film are analyzed. The influence of temperature on oil film transmission characteristics is revealed.
     On the basis of heat conduction theory, a theoretical model of transient thermal stress coupling for steel disk under mixed friction stage is established. Heat flow distribution coefficient and heat flux between friction pair are determined. Combining heat flux, initial conditions and boundary conditions, the theoretical model is solved using finite element method, the distribution law of temperature field and stress field of steel disk are found. The influence of time, thickness of steel disk, and material of friction pair on temperature field and stress field are analyzed. The deformation style of the steel disk is measured by using CNC three-coordinate measuring instrument.
     3-D physical models of oil film between parallel interface and deformed interface are built. The models are calculated by using computational fluid dynamics software FLUENT in numerical simulation. The temperature field, pressure field, velocity field and the characteristics of streamline of oil film are obtained. The distribution law of pressure field and temperature field along radial and circumferential direction, and the influence law of temperature field and deformed interface on torque transferred by oil film are obtained.
     A special HVD test-bed is developed. Based on a large number of experiments, the influence of flow rate, rotational speed difference and deformed interface on temperature field, pressure field, and transferred torque is researched. The experimental results approximately agree with the theoretical analysis results and the validity of theoretical analysis is proved. The research results play a guiding role in the thorough research on HVD technology, and provide technical support for the design of HVD device and application and popularization of HVD technology.
引文
[1]侯友夫,黄民,张永忠.带式输送机动态特性及控制技术[M].北京:煤炭工业出版社, 2004.
    [2]陈卫峰.大型矿用带式输送机软启动方式的合理选用[J].煤矿机械, 2007, 28(2): 164-166.
    [3]张潞平.主斜井带式输送机软启动方式的比较和选用[J].研究探讨, 2008, 9: 75-77.
    [4]李启申.以电力拖动技术实现带式输送机的软起动[J].起重运输机械, 2001(增刊), 46-50.
    [5]姚鸿. CST在煤矿胶带输送机上的应用[J].煤, 2006, 4: 21-22, 63.
    [6]洪琢,王军.液体粘性离合器的研究与应用[J].机床与液压, 2006, 8: 224-225.
    [7]洪琢,杨承三.液体粘性调速离合器在风机和水泵中的应用[J].机械设计与制造, 2006, 1: 109-110.
    [8]南玲玲,郑志强.液粘传动与风机节能[J].机床与液压, 2002, 5: 55-57.
    [9]徐晓丹.液粘调速装置在泵类负载上的应用研究[D] .山东科技大学硕士论文, 2005, 5.
    [10]吴少爽,张宏文,蒋晓刚.液体粘性调速离合器节能效果预测方法[J].计量与测试技术, 2007, 12: 14-16.
    [11]孟庆睿.液体粘性传动调速起动及其控制技术研究[D].中国矿业大学博士论文, 2008, 10.
    [12]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社, 1996.
    [13]宋伟刚,战欣,王元元.大型带式输送机驱动装置的比较研究[J].工程设计学报, 2004, 12: 302-311.
    [14]陶永芹,李兵.带式输送机软起动装置的比较分析[J].机械工程师, 2005, 8: 128-129.
    [15]谷昭军,杨前明,许梁.液体粘性调速离合器与液力耦合器调速优缺点的分析比较[J].现代制造技术与装备2006, 6: 28-31.
    [16]宋伟刚,邓永胜.大型带式输送机合理可控起动曲线的研究[J].起重运输机械, 2002, 8: 20-23.
    [17]王光炳.带式输送机可控软起动装置的研究[J].煤炭学报, 2003, 6: 316-321.
    [18]章军,贾春玉. CST驱动装置选用探讨[J].煤炭工程, 2005, 12: 8-11.
    [19]张以都,张启先.液体粘性软启动传动装置的研究[J].煤炭学报, 1998, 23(6): 658-662.
    [20]孔卫国,高志,秦显龙.软启动装置在带式输送机中的应用与选择[J].煤矿自动化, 2007, 78(3): 42-43.
    [21]代荣军,吴俊涛,贾圣月.液体粘性软启动及在带式输送机中的应用[J].矿山机械, 2006, 34(12): 79-81.
