Fenton氧化耦合MBR工艺处理蒽醌染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒽醌染料废水是染料行业较难处理降解的废水之一。本文采用芬顿氧化+MBR耦合技术对蒽醌活性染料X-BR进行了降解研究。研究发现,通过芬顿试剂的预处理后,X-BR废水的可生化性得到了很大的提高,综合毒性减弱,为生化处理创造了良好的条件。在考察MBR工艺处理的过程中发现铁离子的投加能改善污泥特性、提高微生物的活性和减缓膜的污染。具体结果如下:
     首先实验固定X-BR浓度为100mg/L,最佳的芬顿氧化工艺条件为双氧水=5.2mmol/L、亚铁离子浓度=0.52mmol/L、初始pH=3。在此条件下X-BR能获得近乎99.9%的脱色效果和44.23%的TOC去除率(铁离子絮凝沉淀后)。通过傅里叶红外和紫外光谱跟踪X-BR的降解发现,染料的发色基团蒽醌环容易被芬顿试剂产生的羟基自由基攻击而脱色。在芬顿氧化过程中,TOC的降解远远滞后于染料的脱色速度。在选的工艺条件下,40分钟内,脱色率可以达到99.7%。芬顿试剂在高效使用的过程中,将产生大量的含铁离子固体废物(芬顿污泥)。实验设计芬顿污泥通过过滤、低温脱水后返回到芬顿氧化体系中,作为催化剂使用形成类芬顿体系。实验证明,芬顿污泥/H2O2体系对TOC的降解效率略低于经典的Fe2+/H2O2和Fe3+/H2O2。芬顿污泥/H202体系对X-BR的TOC去除率低于Fe2+/H2O2体系大约8%。
     其次采用水质指标法(B/C)、好氧呼吸指数法、赞恩-惠伦斯试验法对X-BR溶液、芬顿降解产物进行了综合性的可生化性评估。B/C的评估表明,X-BR溶液属于基本不可生物降解类底物,而通过芬顿氧化后,其产物的B/C比提高到了0.25左右。好氧呼吸曲线法的OUR检测表明,对于不同的X-BR浓度50mg/L、100mg/L和200mg/L,其OUR分别为0.564 mgO2/(L·h)、0.462 mgO2/(L·h)、0.222 mgO2/(L·h);都低于该测试条件下微生物的内源呼吸速率0.708 mgO2/(L·h);而对于芬顿氧化产物,其对应的OUR分别为3.37mgO2/(L·h),3.58 mgO2/(L·h)和3.74mgO2/(L·h)。赞恩-惠伦斯实验表明,当X-BR的浓度为50mg/L时,检测微生物的生命活动受到严重抑制,而芬顿降解产物最终能达到大约78%左右。DeltaTox(?)的综合毒性检测表明,当X-BR浓度分别为25mg/L、50mg/L和100mg/L时,发光细菌(Vibrio fischeri)的光强损失分别为17%,34%和41%。对于芬顿降解产物(X-BR=100mg/L和50mg/L),其光强损失分别为10%和6%。
     同时,通过驯化培养后,确定MBR降解X-BR芬顿氧化产物的最佳工艺条件为:MLSS=6000mg/L; DO=2.5mg/L; HRT=18hr,在此基础上能获得大约75%左右的TOC降解率和27%的总氮去除率。对平行实验的三组MBR,分别往反应器中投加干污泥量的0%(MBR1)、0.5%(MBR2)、1%(MBR3)的氯化铁离子。实验结果表明:(1)铁离子的投加对微生物的生命活动有影响,MBR1、MBR2、和MBR3反应器中的脱氢酶浓度分别为29、31、42μgTF/(mgMLSS·hr)。(2)铁离子的投加有利于增大污泥粒径,减缓膜污染的发生,MBR1、MBR2和MBR3的平均粒径分别为76.2μm、92.3μm和83.4μm;MBR1、MBR2和MBR3的dTMP/dt分别为:0.592kPa/d,0.51 kPa/d和0.487 kPa/d。(3)铁离子能抑制微生物EPS的分泌,MBR1、MBR2和MBR3的平均含量为36.85mg/g、31.02mg/g和28.93mg/g。分析发现,主要是EPS中多糖类物质减少。膜表面吸附的滤饼层的ESP含量是混合液的2倍左右。(4)铁离子能减少有机物在膜表面的沉积,膜的阻力主要以凝胶极化阻力Rp和内部阻力Rif为主,两项指标占总阻力的80-90%。傅利叶红外光谱(FTIR)和能谱(EDX)分析表明膜污染以有机污染为主,因此碱洗作为膜清洗的首选清洗方法。
     最后介绍了反渗透对MBR产水的脱盐效果和某印染污水处理厂的MBR工艺技术革新。
Anthraquinone dying wastewater is one of the most refractory wastewater in dyeing industry. In this paper, the coupled process of Fenton oxidation and MBR was investaged to degrade the simulated Anthraquinone dye of X-BR water. It was found that the biodegradability of X-BR wastewater was improved and the toxicity was weakened. The pretreatment of Fenton oxidation was readily to create conditions for the subsequent bio-treatment. During the process of MBR, it was found that the dosing of ferric ions could ameliorate the sludge characteristics and the activity of microorganism. And also the membrane fouling was retarded due to the dosing of ferric ions.
