东祁连山高寒草地土壤真菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是草地农业生态系统的重要组成部分,在能量流动、物质循环以及土壤的形成与熟化过程中均起重要作用。同时也是反应环境变化的敏感指示生物,其种群数量和组成是评价草地土壤环境质量的重要参数。研究土壤微生物的数量、种群多样性、生态分布以及生理功能群对提高草地生态系统的生产力,使之持续稳定发展具有重要意义。真菌是一类种类繁多、分布广泛的真核微生物,真菌构成了土壤的大部分微生物生物量,具有分解有机质,为植物提供养分的功能,是生态系统健康的指示物,真菌多样性在维持生物圈生态平衡和为人类提供大量未开发的生物资源方面起到了重要作用。因此,研究东祁连山高寒草地土壤真菌的种类、数量组成和生态分布等,并对该区的真菌群落进行多样性比较与分析,旨在揭示该区域草地土壤环境中真菌群落的基本特征、分布状况及物种多样性等,以期为东祁连山高寒草地的有效保护和综合开发提供依据。
     本文选取东祁连山七类具有代表性的高寒草地植被类型作为试验样地,即杜鹃灌丛(Rhododendron fruticosa shrub land),高山柳灌丛(Salix cupularis fruticosa shrub land),金露梅灌丛(Dasiphoru fruticosa shrub land),珠芽蓼草地(Polygonum grassland),禾草草地(Grass grassland),沼泽草地(Swamp grassland)和嵩草草地(Kobresia grassland)。选用PDA培养基、PSA培养基、玉米粉琼脂培养基和马丁氏-孟加拉红培养基分离土壤真菌;对土壤中的真菌采用表型鉴定和基于ITS rDNA基因序列的系统发育分析鉴定;并根据鉴定的土壤真菌和各测度指数的特点及取样数据的类型,应用生态学评价方法对可培养真菌多样性进行分析;把DGGE和Nested PCR运用到东祁连山高寒草地土壤微生物多样性的研究中;对土壤中的优势真菌——被孢霉,选择其中的具有代表性的3个高山被孢霉株进行了生物学特性研究。主要研究成果如下:
     1对不同培养条件下土壤真菌的分离数量进行测定分析可知,同一样品在不同pH、温度和培养基下培养后,分离出的菌群种类和数量都差异较大,马丁培养基较PDA、PSA和玉米粉培养基测得的数量、种类较多,相对适合土壤真菌的分离培养。通过比较采用的几种培养方案,真菌的最适分离温度为20℃,最适分离pH值为6.5,最适分离培养基为马丁氏培养基。
     2对分离的可培养土壤优势真菌应用表型鉴定和ITS rDNA序列分析进行分类,通过大规模的分离培养方法,综合表型鉴定和序列分析结果可以得出,东祁连山高寒草地土壤中主要的可培养真菌为:被孢霉属(Mortierella spp.)、柔束霉属(Doratomyces spp.)、小球腔菌属(Leptosphaeria spp.)、枝孢属(Cladosporium spp.)、轮枝菌属(Verticillium spp.)、毛霉属(Mucor spp.)、弯颈霉属(Tolypocladium spp.)、白僵菌属(Beauveria spp.)、肉座菌属(Hypocrea spp.)、截盘多毛孢属(Truncatella spp.)、虫草属(Cordyceps spp.)、木霉属(Trichoderma spp.)、丛赤壳属(Nectria spp.)、亚隔孢壳属(Didymella spp.)、青霉属(Penicillium spp.)、生赤壳属(Bionectria spp.)、链格孢属(Alternaria spp.)、曲霉属(Aspergillus spp.)、地丝菌属(Geomyces spp.)、镰孢菌属(Fusarium spp.)、帚霉属(Scopulariopsis spp.)、暗球腔菌属(Phaeosphaeria spp.),鉴定所得菌株可分属于22个属,绝大多数属于半知菌亚门和接合菌亚门真菌。另外,有大于10%的分离菌种暂时无法确定其分类地位,极可能是新种。
     3本试验也对可培养土壤真菌的多样性及群落生态特征进行了研究,结果表明,物种的丰富度(S)、Shannon- Wiener多样性指数(H)、Simpson优势度(D)和Pielou均匀度指数(J)变化范围分别为15~18,2.47~2.81,0.89~0.93,0.91~0.97;各指数在各类型草地中波动较为平缓,反映出基本一致的变化趋势,多样性指数的大小顺序为:嵩草草地>珠芽蓼草地>金露梅灌丛>高山柳灌丛>禾草草地>杜鹃灌丛>沼泽草地,除Pielou指数外其他指数均以嵩草草地较高,沼泽草地较低;东祁连山高寒草地土壤多样性较丰富,其多样性和草地类型的特异性有着密切的关系。
     4四不同草地土壤真菌的DGGE分析研究,采用Nested-PCR技术扩增土壤真菌ITS1 rDNA区域,利用该产物优化土壤真菌DGGE条件,应用DGGE图谱分析技术,并结合切胶测序及系统发育分析对土壤真菌菌群结构进行研究。结果表明Nested-PCR其具有较高的灵敏性,可有效的从微量DNA中扩增出约250 bp的ITS1 rDNA目的片段。DGGE条带测序及图谱分析表明,4种类型草地土壤DGGE带谱在条带的数量和亮度方面均存在较大差异,和可培养真菌的变化趋势基本一致。
     5三个高山被孢霉菌株的生物学特性的研究表明它们之间差异显著,M. ap27、M.ap60和M.ap9的最适氮源均为蛋白胨,M.ap27的最适碳源为淀粉,M.ap60的最适碳源为蔗糖,M.ap9的最适碳源为葡萄糖;3个高山被孢霉菌株在5~30℃的温度处理下都能生长,M.ap27的最适生长温度为30℃,M.ap60和M.ap9的最适生长温度均为5℃;3个高山被孢霉菌株在pH值4~9范围内均能生长,适宜pH值为7。
As a main part of the agricultural ecosystem of grassland, soil microorganisms play vital roles in many processes, such as energy flowing and subtance conversion & cycling as well as soil developing and maturation. It is a sensitive index of any variation in environmental conditions as well. Constitutions and quantities of population are two key parameters for evaluating the soil quality. Therefore, it is very significative to study quantity of soil microbial population, diversity of population, ecological distribution characteristics and physiological fuction groups enhancing productivity of grassland ecosystem for sustainable development. The fungi are a kind of extensive eukaryotes microorganism, The fungi form the most microorganism amount of soil, resolve the organic matter, offer nutrient for plant and are healthy instruction thing for ecosystem. Fungal diversity has played important function in maintain the biosphere ecological balance and offer the undeveloped living resources to mankind in a large amounting, therefore, the study on soil fungal species, quantitative composition, ecological distribution et al, in order to reveal the fungal community, species diversity and to provide evidence for effective protection and comprehensive development of alpine grassland in Eastern Qilian mountains.
     In this study, seven different representative vegetation types of alpine grassland in Eastern Qilian Mountains, which were Rhododendron fruticosa shrub land, Salix cupularis fruticosa shrub land, Dasiphoru fruticosa shrub land, Polygonum grassland, Grass steppe, Swamp grassland and Kobresia grassland were selected to be experimental samples. The soil fungi were isolated by PDA, PSA, Maize Powder Media and Rose Bengal Medium, which were analyzed by ITS rDNA sequence analysis phenotype identification. According to the identificated fungi, the characteristics of each measure index and types of sampling data, the fungi diversity were analyzed by ecology-evaluating methods. The DGGE and Nested PCR were used to study the fungi diversity; The biological characteristics of three Mortierella were study, which were seclected from dominated fungi, the main results were as follows:
     1 The quantity of soil fungi were determined in the different incubation conditions, the same sample have different species and quantities in different pH, temperature and media different incubation conditions, Rose Bengal Medium could get more species and quantities than PDA、PSA and corn powders, which was suitable for isolating fungi from soil. By comparing, the optimal incubation temperature, pH and respectively were 20℃, 6.5 and Rose Bengal Medium, respectively.
     2 The soil fungi were classfied by ITS rDNA sequence analysis and phenotype identification, through large-scale isolation methord, Synthetic ITS rDNA sequence analysis and phenotype identification, the following cultured fungi in the alpine grassland of Eastern Qilian Mountains can be drawn: Mortierella spp., Doratomyces spp., Leptosphaeria spp., Cladosporium spp., Verticillium spp., Mucor spp., Tolypocladium spp., Beauveria spp., Hypocrea spp., Truncatella spp., Cordyceps spp., Trichoderma spp., Nectria spp., Didymella spp., Penicillium spp., Bionectria spp., Alternaria spp., Aspergillus spp., Geomyces spp., Fusarium spp., Scopulariopsis spp. and Phaeosphaeria spp. The strains belong to 22 genera, most of them belong to imperfect fungi and zygomycetes. In addition, more than 10 % fungi strains could not clarify the taxonomic status temporarily, which might be new species.
     3 The diversity and Ecological Characteristics of cultured soil fungi. Species abundance (S), Shannon-Wiener index (H), Simpson dominance index (D) and Pielou evenness index (J) range were 15-18, 2.47-2.81, 0.89-0.93, 0.91-0.97, respectively. Each index fluctuated slowly, and revealed a similar pattern. The Shannon-Wiener index was: Kobresia grassland> Polygonum grassland> Dasiphoru fruticosa shrub land> Salix cupularis fruticosa shrub land> Grass grassland> Rhododendron fruticosa shrub land> Swamp grassland. Except for Pielou index, the others index relatively high in Kobresia grassland and relatively low in Swamp grassland; The results indicate that the diversity of soil fungi were very abundant in the alpine grassland of Eastern Qilian Mountains, and there exist close corelation between fungal diversity and grassland types.
     4 DGGE analysis of rDNA in 4 types soil fungi, Nested PCR amplification of the ITS1 rDNA, under DGGE optimized condition, soil fungi community structure were analyzed by sequencing and phylogenetic analysis. The results showed, Nested- PCR has high sensitivity, ITS1 rDNA were amplified from micro amounts of nucleic acids, which was about 250 bp in length. The DGGE band sequencing and mapping analysis demonstrated that the DGGE band has big difference in quantity and brightness, and it has same trend as the cultured soil fungi in 4 types grassland.
     5 The biological characteristics of three Mortierella alpina isolated from alpine grassland in the Eastern Qilian mountains were discussed. The results showed that there were significant differences on their biological characteristics.The optimum nitrogen sources of three M. alpina was Peptone, while the optimum carbon sources of M.alpina 27 was Starch, the optimum carbon sources of M. alpina 60 was Sucros and Gcose was the optimum carbon sources of M.alpina 9. The suitable growth temperature for three M.alpinas was 5~30℃and the optimum of M.alpina 27 was 30℃, while that for M.alpina 60 and 9 was 5℃. All of them can grow at pH 4~9 and pH 7 was the optimum .
引文
[1]包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36-42.
    [2]蔡燕飞,廖宗文.土壤微生物生态学方法进展[J].土壤与环境. 2002,11(2):167-171.
    [3]陈剑山,郑服丛. ITS序列分析在真菌分类鉴定中的应用[J].安徽农业科学, 2007, 35(13): 3785-3792.
    [4]陈艳,霍成君,王利鹏,黄俊武,王守岩.中国草地的地理特点及其开发利用的巨大潜力[J].黑龙江八一农垦大学学报, 1997, 9(4):62-65.
    [5]戴芳澜.中国真菌总汇[M].北京:科学出版社,1979.
    [6]杜涛,黄小毛等.从土壤中提取DNA用PCR扩增[J].微生物学通报, 2003,30(6):1-5.
    [7]范继红,杨国亭,李桂伶.木本植物VA菌根研究进展[J].防护林科学.2006,70(1),35-38
    [8]方中达.植病研究方法(第三版)[M].北京:中国农业出版社,1998.
    [9]冯虎元,马晓军,章高森,等.青藏高原多年冻土微生物的培养和计数[J].冰川冻土,2004, 26(2):182-187.
    [10]高云超,朱文珊,陈文新.土壤真菌群落生态特征与养分转化[J].生态科学,1998,6(1):60- 66.
    [11]顾宗濂等译.E.A渡尔,F E克拉克(美)编著.土壤微生物学与生物化学.北京:科学技术文献出版社.1993,62~64
    [12]郭继勋,祝廷成,马文明,张振凯.东北羊草草原土壤微生物与生态环境的关系[J].草地学报, 1996, 4(4):240-245.
    [13]郭继勋,祝廷成.羊草草原土壤微生物的数量和生物量[J].生态学报.1997,17(1):78-82.
    [14]韩艳洁,张秋良.胡杨根际土壤微生物区系研究.干旱区资源与环境,2008,22(11):185- 190 .
    [15]韩玉竹.东祁连山高寒草地土壤微生物生态分布及其优势菌的鉴定[D].甘肃农业大学硕士论文,2006.
    [16]郝文英.中国农业百科全书·土壤卷[M].北京:农业出版社,1996, 385-400.
    [17]何玉梅,张丽华.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报, 2007, 27(1): 113-119.
    [18]胡双熙.祁连山东段山地土壤性质及垂直分布规律[J].地理科学,1994,14(1):38-48.
    [19]黄建忠,施巧琴,周晓兰,等.高产脂微生物深黄被孢霉M018变株的选育及其油脂合成[J].福建师范大学学报(自然科学版),1998,8(4):233–237.
    [20]姜成林,徐丽华.微生物资源开发利用[M].北京:中国轻工业出版社.2001(4):85-86.
    [21]巨天珍,成源,常成虎,等.天水小陇山红豆杉(Taxus chinensis(Pilg.)Rehd)林土壤真菌多样性及其与生态因子的相关性[J].环境科学研究,2008,21(1):128-132.
    [22]李鹏,毕学军,汝少国. DNA提取方法对活性污泥微样性PCR2DGGE检测的影响[J].安全与环境学报, 2007, 7(2):53-57.
    [23]李博.我国草地资源现况及其管理对策[J].大自然探索,1997, 16(59):12-14.
    [24]李峰,李济吾.镰刀菌在生物化工及生态环境治理中的研究进展[C].食品安全监督与法制建设国际研讨会暨第二届中国食品研究生论坛论文集(下).北京:科学出版社.2005,1080-1083.
    [25]李钧敏,金则新.一种高效可直接用于PCR分析的土壤总微生物DNA抽提方法[J].应用生态学报, 2006,17(11):2107-2111.
    [26]李新宇,张惠文,张晶.乙草胺和甲胺磷对农田黑土可培养真菌数量及种群结构的影响[J].应用生态学报, 2005, 16(6): 1009-1013.
    [27]梁晨,吕国忠.土壤真菌分离和计数方法的探讨[J].沈阳农业大学学报,2000,31(5):515- 518
    [28]刘会梅,张天宇.土壤真菌研究进展[J].山东农业大学学报, 2008, 39(2): 326-330.
    [29]刘庆.青藏高原东部(川西)生态脆弱带恢复与重建研究进展[J].资源科学.1999,21(5):81- 85.
    [30]刘世贵,葛绍荣,龙富章.川西北退化草地土壤微生物数量与区系研究[J].草业学报.1994, 3(4):70-76.
    [31]刘增文,段而军,高文俊,等.秦岭山区人工林地枯落叶客置对土壤生物化学性质的影响[J].应用生态学报,2008,19(4):704-710.
    [32]柳小妮,孙九林,张德罡,等.东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究[J].草业学报,2008,17(4):1-11.
    [33]陆雅海,张福锁.根际微生物研究进展.土壤,2006,38(2):113-121.
    [34]吕国忠,孙晓东,李贺.东北地区保护地土壤真菌多样性的研究[J].大连民族学院学报, 2006, 30(1):6-8.
    [35]罗海峰,齐鸿雁,薛凯.在PCR-DGGE研究土壤微生物多样性中应用GC发卡结构的效应[J].生态学报, 2003, 23 (10):2170-2175.
    [36]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1575.
    [37]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地,1995,5:29- 33.
    [38]马俊孝,季明杰,孔健. PCR-DGGE技术在微生物物种多样性研究中的局限性及其解决措施[J].食品科学, 2008, 29(5):493-497.
    [39]马克平.生物多样性的测度方法:Ⅰα-多样性的测度方法(上)[J].生物多样性,1994,2(3): 162-168.
    [40]马万里,Josquin Tibbits, Mark Adams.土壤微生物多样性研究的新方法[J].土壤学报, 2004, 41(l):103-107.
    [41]潘好芹,张天宇,黄悦华,等.太白山土壤淡色丝孢真菌群落多样性及生态位[J].应用生态学报, 2009,20 (2):363-369.
    [42]庞雄飞,尤民生.昆虫群落生态学[M].北京:中国农业出版社,1996:77-103.
    [43]钱存柔,黄仪秀.微生物学实验教程[M].北京:北京大学出版社,1999.
    [44]任天志,Grego S.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [45]荣丽,李贤伟,朱天辉,等.光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群[J].草业学报,2009,18(4):117-124.
    [46]沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化[J].生态学报,2004,24(3):432- 437.
    [47]苏大学.西部草原治理与保护区划[J].中国农业资源与区划, 2002,22(1):14-15.
    [48]孙海新,刘训理.茶树根际微生物研究[J].生态学报,2004,24(7):1353-1357.
    [49]唐姆茨K H [西德],盖姆斯W [荷兰].农业土壤真菌[M].北京:科学出版社,1979.
    [50]唐启义,冯明光.实用统计分析以及DPS数据处理系统[M].北京:科学出版社,2002.43-65.
    [51]土壤微生物研究会.土壤微生物实验法[M].科学出版社, 1983.
    [52]王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性, 2002, 10(1):126-134.
    [53]王国荣.东祁连山高寒灌丛草地土壤微生物的季节动态和生态分布[D].甘肃农业大学硕士论文,2006.
    [54]王建明,郑经武,贺运春,等.西瓜枯萎病在植株体内的存在状态、数量分布及扩展规律的研究[J].中国农业科学, 1993,26: 69-74.
    [55]王书锦,胡江春,张宪武.新世纪中国土壤微生物学的展望[J].微生物学杂志,2002,22(1): 36-~39.
    [56]王树青.甘肃省天祝县草地资源及其开发利用[J].中国草地, 1999,6:65-67.
    [57]王四宝,刘竟男,王成树,等.皖大别山区虫生真菌群落多样性研究[J].应用生态学报, 2004, 15(5):883-887.
    [58]王无怠.青藏高原草地生产发展战略商榷[J].青海草业, 1994, 8(8):1-4.
    [59]王岳坤,洪葵.红树林土壤细菌群落16S rDNA V3片段PCR产物的DGGE分析[J].微生物学报, 2005, 45:201-204.
    [60]韦红群,邓建珍,曹建华,等.柱花草根系与根际微生物类群的研究[J].草业科学,2009,26 (1):69-73.
    [61]魏景超.真菌鉴定手册[M].上海:上海科技出版社,1979.
    [62]吴少慧,张成刚,张忠泽.RAPD技术在微生物生物多样性鉴定中的应用[J].微生物学杂志,2000, 20(2):44~47.
    [63]夏北成, Zhou J Z,Tiedje J M.植被对土壤微生物群落结构的影响[J].应用生态学报,1998, 9(3): 296-300.
    [64]向万胜,吴金水,肖和艾,等.土壤微生物的分离!提取与纯化研究进展[J].应用生态学报, 2003,4(3):453-56.
    [65]邢德峰等.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报, 2006,46(2): 331- 335.
    [66]徐丽华等.微生物资源研究值得重视[J].微生物学通报. 2003,30(1):106-108.
    [67]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社, 1986, 91-248.
    [68]阎章才,东秀珠.微生物的生物多样性及应用前景微物学通报[J].2001 28(1):96-l02.
    [69]杨成德,龙瑞军,陈秀蓉,等.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J].草业学报, 2007,16(4):62-68.
    [70]杨生玉,王刚,沈永红主编.微生物生理学[M].北京:化学工业出版社.2007(2):34-62.
    [71]杨文博,李明春,牛淑敏主编.微生物学实验[M].北京:化学工业出版社.2004:96-99.
    [72]杨元根, Paterson E, Campben C. Biolog方法在区分城市土壤与农村土壤微生物特性上的应用[J].土壤学报,2002,39(4):582-589.
    [73]杨正礼,杨改河.中国高寒草地生产潜力与载畜量研究[J].资源科学,2000,22(4):73-77.
    [74]姚拓,马丽萍,张德罡.我国草地土壤微生物生态研究进展及浅析[J].草业科学,2005,22 (11):1-7
    [75]姚贤民,吕国忠,杨红,等.长白山森林土壤真菌区系研究[J].菌物研究,2007,5(1):43-46.
    [76]张晶,张惠文,李新宇,等.土壤真菌多样性及分子生态学研究进展[J].应用生态学报, 2004, 15(10):1958-1962.
    [77]张萍,郭辉军,刀志灵,等.高黎贡山土壤微生物的数量和多样性[J].生物多样性,1999,7(4): 297~302.
    [78]张全国,张大勇.生物多样性与生态系统功能进展与争论[J].生物多样性,2002,10(1):49- 60.
    [79]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化.微生物学报,2003,43(2):276- 282.
    [80]张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展[J].土壤,2004,36(5):476-480.
    [81]张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(l):48-52.
    [82]张伟,许俊杰,张宇.土壤真菌研究进展[J].菌物研究,2Q05,3(2):52-58.
    [83]张宪武.土壤微生物研究(理论·应用·新方法)[M].沈阳:沈阳出版社,1993.
    [84]张于光,李迪强,王慧敏.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报, 2005, 16(5):956-960.
    [85]张中义,冷怀琼,张志铭,等.植物病原真菌学[M].成都:四川科学技术出版社,1986.
    [86]赵吉,廖仰南,张桂枝,邵玉琴.草原生态系统的土壤微生物生态[J].中国草地.1999,3:57- 67.
    [87]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].上海:上海科学出版社, 1985.
    [88]周晓兰,李斌,施碧红,黄建忠,施巧琴,等.23种生化因子对被孢霉MortierellaL sabeLina F-898生长代谢的影响[C].福建师范大学学报.(自然科学版),第17卷,第3期, 2001(9).
    [89]周与良,邢来君.真菌学[M].北京:高等教育出版社,1986.
    [90]朱桂如,李家藻,唐诗声等.海北高寒草甸生态系统定位站土壤微生物学的研究I微生物各主要类群组成及其数量变动[C]/高寒草甸生态系统(第一集).兰州:甘肃人民出版社.l 982,144~l61.
    [91]朱国胜,刘作易,雷邦星,等.被孢霉-亚麻酸高产菌株选育[C].菌物学报, 2005 (1):85-92.
    [92]朱衡,瞿峰,朱立煌.利用氯化苄法提取适合分子生物分分析的真菌DNA [J].真菌学报, 1994,13: 34-40.
    [93]诸葛健,李华钟.微生物学[M].北京:科学出版社.21世纪高等院校教材—生物工程系列. 2004 (9):102-105.
    [94]祖若夫,胡宝龙,周德庆.微生物实验教程[M].上海:复旦大学出版社,1993.
    [95]左小安,赵哈林,赵学勇,等.科尔沁沙地不同恢复年限退化植被的物种多样性[J].草业学报, 2009, 18(4):9-16.
    [96] Ainsworth G C, Sussman A S. TheFungi, vol. 111. The fimgal poPulation[M].NewYork: Academic Press, 1973,1-621.
    [97] Alexopoulos C J,Mism C W,Blackwell Introductory Mycology. (4th ed.)[M]. New York etc: John Wiley & Sons,INC.,1996,l-869.
    [98] Alves-Santos F M, Benito E P, Elsava A P, et al.Genetic Diversity of Fusarium oxysporum Strain from Common Bean Fields in Spain[J].Applied and Environmental Microbiology, 1999, 65: 3335- 3340.
    [99] Anderson I C, Cairney J W G. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques[J]. Environ Microbiol, 2004, 6:769– 779.
    [100] Anderson I C, Campbell C D, Prosser J I. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil.Environ Microbiol, 2003,5:36-47.
    [101] Anderson J P, Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soils[J]. Soil Biol Biochem, 1978, 10: 215-221.
    [102] Bardgett R D, Leemans D K , Cook R, Hobbs P J. Seasonality of soil biota of grazed and ungrazed hill grasslands. Soil Biology & Biochemistry, 1997, 29:1285-1294.
    [103] Bardgett R D, Cook, R. Functional aspects of soil animal diversity in agriculture grasslands[J]. Applied Soil Ecology, 1998, 10:263-276.
    [104] Bardgett R D, Frankland J C, Hittaker W J. The effect of agricultural practices on the soil biota of some upland grasslands[J]. Agriculture, Ecosystems and Environment, 1993, 45: 25-45.
    [105] Bardgett R D, Hobbs P J. Frostegard. A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland[J]. Biology and Fertility of Soil, 1996, 22:261-264.
    [106] Bardgett R D, Wardle D A, Yeates G W. Linding above-ground and below-ground food webs:how plant responses to foliar herbivory influence soil organisms. Soil Biology & Biochemistry, 1998, 30:1867-1878.
    [107] Beck T.Mikrobiologische und biochemische Charakterisierung landwirtschaftlich genutzter Boden: I. Mit.Die Ermittlung der Bodenmikrobiologischen Kennzahl[J].Z. Pflanzenernaehr Bodenkd, 1984, 147: 456-466.
    [108] Beek S V, Priest F G.Bacterial diversity in Scoth Whisky fermentation as revealed by denaturing gradient gel eletrophoresis [J]. J Am Soc Brew Chem, 2003, 61(1): 10-14.
    [109] Bengtsson J. Which species? What kind of diversity? Which ecoststem function? Some problem in studies of relations between biodiversity and ecosystem function[J]. Applied Soil Ecology, 1998, 10:191-199.
    [110] Boddy L. Effect of temperature and water potentialon growth rate of wood-rotting basidiomycetes. Trans Br Mycol Soc,1983, 80:141–149.
    [111] Booth C. The Genus Fusarium.Commonwealth Mycological Institute[J].Kew,Surrey, Unted Kingdom. 1971.
    [112] Booth C.Physiealand Bioehemical technique in identification of Fusaria[M], gen. mierobiol, 1966, 42:7-8.
    [113] Borneman J, Hartin R J. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol, 2000, 66: 4356-4360.
    [114] Bourne, D G, McDonald I R, Murrell J C. Comparison of pmo A PCR primer sets as tools for investigating methanotroph diversity in three Danish soils[J].Appl Environ Microbiol, 2001, 67:3802-3809.
    [115] Bridge P D, Pearce D A , Rivera A, and Rutherford M. A. VNTR derived oligonucleotides as PCR pimers for population studies in filamentous fungi[J]. Letters in Applied Microbiology, 1997, 24: 426-430.
    [116] Bridge P D, Roberts P J, Spooner B M, Panchal G. On the unreliability of published DNA sequences[J]. New Phytol, 2003,160:43-48.
    [117] Bridge P, Spooner B. Soil fungi:diversity and detection[J]. Plant and soil, 2001, 232: 147-154.
    [118] Bristow A W, Jarvis S C. Effects of grazing and nitrogen fertilizer on the soil microbial biomass under permanent pasture. JSci Food Agric, 1991,54 :9–21.
    [119] Brodie E, Edwards S, Clipson N. Soil fungal community structure in a temperate upland grassland soil[J]. FEMS Microbiol Ecol, 2003,45:105-114.
    [120] Bruce A. Hungate, Charles H, aeger III, Gilda Gamara, F, Stuart Chapin III, Christopher B. Field .Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia, 2000, 124:589–598.
    [121] Bruns T D, White T J, Taylor J W. Fungal molecular systematics[J]. Annual Review of Ecology and Systematics, 1991, 22: 525-564.
    [122] Butler M L. and Raper K B. The fungi concerned in fiber deterioration.ⅡTheir ability to decompose cellulose Text. 1949,62-84.
    [123] Casey H, Alexander L,Maren N,et al.A constant flux of diverse thermophilic bacteria into the cold arctic seabed[J]. Science,2009,325 (5947):1541-1544.
    [124] Chapman S J , Campbell C D, and Puri G. Nativepinewood expansion: soil chemical and microbiological indicators of change. Soil Biol Biochem, 2003, 35: 753–764.
    [125] Chapman S J, Campbell C D, Fraser A.R, and Puri G. FTIR spectroscopy of peat in and bordering Scotspine woodland: relationship with chemical and biological properties. Soil Biol Biochem, 2001, 33: 1193–1200.
    [126] Chen D M, and Cairney J W G. Investigation of theinfluence of prescribed burning on ITS profiles of ectomycorrhizaland other soil fungi at three Australian sclerophyll forest sites.Mycol Res, 2002,106: 532–540.
    [127] Chesters C G C.Concerning fungi inhabiting soil[J].Transactions of the British Mycological Society,1950,32:197-216.
    [128] Clark F E and Pawl EA. The microflora of grassland,Adv.Agron., 1970(22): 375-435.
    [129] Clay K,Holah J.Fungal endophyte symbiosis and plant diversity in successional fields[J]. Science, 1999,285(5434): 1742- 744.
    [130] ColeL C. Protect the friendly microbes, Fragile breath of life. 1966, 46-47
    [131] Coleman M D, Bledsoe C S, and Lopushinsky W. Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot, 1989,67: 29–39.
    [132] Cook R J, and Papendick R I. Soil water potentialas a factor in the ecology of Fusarium roseum F. sp. cerealis‘culmorum’. Plant Soil, 1970, 32:131–145.
    [133] Cuttle S P and Malcolm D C. A corer for takingundisturbed peat samples. Plant Soil,1979, 51:297–300.
    [134] Dick R P, Breakwall D P and Turco R F. Soil enzyme activities and biodiversity measurements as integrativie microbiological indicators[M]. In Doran J.W.et al, Methods for Assessing Soil Quality, 1996, 247~271.
    [135] Domsch and Gams. Variability and potential of a soil fungus population to decompose pectin, xyylan and carboxymethyyl-cellulose. Soil Biochem, 1969, 29-36.
    [136] Duongruitai N,Warren A D,Mark D,et al.Bacterial phylogenetic diversity in aconstructed wetland system treating acid coal mine drainage[J]. Soil Biol Biochem,2008,40:312-321.
    [137] Elton C S.The Eclolgy of Invasions by Animals and Plants.Methuen[M].London, 1958:143- 159.
    [138] Felske A. B, Engelen U. Nubel H. Backhaus.Direct ribosome isolation from soil, to extract bacterial rRNA for community analysis. Appl. Environ. Microl ,1996, 62: 4162- 4167.
    [139] Felske A.B, Backhaus & Akkermans A.D. Direct ribosome isolation from soil,chapter 1.2.4.In A.D.L.Akkermans, J. D. van Elsas and F. J. de Bruijn(ed.), Molecular Molecular Microbial Ecology Manual, Supplement 3.Dordrecht: Kluwer Academic Publishers 1998.
    [140] Franklin R B,Taylor D R and Mills A L.Characterization of microbial communities using randomly amplified polymorphic DNA(RAPD). Journal of Microbiological Methods,1999, 35:225-235.
    [141] Fromin N,Hamelin J,Tarnawski S,et al. Statistical analysis ofdenaturing gel electrophoresis (DGE) finger printing patterns [J].Environ Microbiol, 2002, 4(11):634-643
    [142] Garland J L,Mills A L. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community-level sole-carbon-source utilization [J]. Appli Environ Microbiol, 1991, 57: 2 351-2 359.
    [143] Girvan M S, Bullimore J, Ball A S, Pretty J N, Osborn A M. Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens[J]. Appl Environ Microbiol, 2004,70:2692-2701.
    [144] Gordon T R, and Martyn R T,The evolutionary biology of Fusarium oxysporum [J]. Annu. Rev. Phytopathol, 1997, 35: 111-128.
    [145] Grayston S J, Wang S, Campbell C D, Edwards A C. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biochemistry, 1998, 30: 369-378.
    [146] Guckert J B, White D C. Phospholipid, esther-linked fatty acid analysis in microbial ecology[A]. In: Megusar F, Gantar G, eds. Perspectives in Microbial Ecology: Proceedings of the 4th International Symposium on Microbial Ecology[C]. Ljubljana, Slovenia, 1986: 455- 459.
    [147] Hawksworth D L, Sutton B C, Ainsworth G C,et al.Ainsworthand bisby’s dictionary of the fingi (7th)[M].Huddersfleld,ngland:H.Charlesworth & Co.Ltd., 1983:1-445.
    [148] Hawksworth D L. The fungal dimension of biodiversity: magnitude, significance, and conservation [J] .Mycological Research,1991,95 :641-655.
    [149] Hawksworth D L.The magnitude of fungal diversity:The 1.5 million species estimate revisited[J]. Mycological Research, 2001, 105: 1422-1432.
    [150] Haynes R J, Williams P H. Influence of stock camping behaviour on the soil microbiolo- gical and biochemical properties of grazed pastoral soils[J]. Biol Fertil Soils, 1999, 28: 253–258.
    [151] Hezl H Y, Yao G C, Chen. Relationship of crop yield to microbial biomass in highly weathered soils of China[A]. Ando Y. Plant Nutrition[C]. Kokyo: Kluwer Acadamic Publishers, 1997, 751-752.
    [152] Hooper D U and Vitousek P M, The effect of plant composition and diversity on ecosystem processes. Science, 1997,277:1302-1305.
    [153] Hortan T R, Bruns T D.The molecular revolution in ectomycorrhizal ecology:Peeking into the black- box [J].Molecular Ecology,2001,10:1855-1871.
    [154] Hu S F S, Chapin 111, M.K.Firestone, C. B. Field and N.R.Chiariello: Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 [J]. Nature, 2001, 409: 188- 191.
    [155] Ibekwe A M, Zhou J, Bmuns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology,1996,62(2):316-322.
    [156] Insam H.new set of substrates proposed for community characterization in environmental samples[Z]. 1997.
    [157] Jenkinxon D S. The effects of biocidal treatments on metabolism in soil: IV. The decomposition of fumigated organisms in soil[J]. Soil Biol Biochem, 1976, 8: 203-208.
    [158] Jensen C W. Fungusflora of the soil N Y.(Comel1)[J].Acultural Experiment Station Bulletin, 1912, 315:414-501.
    [159] Johnson L F, Curl E A. Methods for research on the ecology of soil-borne plant pathogens [M]. Minncapolis:Minn BurgessPublishing Company,1972,1-274.
    [160] Kelly A, Alcalá-Jiménez A,Bainbridge B W,t al., Use of Genetic Fingerprinting andRandom Amplified Polymorphic DNA to Characterize Pathotype of Fusarium oxysporum f. sp. ciceris Infecting Chickpea [J]. Phytopathology , 1994, 84: 1293-1298.
    [161] Kendriek W B.The Fifth Kingdom All About Fungi[M].(Disc),British Columbia,Canada: Mycologue Publications by the Author, Sidney by the Sea, 2003.
    [162] Kirk P M, Cannon P F, David J C, et al. Ainsworth and bisby’s dictionary of the fungi[M]. UK:Biddles Ltd.,2001.
    [163] Kistler H C, Alabouvette C, BaayenRP. etal., Systematic Numbering of Vegetative Compati-bility Groups in the Plant Pathogenic Fungus Fusarium oxysporum [J]. Phytop- athology, 1999, 88:30-32.
    [164] Kresk M and Wellington E M.Comparison of different methods for the isolation and purification of total community DNA from soil.Journal of Microbiological Methods,1999, 39:1-16.
    [165] Larkin M A, Blackshields G,Brown N P,et al.Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007,23(21): 2947-2948.
    [166] Lee S B, TAYLOR J W. Phylogeny of five fungus-like protoctistan Phytophihoras pecies, inferred from the internal transcribed spacers of ribosomal DNA [J]. Mol Biol Evol, 1992, 9:636-653.
    [167] Leslie J F. Mating populations in Gibberella fugikuroi(Fusarum section Liseola)[J]. phyto- pathology, 1991,81:1058-1060.
    [168] Loranger-Merciris G, Barthes L, Gastine A, et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J].Soil Biology & Biochemistry, 2006,38:2336-2343.
    [169] Mac Arthur R H, 1955.Fluctuations of animals population and a measure of community stability[J]. Ecology, 36:533-536.
    [170] Matthew E. Smith & Greg W. Douhan & David M. Rizzo.Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza, 2007,18:15–22.
    [171] Muyzer G, De Waal E C and Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol, 1993, 59: 695–700.
    [172] Muyzer G, Wall E, Uitterlinden A.Profiling of complex microbial populations by DGGE of PCR- amplified genes coding for 16S Rrna [J]. Appl Env Microbiol, 1993, 59: 695-700.
    [173] Muyzer G. DGGE-TGGE a method for identifying genes from natural ecosystems[J]. Current Microbiology,1999,2:317-322.
    [174] Nyman J A.Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils[J]. Microbial Ecology,1999,37(2):152-162.
    [175] Ogram A. Soil molecular microbial ecology at age 20: methodological challenges for the future[J]. Soil Biology & Biochemistry,2000,32(11):1499-1504.
    [176] Pan H Q,Yu J F,Wu Y M,et al.Diversity analysis of soil dematiaceous hyphomycetes from the Yellow River source area[J].Journal of Zhejiang University Science B,2008,9:829-834.
    [177] Parkinson D, Waid J S. The ecology of soil fungi [M]. Liverpool: Liverpool University Press, 1960.22-27.
    [178] Pearson W R and Lipman D J. Improved tool forbiological sequence analysis[J]. Proc Natl Acad Sci USA ,1998, 85:2444–2448.
    [179] Pennanen T, Paavolainen L, and Hantula J.Rapid PCR-based method for the direct analysis of fungal communitiesin complex environmental samples[J]. Soil Biol Biochem, 2001, 33: 697–699.
    [180] Peter H J, PENELOPE S Y, BRONWYN E G, et al. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia [J]. Appl Environ Microbiol, 2002, 68: 2391-2396.
    [181] Petersen S O, DEBOSZ K, Schjonning P, Christensen B T, Elmholt S. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils[J]. Geoderma, 1997, 78: 181-196.
    [182] Pointing S B, Buswell J A, Jones E.B,et al.Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi [J].Mycological Research,1999,103:696-700.
    [183] Postma J, and Rattink H, Biological control of Fusarium wilt of carnation with a nonpathogenic isolate of Fusarium oxysporum [J]. Can. J. Bot. 1992, 70:1199-1205.
    [184] Raghukumar C, Raghukumar S, Chinnaraj A, et al. Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India[J]. Bot Mar, 1994, 37: 515 -523.
    [185] Ranjard L, Poly F, Lata J C, Mougel C, Thioulouse J and Nazaret S. Characterisation of bacterial and fungal soil communities by automated ribosomal intergenicspacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol, 2001,67: 4479–4487.
    [186] Ren A Z, GaoY B,Wang Y H, Zhang X, Wei Y K. Diversity of claviciPitaceous fungi endophytes in Achnatherum Sibiricum in naturalgrasslands of China[J]. Symbiosis, 2008, 46(l) 2-31.
    [187] Richard D, Bardgett, Erica McAlister. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands[J].Biol Fertil Soils, 1999, 29: 282- 290.
    [188] Rosling A, Landeweert R, Lindahl B, Larsson K H, Kuyper T W,Taylor A F S, Finlay R D Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile[J]. New Phytol 2003,159:775–783.
    [189] Ruzicka S, Edgerton D, Norman M, Hill T. The utility of ergosterol as a bioindicator of fungi in temperature soils[J]. Soil Biol Biochem, 2000, 32: 989-1006.
    [190] Sakurai M, Suzuki K,Onodera M, et al.Analysis of bacterial communities insoil by PCR– DGGE targeting protease genes[J].Soil Biology&Biochemistry, 2007,39:2777-2784.
    [191] Schwieger F, Tebbe C. A new approach to utilize PCR-single strand-conformation polymorphism for 16S rRNA based microbial community analysis[J]. Appl Env Microbiol, 1998, 64: 4870-4876.
    [192] Scupham A J, Presley L L, Wei B, Bent E, Griffith N, McPherson M, Zhu F, Oluwadara O, Rao N, Braun J, Borneman J.Abundant and diverse fungal microbiota in the murine intestine. App Environ Microbiol, (2006), 72: 793–801.
    [193] Shabir A D, Kuenen J G, Muyzer G. Nested PCR-denaturing gradient gelelectrophoresis approach to determine the diversity of sulfate-reducing bacteria incomplex microbial communities[J]. Applied and Environmental Microbiology, 2005,71(5):2325-2330.
    [194] Sharp M, Parkes J, Cragg B, et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling[J]. Geology, 1999,27(2):107-110.
    [195] Shimizhu S, Kawashia H, Akimoto K, et al. Production of Ecosapentaenoic acid by Mortierella fungi[J].J Am Oil ChemSoc,1988,65 (1): 445-459.
    [196] Skujins J. History of abiotic soil enzyme research[A]. In: BURNS R G, ed. Soil Enzymes [C]. New York: Academic Press, 1978:1-49.
    [197] Sparling G P. The substrate induced respiration method[A]. In: ALEF K, NANNIPIERI P, eds. , Methods in Applied Soil Microbiology and Biochemistry[C].London: Academic Press, 1995:397-404.
    [198] Sugden A M.Ecology:Diversity and ecosystem resilience[J].Science,2000, 290 (5490):233- 235.
    [199] Tamura K,Dudley J,Nei M,et al.MEGA4:Molecular evolutionary genetics analysis(MEGA) software version 4.0[J].Molecular Biology and Evolution,2007,24:1596-1599.
    [200] Taylor G S. Fusarium oxysporum and Cylindrocarpon radicicola in relation to their association with plant roots Trans. Br. mycol. soc., 1964, 81-91.
    [201] Tilman D, Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecoligical Monographs,1987, 77:350-363.
    [202] Tilman D, The ecological consequences of changes in biodiversity: a search for general principles. Ecology,1999, 80: 1455-1474.
    [203] Torsvik V L,GOKSOYR J, DAAE F L. High diversity in DNA of soil bacteria[J]. Appl Env Microb, 1990, 56: 782-787.
    [204] Torsvik V L. Isolation of bacterial DNA from soil[J].Soil Biol Biochem,1980,12:15-21.
    [205] Torsvik V L, Daae F L, Sandaa R A, et al. Novel techniques for analyzing microbial diversity in naturaland perturbed environments[J]. Journal of Niotechnology, 1998, 64: 53-62.
    [206] Trasar A C, Leiros C, Gilsotres F, Seoane S. Towards a biochemical quality index for soils-an expression relating several biological and biochemical properties [J]. Biol FertilSoils, 1998, 26:100-106.
    [207] Viaud M, Pasquier A, Brygoo Y. Diversity of soil fungi studied by PCR-RFLP of ITS[J]. Mycol Res., 2000, 104(9): 1027-1032.
    [208] Visser S, Parkinson D. Soil biological criteria as indicators of soil quality: soil microorganisms [J]. Am J Altern Agric, 1992, 7:33-37.
    [209] Vr?lstad T, Schumacher T., and Taylor A.S. Mycorrhizalsynthesis between fungal strains of the Hymenoscyphusericae aggregate and potential ectomycorrhizal and ericoid hosts[J]. New Phytol, 2002,153: 143–152.
    [210] West A W,Grant W D,Sparling G P.Use of ergosterol, diaminopimelic acid and glucosamine content of soils to monitor changes in microbial populations[J].Soil Biol Biochem, 1987, 19:607-612.
    [211] White T J, Bruns T D, Lee S, and Taylor J. Analysisof phylogenetic relationships by amplification anddirect sequencing of ribosomal RNA genes. In PCR Protocols: a Guide to Methods and Applications. Innis, M.A.,Gelfand, D.H., Sninsky, J.J., and White, T.J., (eds). New York: Academic Press, 1990, pp. 315–322.
    [212] White T J, Bruns T, Lee S.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.In: PCR Protocols:A Guide to Methods and Applications[M]. New York Academic Press Inc., 1990.
    [213] Zelles L, Bai Q Y, Beck T, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J]. Soil Biology and Biochemistry,1992,24(4):317-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700