    [22]柏志海.液体粘性软启动及在带式输送机中的应用[J].煤炭技术, 2007, 26(11): 33-35.
    [23]杨乃乔,姜丽英.液力调速与节能[M].北京:国防工业出版社, 2000.
    [24] Shinichi Natsumeda, Tatsuro Miyoshi. Numerical simulation of engagement of paper based wet clutch facing[J]. ASME Journal of Tribology, 1994, 116: 232-237.
    [25] Edward James Berger. An investigation of friction-induced vibration in automatic transmission wetclutches[D]. A thesis submitted to the faculty of Purdue University, December 1996.
    [26] Berger E. J., Sadeghi F., Krousgrill C. M.. Torque transmission characteristics of automatic transmission wet clutches: experimental results and numerical comparison[J]. STLE Tribology Transaction, 1997, 40: 539-548.
    [27] Razzaque M. M., Kato Takahisa. Effects of groove orientation on hydrodynamic behavior of wet clutch coolant films[J]. ASME Journal of Tribology, 1999, 121: 56-61.
    [28] Razzaque M. M., Kato Takahisa. Effects of a groove on the behavior of a squeeze film between a grooved and a plain rotating annular disk[J]. ASME Journal of Tribology, 1999, 121:808-815.
    [29] Razzaque M. M., Kato Takahisa. Squeezing of a porous faced rotating annular disk over a grooved annular disk[J]. STLE Tribology Transactions, 2001, 44: 97-103.
    [30] Holgerson Mikael. Optimizing the smoothness and temperatures of a wet clutch engagement through control of the normal force and drive torque[J]. ASME Journal of Tribology, 2000, 122: 119-123.
    [31] Gao H., Barber G. C.. Engagement of a rough, lubricated and grooved disk clutch with a porous deformable paper-based friction material[J]. Tribology Transactions, 2002, 45: 464-470.
    [32] Gao H., Barber G. C., Shillor M.. Numerical simulation of engagement of a wet clutch with skewed surface roughness [J]. ASME Journal of Tribology, 2002, 124: 305-312.
    [33] Aphale Chinar R., Cho Jinhyun, et al.. Modeling and parametric study of torque in open clutch plates [J]. ASME Journal of Tribology, 2006, 128: 422-430.
    [34] P?r Marklund, Rikard M? kia, Roland Larssona, et al.. Thermal influence on torque transfer of wet clutches in limited slip differential applications[J]. Tribology International 2007 (40): 876-884.
    [35] Marklund P?r, Berglund Kim, Larsson Roland. The influence on boundary friction of the permeability of sintered bronze[J]. Tribology Letters, 2008, 31(1): 1-8.
    [36] Larsson R.. Modelling the effect of surface roughness on lubrication in all regimes[J]. Tribology International, 2009, 42(4): 512-516.
    [37]魏宸官.一种新型的可控无级调速传动装置[J].北京工业学院学报, 1985, 3: 44-54.
    [38] Cai Dujing, Wei Chenguan. A Study on the dynamic performance of hydroviscous drives[J]. Journal of Beijing Institute of Technology, 1992, 1: 111-121.
    [39]董勋,周益言.调速离合器传动机理研究[J].上海交通大学学报, 1991, 25(1): 19-28.
    [40]张以都.新型液体粘性软启动传动装置的研究[D].北京航空航天大学硕士论文, 1995, 7.
    [41] Chen Ning, Yuan Bin. Study on the Soft Start-up Steadiness of hydro-viscous drive[C]. Proceedings of the Fifth International Symposium on Fluid Power Transmission and Control, 2007.
    [42]陈宁.液体粘性传动(HVD)技术的研究[D].浙江大学博士论文, 2003, 9.
    [43]洪跃.液体粘性调速离合器工作机理研究与模糊控制器试制[D].上海大学博士论文, 2004, 6.
    [44]付业伟,李贺军,李克智.控制润滑状态下纸基摩擦材料的摩擦特性研究[J].润滑与密封, 2005, 5: 40-43.
    [45] Hu Jibin, Peng Zengxiong, Yuan Shihua. Drag torque prediction model for the wet clutches[J]. Chinese Journal of Mechanical Engineering, 2009, 22(2): 238-243.