     Firstly, when the X-BR concentration was fixed to be 100mg/L, the optimal parameters of Fenton oxidation were found to be H2O2=5.2mmol/L、Fe2+=0.52mmol/L and initial pH value=3. Under these conditions, about 99.9% color removal and 44.23% TOC (after the coagulation of ferric ions) removal ratio could obtain. By monitor the degradation of X-BR by FTIR and UV-vis spectra, it could be found that the chromophore of X-BR (anthraquinone group), was easily to be attacked by the generated hydroxyl radical (·OH) of Fenton oxidation. During the Fenton oxidation, the TOC degradation rate was far away lagging behind the decolor rate. In 40 minutes, the decolorization rate obtained was almost 99.7%
     It was sure that vast waste solids of Fenton sludge were produced during the application of Fenton reagent. The experiments were designed to recover the Fenton sludge to oxidation process as catalyst by the pretreatment of filtration and dehydration. Based on the recover of Fenton sludge, Fenton-like oxidation system was established. It was proved that the oxidation efficiency of Fenton sludge/H2O2 was slightly lower than that of classic Fe2+/H2O2 and Fe3+/H2O2. Compared with Fenton sludge/H2O2 and Fe2+/H2O2 system, TOC removal ratio gap was about 8%.
     Secondary, the synthetical evaluations of bio-degradability of X-BR solution and the products of Fenton oxidation were carried out by means of water quality of B/C index、aerobic respiration index and Zahn-Wellens-Test(ZWT). It was proved by the B/C index that X-BR solution was in the category of the most recalcitrant wastewater, while the B/C index of Fenton oxidation products was increased to a level of 0.25. According to different X-BR concentration of 50mg/L、100mg/L and 200mg/L, the corresponded aerobic respiration rate was 0.564 mgO2/(L·h)、0.462 mgO2/(L·h) and 0.222 mgO2/(L·h), respectively. All the results were lower than that of endogenous respiration rate (0.708 mgO2/(L·h)). On the contrary, the aerobic respiration rate of the products of Fenton oxidation were higher than 0.708 mgO2/(L·h), which were 3.37 mgO2/(L·h),3.58 mgO2/(L·h) and 3.74 mgO2/ (L·h), respectively. It was proved by Zahn-Wellens-Test that the bio-activity of microorganism was severely obstructed even in the X-BR concentration of 50mg/L. And the Fenton oxidation products could achieve a degradation of about 78%. When the X-BR concentration were 25mg/L、50mg/L and 100mg/L, the light loss ratio of Vibrio fischeri were 17%、34% and 41%, respectively. As a contrast to the products of Fenton oxidation of initial X-BR concentration of 100 mg/L and 50mg/L, the light loss ratio were 10% and 6%.
     After the acclimation stage, the optimal parameters of MBR system obtained were MLSS=6000mg/L, DO=2.5mg/L, HRT=18hr. Based on these data, about 75% TOC removal ration and 27% TN removal ratio could be obtained. As for the three MBR system, different dosage of FeCL3 (MBR1:0%, MBR2:0.5%, MBR3:1%) were added to the aerobic system. The results revealed the followings. (1)There were big influence on the bio-activity of microorganism, and the dehydrogenase concentration of MBR1、MBR2 and MBR3 were 29、31、42μgTF/(mgMLSS·hr),respectively. (2)The dosage of ferric ions could enlarge the particle size and retard the membrane fouling. It was detected that the average particle size of MBR1、MBR2 and MBR3 were 76.2μm、92.3μm and 83.4μm, respectively. Besides, the dTMP/dt of MBR1、MBR2 and MBR3 were 0.592kPa/d,0.51 kPa/dt and 0.487 kPa/d, respectively. (3) Due to the inhibition effect of ferric ions on the secretion ability of microorganism, the EPS concentration was varied at 36.85mg/g(MBR1)、31.2mg/g (MBR2) and 28.93(MBR3). It was also revealed that the Carbohydrate was reduced more significantly than protein. The adsorbed EPS concentration in cake layer of membrane was 2 fold of that in mixed liquor. (4) The ferric ions can reduce the sedimentation of organic substance on the membrane surface. The main membrane resistances were gel-polarization (Rp) and inner membrane resistance (Rif), which contributed about 80-90% of the total resistance. By the detection of FTIR and EDX methods, it was found that the main fouling substance of membrane was organic pollution. And the alkaline cleaning was the preferred cleaning method.
     Finally, it were introduced the desalination efficiency of the MBR effluent by reverse osmosis (RO) and a technology innovation for the dyeing wastewater plant by MBR process.
引文
[1]林琳.印染行业节能减排现状及重点任务[J].印染.2008,(2):40-43
    [2]王建庆,毛志平,李戎.印染行业节能减排技术现状及展望[J].印染.2009,(1):44-51
    [3]杨书铭,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社,2002:1-6
    [4]李家珍.染料染色工业废水处理[M].北京:化学工业出版社,1998.5:
    [5]郭喜亮,许端平,李叶青.褐煤吸附絮凝印染废水的实验研究[J].辽宁工程技术大学学报(自然科学版).2009,28,增刊:166-169
    [6]Leechart P,Nakbanpote W,Thiravetyan P.Application of waste wood shaving bottom ash for adsorption of azo reactive dye[J] Journal of Environment Management,2009, 90(2):912-920
    [7]甘莉,孟召平.絮凝剂聚硅酸锌铁(PZFSiC)的研制和性能[J].安全与环境学报.2006,6(4):14-17
    [8]罗序燕,徐祥斌,张玲文.新型含硼聚硅酸铝铁锌絮凝剂的制备及絮凝性能[J].工业水处理,2009 29(8):45-49
    [9]顾学芳,田澍,王南平.脱色絮凝剂DFA的合成及脱色性能[J].印染.2007,(22):31-34
    [10]曾媛,蒋文举,金燕等.无机-有机复合絮凝剂PACSAM的制备及其脱色性能[J].化工环保,2007(3):264-268
    [11]夏红云,邓志华,李佳.混凝气浮处理酸性大红3R的实验研究[J].环境工程学报.2008,2(11):1479-1483
    [12]钟理,詹怀宇.高级氧化技术在废水处理中的应用研究进展[J].上海环境科学.2000,19(12):568-571
    [13]夏金虹.二氧化钛粉体光催化降解印染废水的研究[J].应用化工.2005,34(8):497-504
    [14]程沧沧,肖忠海,张坚亦.不锈钢负载Ti02薄膜光降解印染废水[J].环境污染与防治.2001,23(5):241-245
    [15]张穗生,陈刚,王金泉.混合微电解技术用于印染废水处理[J].中国给水排水.2008,18(5):77-81
    [16]叶亚平,唐牧,王丽华.动态强化微电解装置吹了染料废水[J].中国给水排水.2004,20(6):50-55
    [17]蒋雨希,杨健,魏奇,等.铝碳微电解法对印染废水的处理[J].工业水处理.2007,27(9):53-57
    [18]Xiong-Rong Xun Zhen-Ye Zhao Xiao-Yan Li, Ji-Dong Gu. Chemical oxidation degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent. Chemosphere,2004,55:73-79
    [19]Sheng H. Lin, CHO C.LO. Fenton process for treatment of desizing wastewater, Water Research,1997,31(8):2050-2056
    [20]张永利.模拟印染废水湿式氧化的机理[J].辽宁工程技术大学学报(自然科学版).2009,28(4):629-634
    [21]郭伟民,潘瑞松.钴酞菁染料生产废水的电解处理[J].工业用水与废水.2002,33(4):60-63
    [22]蔡成翔,莫德清.甲基橙废水电絮凝处理研究[J].百色学院学报.2007,20(3):71-75
    [23]唐振华,余阳,李浩,等.厌氧酸化+兼氧+好氧工艺处理印染废水小试实验[J].环境科学与技术.2005,28增刊:135-140
    [24]司朝晖,李立丽.混凝/生物膜曝气池/氧化塘法处理印染废水[J].中国给水排水,2003,19(5):89-93
    [25]鲁秀国,王林妹,刘艳.水解酸化-铁碳微电解-好氧生化工艺处理印染废水[J].环境污染与防治.2009,31(3):39-43
    [26]张旭,陈胜,孙德智.印染废水生物法处理技术研究进展[J].长春工业大学学报(自然科学版).2009,30(1):26-32
    [27]徐铜文.膜化学与技术教程[M].北京:中国科技大学出版社,2003
    [28]Ahn K H. et al. Application of tubular ceramic membranes for reuse of wastewater from buildings. Wat. Sci. Tech.1998,38(4/5):373-382
    [29]Thanh N C, Visvanathan C. Wastewater reuse gains momentum in Mediterranean and Middle Eastern regions. Wat. Sci. Tech.1991,6(1):19-26
    [30]Yamamoto K et al.. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Wat.Sci.Tech.,1989,21(4/5):43~54
    [31]Katsuki Kimura et al.. Filtration resistance and efficient cleaning methods of the membrane with fixed nitrifiers. Water Research,2000,34(11):2895~2904
    [32]Sato H.et al. Effect of actived sludge properties on water flux of ultrafiltration membrane used for human excrement.Wat.Sci.Tech.,1991,23:1601-1611
    [33]A.Nagano,E.Arikama,HKobayshi, The treatment of liquor wastewater containing high-strength suspended solids by membrane bioreactor system. Wat.Sci.Tech.1992, 26(3/4):887-895
    [34]Hammer M J et al Bialysis separation of sewage sludge Digestion of Proc. Of the American Soc. Of Engineering,1969,95(5):905~926
    [35]陈龙祥,由涛,张庆文.膜生物反应器研究与工程应用进展[J].2009,35(10):16-20
    [36]张文伟,孙联杰.对高锰酸钾测定双氧水含量的分析方法的研究和改进[J].辽宁师范大学学报(自然科学版).1997,20(3):262-264
    [37]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993
    [38]N.Modirshala M.A. Behnajady,F.Ghanbary, Decolorization and mineralization of C.I.Acid Yellow 23 by Fenton and photo-Fenton process, Dyes and Pigments,2007 (73):305-310
    [39]Yang Deng, James D.Englehardt. Treatment of landfill leachate by the Fenton process. Water Res.2006,40(20),3683-3649
    [40]Sheng H Lin, Cho C. Lo. Fenton process for treatment of desizing wastewater. Water Res.1997,31(8),2050-2056
    [41]A.Rathinam, N.F.Nishtar, R.R.Johnnalagadda, U.N.Balachandran. Wet oxidation of acid brown dye by hydrogen peroxidae using heterogeneous catalyst Mn-salen-Y zeolite:A potential catalyst, J.Hazard.Mater.2006,138(1),152-159
    [42]Jian-Hui Sun, Sheng-peng Sun, Mao-Hong Fan et al. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J.Hazard.Mater.2007,148(1),172-177
    [43]Ruzhong Chen, Joseph J. Pignatello. Role of quinone intermediates as electron shuttles in Fenton and photo assisted Fenton oxidations of aromatic compounds. Environ.Sci.Technol.1997,31(8),2399-2406
    [44]Shaobin Wang. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments.2008,76(3),714-720
    [45]R.Oliveira, M.F.Almeida, L.Santos, L.M.Madeira. Experimental design of 2, 4-diclorophenl oxidation by Fenton's reaction.Ind.Eng.Chem.Res.2006,45(4), 1266-1276
    [46]Herve Gallard, Joseph de Laat, Bernard Legube. Effect of pH on the oxidation rate of organic compounds by Fe-Ⅱ/H2O2, mechanisms and simulation. New J.Chem.1998, 22 (3),263-268
    [47]W.Z.Tang, C.P.Huang.2,4-dichlorophenol oxidation kinetics by Fenton's reagent. Environ.Technol.1996,17(12),1371-1378
    [48]Hang Xu, Dongxiang Zhang, Wenguo Xu, Monitoring of decolorization kinetics of Reactive Brilliant Blue by online spectrophotometrice method in Fenton oxidation process, Journal of Hazardous Materials,2008,158:445-453
    [49]徐国祥,其鲁,闻雷,等.聚1,5二氨基蒽醌二次锂电池正极材料研究[J].高分子学报.2006,(6):795-781
    [50]孙振亚,杜建华,陈和生,等.氢氧化铁对偶氮染料脱色作用的红外光谱研究[J].光谱学与光谱分析.2006,26(7):1226-1231
    [51]Shyh-Fang Kang, Chih-Hsaing Liao, Mon-Chun Chen. Pre-oxidation and coagulation of textile wastewater by the Fenton process, Chemosphere.2002,46(6),923-928
    [52]徐美倩.废水可生化性评价技术探讨[J].工业水处理,2008,28(5):17-23
    [53]赵红宁,王学江,夏四清.水生生态毒理学方法在废水毒性评价中的应用[J].净水技术.2008,27(5):18-24
    [54]刘颖,张朝晖,张焕胜.污水可生化性及影响因素研究[J].中国海洋大学学报.2005,35(6):
    [55]韩玮,何康林.污水可生化性的研究[J].中国环保产业.2004,6:36-40
    [56]卢少勇,宋英豪,申立贤.呼吸速率测定研究进展[J].环境污染治理技术与设备.2002,3(8):24-30
    [57]高旭,龙腾锐.连续进出水-间歇曝气工艺污泥好氧速率研究[J].给水排水2002,28(3):4-9
    [58]Milena Lapertot, Cesar Pulgarin, Pilar Fernadez-banez. Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton[J] Water Research 2006, 40:1086-1094
    [59]Alessandra D. Coelho, Carmen Sans, Ana Aguera, Effects of pre-treatment on diclofenac:Intermedates, biodegradability and toxicity assessment[J] Science of the Total environment 2009,407:3572-3578
    [60]Stefan Gartiser, Elke Urich, Radka Alexy, Klaus Kummerer, Ultimate biodegradation and elimination of antibiotics in inherent tests[J] Chemosphere,2007,67:604-613
    [61]USEPA (2000).Toxicological review of chlorine dioxide and chlorine [A]. EPA/635/R-00/007, US Environmental Protection Agency, Washington, DC.
    [62]黄永辉,罗艳.活性染料的毒性初探[J].印染,2001,7:16-20
    [63]Magara Y. Effects of activated sludge production on water flux of ultrafitration membrane used for human excrement treatment [J]. Water Science and Technology, 1991,23(2):1601-1609
    [64]Wisniewski C et al. Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor[J] Biochemical Engineering Journal.1999,14(3):61-69
    [65]李春杰,朱南文,顾国维.SMSBR处理焦化废水的污泥特性[J].中国给水排水,2002,18(2):18-22
    [66]Chang I S, Lee C H. Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling[J] Desalination,1998,120(3):221-233
    [67]张永宝,姜佩华,冀世锋.投加氢氧化铁对膜生物反应器性能的改善[J].给水排水.2004,30(7):46-52
    [68]J C Lee, et al. Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor. Water Science Technology.2001, 43(11):59-66
    [69]桂萍,黄霞,汪诚文.膜-复合式生物反应器组合系统操作条件及稳定运行特性.环
    境科学.1998,19(2):35-38
    [70]孙本良,李洪刚,李春艳.二氮杂菲光度法连续测定水样中总铁及亚铁[J].理化检验-化学分册.2003,39(7):421
    [71]盛颖晗,陈克菲.分光光度法测定水中微量的铁离子[J].福建分析测试.2006,15(4):30-31
    [72]Y.G.Chen, G.W.Gu. Preliminary studies on continuous chromium (VI) biological removal from wastewater by anaerobic-aerobic activated sludge process, Bioresour Technology,2005,96 (15):1713-1721
    [73]俞毓馨.环境工程微生物检测手册[M].北京:中国环境科学出版社,1990
    [74]赵连梅,池勇志,张春青.TTC-脱氢酶活性测定中标准曲线的影响因素研[J].实验室科学.2009,8:72-76
    [75]李绍峰,崔崇威,黄君礼.包外聚合物EPS对MBR膜污染的影响[J].哈尔滨工业大学学报.2007,39(2):266-269
    [76]Houghton J I, Stephenson T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability [J] Water Research 2002, 36:3620-3628
    [77]罗曦,雷中方,张振亚,等.好氧/厌氧污泥细胞外聚合物(EPS)的提取方法研究[J].环境科学学报.2005,25(12):1624-1629
    [78]Liu H, Fang H H P.2002. Extraction of extracellular polymeric substances (EPS) of sludge [J]. Journal of Biotechnology.2002,95(3):249-256
    [79]王孝平,刑树礼.考马斯亮蓝法测定蛋白质含量的研究[J].天津化工.2009,23(3):40-45
    [80]王义华,徐梅珍,江萍,等.酵母蛋白多糖的分别纯化及鉴定[J].微生物学报.2004(8):515-518
    [81]Xiong X J, Hirata M, Takanashi H, Lee M G, Hano T. Analysis of acclimation behavior against nitrification inhibitors in activated sludge processes. Journal of fermentation and bioengineering,1998,86(2):207-214.
    [82]王勇,孙寓姣,黄霞.膜-生物反应器中微型动物变化与活性污泥相关性研究[J].环境科学研究.2004,17(5):48-53
    [83]Wang Y, Huang X, Yuan Q P,2005. Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochemistry,40(5): 1733-1739.
    [84]Tian J Y, Liang H, Li X, You S J, Tian S, Li G B,2008. Membrane coagulation bioreactor (MCBR) for drinking water treatment. Water Research,42(14):3910-3920.
    [85]顾平,罗虹,杨造燕,等.中空膜生物床处理生活污水的中试研究[J].中国给水排水.2000,16(3):5-8
    [86]Gander M. Aerobic MBRs for domestic wastewater treatment:a review with cost considerations [J]. Separation and purification Technology,2000,20(18):119-130
    [87]周晴,傅金祥,苏锦明,等.溶解氧对一体式膜生物反应器(IMBR)的影响[J].工业用水与废水.2004,35(3):31-34
    [88]Euan W L, Howard A C. Reducing production of excess biomass during wastewater treatment [J]. Water research,1999,33(5):1119-1132
    [89]曹斌,袁宏林,王晓昌.膜生物反应器设计中工艺参数的探讨[J].环境工程.2004,22(5):79-82
    [90]杨小丽,王世和.污泥浓度与曝气强度对MBR运行的综合影响[J].中国给水排水.2007,23(1):77-83
    [91]Heran M, Wisniewski C, Orantes J, Grasmick A,2008. Measurement of kinetic parameters in a submerged aerobic membrane bioreactor fed on acetate and operated without biomass discharge. Biochemical Engineering Journal,38(1):70-77.
    [92]Hellinga C, Schellen A, Mulder J W, et al. The SHARON process an innovative method for nitrogen removal from ammonium-rich waste water [J]. Water Science Technology, 1993,37(9):135-142
    [93]Jetten S M Mike, Schmid id Markus, Schmidt Ingo, etal. Improved nitrogen removal by application of new nitrogen-cycle bacteria [J]. Review in Environmental science and Bio/technology,2002(1):51-63
    [94]Cho B D, Fan A G,2002. Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. Journal of Membrane Science,209(2):391-403
    [95]陈爱萍.污泥浓度对膜生物反应器的影响[J].河北建筑科技学院学报.2005,22(2):10-14
    [96]张科杰,刑国平,张云霞.污泥浓度对膜生物反应器运行效果的影响分析[J].环境保护科学.2004,30(121):29
    [97]马莹,何静,马荣骏.三价铁离子在酸性水溶液中的行为[J].湖南有色金属.2005,21(1):36-39
    [98]陈福霞.OUR和DHA用于评价活性污泥活性的比较[J].石油化工安全环保技术.2008,24(4):45-46
    [99]刑林林,王竞,曲媛媛,等.驯化活性污泥处理溴氨酸废水的实验研究[J].工业水处理.2007,27(6):49-54
    [100]赵庆祥,林喆,徐永伟.重金属离子对生物污泥活性的抑制[J].上海环境科学.1993,12(2):38-40
    [101]王勇,孙寓姣,黄霞.膜-生物反应器中微型动物变化与活性状态相关性研究[J].环境科学研究.2004,17(5):48-51
    [102]张树国,顾国维,吴志超.膜生物反应器中污泥特性对膜污染的影响研究[J].工业水处理.2003,23(12):8-12
    [103]臧倩,孙宝盛,张海丰,等.胞外聚合物对一体式膜生物反应器过滤特性的影响
    [J].天津工业大学学报.2005,24(5):41-44
    [104]Nagaoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane activated sludge process [J]. Water Science and Technology,1996, 34(9):165-172
    [105]Bai R B, Leow H F. Microfiltration of activated sludge wastewater:the effect of system operation parameters [J] Separation an Purification Technology,2002, 29(2):189-198
    [106]张景丽,曹占平,张宏伟.污泥龄对膜生物反应器性能的影响[J].环境科学.2008,29(10):2788-2797
    [107]Zhang H, Sun B, Zhao X, et al. Effect of ferric chloride on fouling in membrane bioreactor[J] Separation and Purification Technology,2008,63(2):341-347
    [108]讲俐骅,徐国勋,李稳.活性污泥与悬浮填料膜生物反应器的膜污染比较[J].中国给水排水.2006,22(19):71-77
    [109]冀世锋,奚旦立.生物铁法-膜生物反应器中膜过滤特性的研究[J].膜科学与技术.2008,28(4):19-27
    [110]Koros W J, Ma Y H, Shimizu T. Terminology for membranes and membrane process-IUPAC recommendations [J] Journal of membrane science, 1996120(2):149-159
    [111]Roorda J H, J H M van der Graaf. New parameter for monitoring fouling during ultrafiltration of WWTP effluent [J].Water science and technology.,2001, 43(10):241-248
    [112]蒋波,王丽萍,华素兰,等.MBR膜污染形成机理及控制[J].环境科学与管理.2006,31(1):110-115
    [113]汤贵兰.缺氧-浸没式好氧膜生物反应器在垃圾渗滤液处理中的应用研究[M].厦门大学,2007
    [114]石坚,许振良.膜生物反应器污水处理过程中膜生物污染的研究进展[J].水处理技术.2002,28(3):125-132
    [115]张传义,王丽萍等.一体式膜生物反应器膜污染形成机理的实验研究[J].中国矿业大学学报.2004,33(4):23-26
    [116]H.Li, A G Fane, H.G L. Coster, S. Vigneswaran, Direct observation of particle deposition on the membrane surface during cross flow micro-filtration [J]. Journal of membrane science.1998,138 (22):403-411
    [117]顾国维,何义亮.膜生物反应器-在污水处理中的研究和应用[M].北京:化学工业出版社.2002:65-68
    [118]Zhang J, Chua H C, Zhou J, Fane A G,2006. Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science, 284(1-2):54-66
    [119]Yamini Satyawali, Malini balakrishnan, Effect of PAC addition on sludge properties in an MBR treating high strength wastewater [J], Water Research 2009,43 (6): 1577-1588
    [120]Meng F G, Zhang H M, Yanf F L,et al. Characterization of cake layer in submerged bioreactor[J]. Environmental Science and Technology,2007,41(11)1200-1211
    [121]尹星,夏明芳,陆继来,等.等浸没式膜-生物反应器膜面污染物质性质研究[J].环境污染与防治.2008,30(12):67-71
    [122]李绍峰,王宏杰,王雪芹.EPS与MBR中污泥活性关系研究[J].中国农村水利电力.2007,12:59-64
    [123]杨义飞,包常华,周玲玲,等.胞外聚合物的生成特性及对污水生物处理的影响[J].市政工程.2003,13(9):31-34
    [124]Lee W, Lang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors [J]. Journal of membrane science,2003, 216(10):217-227
    [125]郑蕾,田禹,孙德.pH值对活性污泥胞外聚合物分子结构和表面特征影响研究[J].环境科学.2007,28(7):1507-1511
    [126]王雪梅,刘燕,等.胞外聚合物对浸没式膜生物反应器过滤性能的影响[J].环境科学学报.2005,25(12):1620-1607
    [127]张凤君.胞外聚合物对膜生物反应器运行性能的影响[J].吉林大学学报(地球科学版).2006,36(增刊):141-143
    [128]Gao M C, Yang M,et al. Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic in organic wastewater[J]. Desalination,2004, 170(23):177-185
    [129]J Lee, W Y Ahn, C H Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor, Water research 2001,35(6):2435-2445
    [130]黄理辉,马鲁铭,王红武.催化内电解法对包外聚合物形成的影响[J].中国环境科学.2005,25(6):660-663
    [131]郝爱玲,陈永玲,顾平.微污染水处理中混合液特性对膜污染的影响[J].水处理技术.2006,32(2):30-36
    [132]B Lesjean, S Rosenberger, et al. Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater:proce Wemt [C]. