PAN纺丝原液及其流变学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能原丝是制备优质碳纤维的基础,性能良好的碳纤维前驱体聚丙烯腈(PAN)和高质量的PAN纺丝原液是获得高性能原丝的必要条件。在聚合阶段,本文采用水相沉淀聚合法,制备较高分子量的丙烯腈(AN)与衣康酸(IA)的聚合物PAN。在溶解阶段,选用具有较高溶解能力的有机溶剂二甲基亚砜(DMSO)和二甲基乙酰胺(DMAc)配制PAN纺丝溶液,经过滤、脱泡后获得实验所需的PAN纺丝原液。通过对PAN纺丝原液进行正交实验和流变性研究,探讨固含量、温度、分子量、剪切速率以及溶剂等因素对纺丝原液表观黏度的影响,并拟合出相应的流变方程。在对纺丝原液进行上述研究过程中发现:采用不同的溶剂,纺丝原液的实验数据和分析结果相差较大。因此,对纺丝原液经压膜、水洗、烘干、研磨后得到的PAN聚合物粉末进行DSC、TG和XRD测试,对其热性能和结构进行分析。
     PAN纺丝原液制备工艺包括烘干、溶解、脱泡、剪切和预过滤等。通过优化制备工艺,可以获得高质量PAN纺丝原液。同时,纺丝原液制备工艺还与选用的溶剂有关。与DMSO相比,采用DMAc为溶剂时,搅拌和脱泡时间更短、溶解温度更低,但由于其易挥发,PAN/DMAc纺丝原液溶解过程应在N2加压的氛围下进行
     通过PAN纺丝原液正交试验发现,四因素对其表观黏度的影响与溶剂有关。对于PAN/DMSO.PAN/MAc纺丝原液,四因素对其表观黏度影响程度分别为:固含量>分子量>温度>剪切速率;温度>固含量>分子量>剪切速率,且温度对PAN/DMAc纺丝原液表观黏度的影响程度远大于其它三因素。
     对PAN纺丝原液的流变性研究表明,PAN纺丝原液表现出明显的剪切变稀现象,属于非牛顿流体中的假塑性流体,其表观黏度随分子量的增加、固含量的升高而增大。同时,PAN纺丝原液存在临界分子量和临界剪切速率,PAN/DMSO纺丝原液的临界分子量和临界剪切速率分别约为:35×104,4~8S-1;PAN/DMAc纺丝原液的临界分子量和临界剪切速率分别约为:27×104,1.5~2S-1,且临界点不随温度的变化而改变。在相同条件下,PAN/DMAc纺丝原液表观黏度要远远小于PAN/DMSO纺丝原液的表观黏度。因此,在配制PAN纺丝原液时,要充分协调PAN聚合物分子量、温度和固含量之间的关系,并采用合适的溶剂,从而获得黏度合适的纺丝原液。
     通过PAN纺丝原液的流变曲线发现:在临界分子量之前,lgη与lgM、1gγ、1g(wt)、1/T存在线性关系。据此,拟合出PAN/DMSO、PAN/DMAc纺丝原液的方程分别为:1gη=-31.45+5.331gM+377/T+3.531g(wt)-0.2631gγ: 1gη=-10.70+2.601gM+1767/T+7.931g(wt)-0.0891gγ.根据拟合方程可以预测一定条件下PAN纺丝原液表观黏度,为纺丝工艺提供指导
     PAN纺丝原液流变特性指数的研究发现;黏流活化能随固含量的升高而增大,随分子量、剪切速率的增加逐渐减小;非牛顿指数随温度升高而增大,随分子量、固含量的增加而减小;结构指数随固含量、分子量增加而增大,随温度升高而减小,且因分子量变化引起的结构指数的变化幅度,要远大于因固含量、温度变化引起的变化幅度。同时,与PAN/DMAc纺丝原液相比,PAN/DMSO纺丝原液的黏流活化能和结构黏度指数较大,非牛顿指数较小。
     通过DSC.TG.和XRD分析发现:溶解过程中,PAN聚合物基团未发生改变;溶剂破坏了PAN的结晶区域,使PAN的结晶度降低,且与选用DMSO相比,选用DMAc为溶剂配制的纺丝原液对PAN结晶区域的破坏程度较大;与PAN聚合物相比,PAN纺丝原液聚合物更稳定,最大失重速率和其对应的温度均有所降低,放热峰更宽、放热速率更低;与PAN/DMAc纺丝原液中聚合物相比,PAN/DMSO纺丝原液中聚合物的热稳定性更好,最大失重速率和其对应的温度更低、放热峰更宽,放热速率更低。
High performance precursor is the basis of high quality carbon fiber, while high performance polyacrylonitrile (PAN) and high quality of PAN spinning solution are necessary conditions of obtaining high performance precursor. In polymerization stage, aqueous deposited polymerization is utilized to synthesize high molecular weight PAN polymers using by acrylonitrile (AN) and itaconic acid (IA) as monomers. In dissolving stage, the high dissolved ability organic solvents dimethylsulphoxide (DMSO) and dimethylacetamide (DMAc) were choosed to prepare PAN spinning solution. After defoaming and filtering, the experimental PAN spinning solution was obtained. The influence of various factors such as solid content,temperature, molecular weight, shear rate and solvents on the apparent viscosity of spinning solution was explored by orthogonal experiment and spinning solution rheological research of PAN spinning solution. And fitting correspond rheological equations. In the process of above research for spinning solution findings:using different solvents, experimental data and analysis results of spinning solution vary greatly. Therefore, after getting PAN polymer powder by membrance, washing, drying and grinding of spinning solution, the thermal properties and structure were analysised by using DSC, TG and XRD.