    [46]魏宸官,黄晓光.液体粘性调速离合器在热电厂锅炉给水泵中的应用[J].节能, 1999, 10: 16-19.
    [47]魏宸官.一种新型可控无级调速传动装置——滑差离合器[J].工程机械, 1984, 2: 38-44.
    [48]郭立平,姜守霞.新型传动装置液粘调速离合器及应用[J].节能, 1998, 10: 41-44.
    [49]王步康.液粘离合器设计及试验中一些问题的探讨[J].煤矿机械, 1998, 2: 15-16.
    [50]由志五.提高多片摩擦离合器工作的可靠性[J].制造技术与机床, 1997, 11: 18-20.
    [51] D. H. Rothman. Macroscopic laws for immiscible two two-phase flow in porous media: results from numerical experiments[Jl. Journal of Geophysical Research, 1990, 95: 8663-8697.
    [52]彭骧,刘保宽,黄清林,王震华.液压滑差离合器减速机在安太堡矿的应用和国产化[J].冶金矿山与冶金设备, 1995, 2: 25-28.
    [53]王步康,杨勤,苏阜明.矿用油膜离合器的特性分析[J].山西矿业学院学报, 1997, (12): 350-353.
    [54]陈宁,邱敏秀.液体粘性调速离合器摩擦副设计方法[J].农业机械学报, 2007, 38(7): 141-143.
    [55] Jang J. Y., Khonsari M. M.. Thermal characteristics of a wet clutch[J]. ASME Journal of Tribolngy, 1999, 121:610-617.
    [56] Jen Tien-Chen, Nemecek Daniel James. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement, International Journal of Heat and Mass Transfer, 2008, 51(7-8): 1757-1769.
    [57]洪跃,刘谨,金士良.液体调速离合器中摩擦副热效应的简化分析[J].润滑与密封, 2003, 5: 6-11.
    [58]洪跃,刘谨,王云根.液体调速离合器中摩擦副热效应分析[J].中国工程科学, 2003, 5(9): 55-60.
    [59]魏建华,陈宁,李福尚,岳艺明,吴根茂.液粘调速离合器摩擦片变形失效研究[J].热力发电, 2003, 12: 71-74.
    [60]孟庆睿,侯友夫.基于Matlab的液体黏性传动油膜温度场有限元分析[J].煤矿机械, 2007, 28(9): 78-80.
    [61] Meng Qingrui, Hou Youfu. Effects of friction disc surface groove on speed-regulation start[J]. International Lubrication and Tribology, 2009, 61(6): 325-331.
    [62]江德涛.润滑油及润滑脂实用手册[M].广东:广东科技出版社, 2003.
    [63]周学良.润滑油[M].北京:化学工业出版社, 2009.
    [64]张景松.流体力学[M].徐州:中国矿业大学出版社, 2001.
    [65]郭楚文.工程流体力学[M].徐州:中国矿业大学出版社, 2002.
    [66]盛敬超.液压流体力学[M].北京:机械工业出版社, 1980.
    [67]张梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998.
    [68] Xie Fangwei, Hou Youfu. Flow characteristics of viscous oil film between large diameter rotating disks[J]. 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, China: 2010, VolumeⅡ: 292-295.
    [69]王建军,刘晓坤,屈展.在温度场作用下变厚各向异性高速旋转圆盘的失效条件[J].西安石油学院学报, 1990, 5(4): 38-43.
    [70]刚芹果.粘弹性流体在旋转圆盘上的流动[J].力学与实践, 2000, 22: 51-52.
    [71]赵克强.两平行旋转圆盘缝隙内的粘性流分析[J].兵工学报, 1990, 2: 39-44.
    [72]李龙飞,王省哲.旋转薄圆盘的行波动力学特性分析[J].力学季刊, 2007, 28(4): 631-637.
    [73]郭厚焜,熊国良,李骏.任意作用力下旋转圆盘的动态模型[J].华东交通大学学报, 2003, 9: 75-78.
    [74]姜继海.流体变粘度缝隙流动理论与解析[M].北京:国防工业出版社, 2005.
    [75] Southwell R. V.. On the free transverse vibration of a uniform circular disk clamped at its center and on the eff ects of rotation[J]. Proceedings of the Royal Society of London, 1922, 101: 133-153.
    [76] Liu Shuyan, Yan Weige. Analytical solution for laminar viscous flow in the gap between two parallel rotary disks[J]. Journal of Beijing Institute of Technology, 1998, 7(2): 113-119.
    [77]王学浩.摩擦学概论[M].北京:水利电力出版社, 1990.
    [78]温诗铸.摩擦学原理[M].北京:清华大学出版社, 1990.
    [79]韩凤麟.粉末冶金机械零件[M].北京:机械工业出版社, 1987.
    [80]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社, 1995.
    [81]廖玲玲.流体油膜剪切传动理论及实验研究[D].浙江大学硕士论文, 2006, 5.
    [82]陈伯贤,裘祖千,张慧生.流体润滑理论及其应用[M].北京:机械工业出版社, 1991.
    [83]池长青.流体力学润滑[M].北京:国防工业出版社, 1998.
    [84]林子光.弹流理论及其应用[M].天津:天津科学技术出版社, 1994.
    [85]杨沛然.流体润滑数值分析[M].北京:国防工业出版社, 1998.
    [86]赵镇南.传热学[M].北京:高等教育出版社, 2002.
    [87]姚仲鹏等.传热学[M].北京:北京理工大学出版社, 1995.
    [88]霍尔曼(Holman J. P.).热力学[M].北京:科学出版社, 1986.
    [89]张学勇,刘沃野,王平,杨通强.离合器摩擦片温升分析[J].润滑与密封, 2000, 2: 16-19.
    [90]蔡丹,魏宸官,宋文悦.离合器片表面温度的测量与表面应力的计算[J].车辆与动力技术, 2000, 4: 7-11.
    [91]朱茂桃,张铁山,夏长高.离合器压盘表面工作温度变化规律的测定[J].江苏理工大学学报, 1996, 17(2): 32-36.
    [92]杜建华,丁华东,傅苏黎,韩文政.摩擦片打滑过程中的热传导模型[J].粉末冶金技术, 2003, 21(1): 19-21.
    [93]周满山,张媛,于岩.液体粘性软起动装置摩擦片传热机理研究[J].起重运输机械, 2006, 6: 13-15.
    [94]谢方伟,侯友夫.液体粘性传动装置摩擦副瞬态热应力耦合研究[J].中南大学学报(自然科学版), 2010.
    [95]郑勇建.液体粘性调速离合器的研制及实验与仿真研究[D].浙江大学硕士论文, 2003, 1.
    [96]胡宏伟.湿式自动离合器接合过程特性的研究[D].浙江大学博士论文, 2008, 4.
    [97] Zhu Zhencai, Peng Yuxing, Shi Zhiyuan, et al.. Three-dimensional transient temperature field of brake shoe during hoist’s emergency braking[J]. Applied Thermal Engineering, 2009, 29: 932-937.
    [98]朱真才,史志远,彭玉兴,陈国安.提升机盘形制动器闸瓦三维瞬态温度场仿真与试验研究[J].摩擦学报, 2008, 23(4): 356-360.
    [99]彭玉兴,朱真才,陈国安,等.摩擦衬垫动态热物性能及其对瞬态温度场的影响[J].中南大学学报, 2009, 40(2): 436-440.
    [100]杨勇强,周明贵,张曼,刘言松,杨萍.离合器摩擦片热变形有限元分析[J].机械设计与制造, 2007, 2: 55-57.
    [101]翟仕儒,刘宇宁,宋佳伟,赵宇.摩擦式离合器与制动装置的热计算[J].齐齐哈尔大学学报, 2001, 17(4): 82-83.
    [102]马保洁,朱均.摩擦制动器接触表面温度计算模型[J].西安工业学院学报, 1999, 19(1): 35-39.
    [103]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社, 1999.
    [104]许尚贤.机械设计中的有限元法[M].北京:高等教育出版社, 1992.
    [105]张朝晖. ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社, 2005.
    [106]王富耻,张朝晖. ANSYS 10.0有限元分析理论与工程应用[M].北京:电子工业出版社, 2006.
    [107]孙华琴,董建福.摩擦片温度场的研究[J].工程机械, 1992, 10: 17-21.
    [108]王洪纲.热弹性力学概论[M].北京:清华大学出版社, 1989.
    [109]阎清东,李宏才,唐衍稳.有限元法在湿式多片制动器温度场研究中的应用[J].汽车科技, 2001, 2: 13-16.
    [110]杨勇强,郭卫,孙建功,张曼.矿用机车离合器摩擦片接合过程热分析[J].煤矿机械, 2008, 29(3): 84-86.
    [111]陈国金,殷小亮,龚友平,尹鹏.离合器摩擦片的热-应力耦合分析[J].机电工程, 2008, 25(12): 100-102.
    [112] P. Zagrodzki. Numerical analysis of temperature fields and thermal stresses in the friction discs of a multidisc wet clutch[Jl. Wear, 1985, 101(3):255-271.
    [113] Matveevsky R. M., Bujanovsky I. A., Karaulow A. K., et al.. Transition temperatures and tribochemistry of the surfaces under boundary lubrication[J]. Wear, 1990, 136: 135-139.
    [114] Matveevsky R. M., Bujanovsky I. A.. Temperature-kinetic aspect of friction and wear under boundary lubrication [C]. Proc. of JSLE Int. Trib. Conf., 1985: 339-344.
    [115] Lee Y. Z., Ludema K. C.. The effects of surface roughening and protective film formation on scuff initiation in boundary lubrication[J]. J. of Trib., 1991, 113: 295-302.
    [116]侯友夫.带式输送机动态特性及控制策略研究[D].中国矿业大学博士论文, 2001, 4.
    [117]王光炳.带式输送机可控软起动装置的研究[J].煤炭学报, 2003, 6: 316-321.
    [118]戴建立.煤矿下运带式输送机液力制动减速度控制系统研究[D].上海交通大学工程硕士学位论文,2002.
    [119]黄飞.下运带式输送机盘式制动系统的研究[D].中国矿业大学硕士论文, 2009, 5.
    [120] P. G.德拉津, W. H.雷德.流体动力稳定性[M].天津:宇航出版社, 1990.
    [121]周恒.流动稳定性问题[J].力学进展, 1983, 13(2): 140-145.
    [122]汪晓云.普通机床的零件加工[M].北京:机械工业出版社, 2010.
    [123]马铁犹.计算流体动力学[M].北京航空航天大学出版社, 1986.
    [124]苏铭得,黄素逸.计算流体力学基础[M].北京清华大学出版社, 1997.
    [125] Rogers S. E., Kwak D.. Upwind Differencing scheme for the time-accurate incompressible Navier-Stokes equations[J]. AIAAJ, 1990, 28: 253-262.
    [126] Merkle C. L., Althavale M.. Times accurate unsteady incompressible algorithms based on artificial compressibility[J]. AIAAJ, 1987, 87: 125-132.
    [127]朱自强等编著.应用计算流体力学[M].北京航空航天大学出版社, 1998.
    [128]章本照.流体力学中的有限元方法[M].北京:机械工业出版社, 1969.
    [129]姚征,陈康民. FLUENT通用软件综述[J].上海理工大学学报, 2002, 24(20): 137-144.
    [130]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [131]韩占忠,王敬,兰小平.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004.
    [132]褚亚旭.基于CFD的液力变矩器设计方法的理论与实验研究[D].吉林大学博士论文, 2006, 12.
    [133]李雪松.车辆液力减速器三维流场分析与特性计算[D].吉林大学硕士论文, 2006, 6.
    [134]陈淑江.螺旋油楔滑动轴承润滑机理的理论与实验研究[D].山东大学博士论文, 2007, 12.
    [135]于晓东.重型静压推力轴承力学性能及油膜态数值模拟研究[D].东北林业大学博士论文, 2007, 6.
    [136]段文广.基于FLUENT的搅拌机械内部流场模拟研究[J].现代制造技术与装备, 2009, 1: 33-34.
    [137]张艳芹,邵俊鹏,韩桂华,于晓东.大尺寸扇形静压推力轴承润滑性能的数值分析[J].机床与液压, 2009, 37(1) : 69-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700