     The preparation techniques of PAN spinning solution including:dry, solubility, defoam, shear and pre-filtering. Through optimize the preparation technology, high quality PAN spinning solution can be obtained. Meanwhile, the spinning solution preparation technology is connectted with solvent. Compared with DMSO, using DMAc as solvent, the stir and defoam time was shorter, the solubility temperature was lower, but due to its volatile, the dissolving process of PAN/DMAc spinning solution should be under pressure in the atmosphere of N2.
     As the orthogonal test of PAN spinning solution shown, the influence of four factors on apparent viscosity is connect with solvent. To PAN/DMSO and PAN/DMAc spinning solution, the influence degree of four factors on apparent viscosity respectively is:content of solid> molecular weight> temperature> shear rate; temperature> content of solid> molecular weight > shear rate, and the influence of temperature on PAN/DMAc spinning solution apparent viscosity is more degree than the other three factors.
     The rheological properties research of PAN spinning solution shows that, the PAN spinning solution displays thinning shear phenomenon obviously, belongs to the plastic fluid of non-newtonian fluid, its apparent viscosity increases with the increasing of the molecular weight and the content of solid. Meanwhile, the PAN spinning solution exists critical molecular weight and critical shear rate, the critical molecular weight and critical shear rate of PAN/DMSO spinning solution and they are approximately to:35×104,4S-1~8S-1; the critical molecular weight and critical shear rate of PAN/DMAc spinning solution are approximately to:27×104,1.5S-1~2S-1, and the critical point is not changed with temperature. Under the same conditions, the apparent viscosity of PAN/DMAc spinning solution is far less than that of PAN/DMSO spinning solution. Therefore, when the PAN spinning solution is in the configuration, the relationship of polymer molecular weight, temperature and the solid content, and adopt the appropriate solvent should be fully coordinate to get the suitable viscosity of spinning solution.
     The rheological curves of PAN spinning solution finds that:before the critical molecular weight, linear relationship exists between 1gηwith 1gM, 1gγ, 1g(wt),1/T. The equation of PAN/DMSO and PAN/DMAc spinning solution respectively are:1gη=-31.45+5.331gM+377/T+3.531g(wt)-0.2631gγ, 1gη=-10.70+2.601gM+1767/T+7.931g(wt)-0.0891gγ. According the regression equation, the apparent viscosity of PAN spinning solution with certain conditions can be predicted and guidance for spinning process can be provided.
     The study on rheological property indexs of the PAN spinning solution discovers that:sticky flow activation energy increases with the increasing of solid content, decreases with the increasing of molecular weight and shear rate; non-newtonian index increases with the increasing of temperature, decreases with the increasing of molecular weight and solid content; structure index increases with the increasing of solid content and molecular weight, decreases with the increasing of temperature; and the change extent caused by molecular weight is far outweigh than that caused by temperature and solid content. Meanwhile, compared to PAN/DMSO spinning solution, the sticky flow activation energy and structure index of PAN/DMAc spinning solution is greater, the non-newtonian index is smaller.
     The analysis of DSC, TG, XRD explores that:the PAN polymer group unchanged during the dissolving process; solvent destroys the crystallization area of PAN, making the crystallinity decrease. Compared to DMSO, the content of the damaged crystallization caused by DMAc is deeper; compared to PAN polymer, the PAN polymer of spinning solution is more stable, maximum weightlessness rate and the corresponding temperature are greatly reduced, exothermic peak is wider and the corresponding rate is lower; compared to the polymer of PAN/DMAc spinning solution, the polymer of PAN/DMSO spinning solution thermal stability is better, maximum weightlessness rate and the corresponding temperature are lower, exothermic peak is wider and the corresponding rate is lower.
引文
[1]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [2]翁蕾蕾.高性能碳纤维的生产和应用[J].印染助剂,2006,23(5):1-3.
    [3]吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈基碳纤维的原丝[J].高科技纤维与应用,2001,26(6):6-10.
    [4]Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1991, c31(1):1-89.
    [5]Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers[J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, c36(1):1-76.
    [6]Rajalingam P, radhakrishnan G. polyacrylonitrile precursor for carbon fibers[J]. Journal of Macromolecular Science Part C:Polymer Reviews,1991, c31(2-3): 301-310.
    [7]许登堡,吴叙健.聚丙烯腈基碳纤维原丝[J].广西化纤通讯,2000,(2):19-25.
    [8]郑伟.粘胶基碳纤维的制造及其应用[J].人造纤维,2006,36(4):23-27.
    [9]王德诚.PAN基及沥青基碳纤维生产现状与展望[J].合成纤维工业,1998,21(2):45-48.
    [10]赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发[J].合成纤维工业,2000,23(1):75-77.
    [11]Zhang D, Sun Q. Structure and properties development during the conversion of polyethylene precursors to carbon fibers[J]. Journal of Applied Polymer Science, 1996,62:367-373.
    [12]Newell A A, Edie D D, Fuller E L. Kinetics of carbonization and graphitization of PBO fiber[J]. Journal of Applied Polymer Science,1996,60:825-832.
    [13]赵宗桂.碳纤维及其复合材料的发展与应用[J].石化技术与应用,2002,20(4):273-276.
    [14]汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈基原丝的制备[J].合成纤维,2000,29(4):23-27.
    [15]Kobets I.P., deev I.S. Carbon Fibers:Structure and Mechanical Properties[J]. Composites Science and Technology,1997,57:1571-1580.
    [16]王茂章,贺福.碳纤维制造、性能及其应用[M].北京:科学出版社,1984.
    [17]Mukesh K J, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 1. A review of the physical and morphological aspects[J]. Journal of Materials Science,1987,22(1):278-300.
    [18]Mukesh K J, Balasubramenian M. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 2[J]. Precursor morphology and thermooxidative stabilization[J]. Journal of Materials Science,1987,22(1):301-312.
    [19]Balasubramanian M, Mukesh K J, Bhattacharya S K, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 3[J]. thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science,1987,22(11):3864-3872.
    [20]赵亚奇,王成国,朱波,王延相,王启芬.丙烯腈水相沉淀聚合引发机理的研究[J].材料工程,2008,(3):77-80.
    [21]Datye K V. Spinning of pan-fiber. part Ⅲ:wet spinning[J]. Synthetic Fibers,1996, 4:11-19.
    [22]Datye K V. Spinning of pan-fiber. part Ⅱ:dry spinning[J]. Synthetic Fibers,1995, 2:7-11.
    [23]Datye K V. Acrylic fibers by melt spinning process[J]. Synthetic Fibers,1994,3: 27-31.
    [24]Edie D D, Fox N K, Barnett B C. Melt-spun non-circular carbon fibers. carbon, 1986,24:477-482.
    [25]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺[J].合成纤维工业,2002,25(4):35-38.
    [26]贺福.高性能碳纤维原丝与干喷湿纺[J].高科技纤维与应用,2004,29(4):6-12.
    [27]王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].上海:中国纺织大学出版社,1999.
    [28]Zhang W X, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon,2003,41:2805-2812.
    [29]Bhanu VA, Rangarajan P, Wiles K. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors[J]. Polymer,2002,43:4841-4850.
    [30]崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究[D].山东大学博士学位论文,2006.
    [31]Gupta D C, Agrawal J P. Effect of comonomers on thermal degradation of polyacrylonitrile[J]. Journal of Applied Polymer Science,1989,38:265-270.
    [32]Tsai J S, Lin C H. The effect of the side chain of acrylate comonomers on the orientation, pore-size, and properties of polyacrylonitrile precursor and resulting carbon fiber[J]. Journal of Applied Polymer Science,1991,42:3039-3044.
    [33]Bajaj P, Kumari M S. Physicomechanical properties of fibers from blends of acrylonitrile terpolymer and its hydrolyzed products[J]. Textile Research Journal, 1989,59(4):191-200.
    [34]Bhardwaj A, Bhardwaj I S. ESCA characterization of polyacrylonitrile-based carbon fiber precursors during its stabilization process[J]. Journal of Applied Polymer Science,1994,51(12):2015-2020.
    [35]陈厚,张旺玺,蔡华苏.丙烯腈和丙烯酸的水相悬浮聚合及表征[J].金山油化纤,1999,(4):7-11.
    [36]Bajaj P, Sen K, Bahrami SH. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide[J]. Journal of Applied Polymer Science,1996, 59:1539-1550.
    [37]孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征[J].合成技术及应用.2003,18(4):9-12.
    [38]裴玉新,徐又一.丙烯腈-马来酸酐共聚物合成的研究(一)[J].纺织学报,1999,20(6):347-376.
    [39]李勇,徐群,郭艳.丙烯腈-醋酸乙烯酯-甲基丙烯酸羟乙酯三元共聚合反应的研究[J].齐齐哈尔大学学报,2004,20(3):4-9.
    [40]Ogawa H, Saito K. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index[J]. Carbon,1995,33(6):783-788.
    [41]吴华,徐建军,叶光斗,李守群.N-乙烯基甲酰胺-丙烯腈共聚[J].功能高分子 学报,2005,18(4):646-650.
    [42]张林,王伟俊,杨明远.悬浮法合成高分子量PAN的工艺研究[J].现代塑料加工应用,1997,9(4):7-9.
    [43]潘祖仁.高分子化学[M].北京:化学工业出版社,2002.
    [44]张晨,杜中杰,励杭泉.丙烯腈/丙烯酸丁酯浓乳液快速聚合的竞聚率[J].高分子材料科学与工程.2004,20(2):97-99.
    [45]Nakano Y, Hisatani K, Kamide K. Synthesis of ultra-high molecular weight PAN with highly isotactic content using dialkylmagnesium/polyhydric alcohol system as catalyst[J]. Polymer International,1995,36:87-89.
    [46]李克友,张菊花,向福如.高分子合成原理及工艺学[M].北京:科学出版社,1999.
    [47]上海纺织工学院.腈纶生产工艺及其原理[M].上海:上海人民出版社,1976.
    [48]金日光,华幼卿.高分子物理(第二版)[M].北京:化学工业出版社,2005.
    [49]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [50]王延相,王成国,董雪梅,何东新.PAN原丝微观特征对碳纤维结构与性能的影响[J].金山油化纤,2002,21(4):5-12.
    [51]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社,2001.
    [52]董纪震,赵耀明,陈雪英,曾宪珉.合成纤维生产工艺学[M].北京:中国纺织出版社,1994.
    [53]张旺玺.聚丙烯腈基碳纤维[M].上海:东华大学出版社,2005.
    [54][苏]彼烈彼尔金K E[编].徐静宜,韩淑君[译].纺织纤维的结构与性能[M].北京:中国石化出版社,1991.
    [55]Bang Y H, Lee S, Cho H H. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment[J]. Journal of Applied Polymer Science,1998,68:2205-2213.
    [56]Tsuchiya Y, Sumi K. Thermal decomposition products of polyacrylonitrile[J]. Journal of Applied Polymer Science,1977,21:975-980.
    [57]刘晔.PAN纤维原丝的热性能研究[J].炭素技术,1995,(5):16-19.
    [58]Sen K, Bajaj P, Sreekumar TV. Thermal behavior of drawn acrylic fibers[J]. Polymer science:Part B:Polymer Physics,2003,41:2949-2958.
    [59]Takaku A, Shimizu J. Volume contraction and its significance in structural formation during the thermal stabilization of acrylic fibers[J]. Journal of Applied Polymer Science,1984,29:1319-1326.
    [60]Edie D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36:345-362.
    [61]程罡.PAN基碳纤维的制造及应用[J].安徽化工.2003,(2):25-27.
    [62]贺福,王润娥,赵建国.聚丙烯腈基碳纤维[J].化工新型材料.1999,27(4):6-14.
    [63]北京大学化学系高分子化学教研室.高分子物理实验[M].北京:北京大学出版社,1987.
    [64]周正,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [65]赵亚奇.水相沉淀聚合工艺制备碳纤维用高分子量聚丙烯腈[D].山东大学博士学位论文,2010.
    [66]曹煜彤,戴信飞,胡组名,刘兆峰.聚对苯二甲酰对苯二胺三元共聚物溶液的流变性[J].东华大学学报(自然科学版),2008,34(5):45-48.
    [67]徐樑华,吴红枚.高浓度PAN/DMSO原液粘度特性及纺丝工艺性的研究[J].北京化工大学学报,1999,26(3):21-24.
    [68]黄平.高强高模聚乙烯醇纤维的研究进展[J].合成纤维工业,2001,24(5):26-30.
    [69]黄玉东.PBO超级纤维研究进展及其表面处理[J].高科技纤维与应用,2001,26(1):11-15.
    [70]陈自力,刘兆峰.高强高模聚乙烯纤维及其在复合材料中的应用(上)[J].产业用纺织品,1998,16(4):7-10.
    [71]王成国,赵亚奇,王启芬.连续水相沉淀聚合法合成聚丙烯腈的反应机理研究进展[J].现代化工,2008,28(1):18-2].
    [72]任国强,史子瑾,童克锦.混合对丙烯腈连续水相沉淀共聚的影响:I.转速和挡板数的影响[J].合成树脂及塑料,1993,10(1):29-38.
    [73]Varma S P, Lal B B, Srivastava N K. IR studies on preoxidized PAN fibers[J], Carbon,1976,14:207-209.
    [74]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.
    [75]陈方泉,陈惠芳,潘鼎.干湿法高性能聚丙烯腈基碳纤维原丝的制备[J].化工新型材料,2003,31(11):11-15.
    [76]沈春银,毛萍君,张林,杨明远.高分子量聚丙烯腈纤维纺丝溶液的黏度特性[J].上海纺织科技-纤维生产,2000,28(6):6-8.
    [77]张斌,赵炯心,张幼维,杨年慈,吴承训.超高相对分子质量聚丙烯腈溶解的研究[J].东华大学学报,2002,28(1):111-115.
    [78]胡盼盼,朱德杰,赵炯心,吴承训,钱宝均.超高相对分子质量聚丙烯腈浓溶液的制备[J].合成纤维工业,1998,21(3):10-13.
    [79]Bajaj P, Bahrami S H, Sen K, Sreekumar T V. Thermal and rheological behavior of acrylonitrile-carboxylic acid copolymers and their metal salt complexes[J]. Journal of Applied Polymer Science,1999,74(3):567-582.
    [80]朱新远,沈新元.超高分子量聚丙烯腈溶液的流变性[J].合成纤维,1997,(2):9-]3.
    [81]Mukhamedzhanova M Y, Shirshova N Y, Khamrakulov G. Rheological properties of concentrated solutions of ternary acrylonitrile copolymers[J]. Fiber Chemistry, 2000,32(5):340-343.
    [82]张国萍,毛萍君,张林,杨明远,王荣光.用于碳纤维原丝的聚丙烯腈纺丝溶液的性质研究[J].青岛大学学报,1999,14(3):26-30.
    [83]朱德杰,胡盼盼,赵炯心,吴承训,钱宝均.缠结对超高分子量聚丙烯腈特性粘度测定的影响[J].中国纺织大学学报,1996,,22(1):1-8.
    [84]龚勇明,徐棵华,刘淑金.PAN分子环化行为对纤维结构及性能的影响[J].北京化工大学学报,2004,31(6):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700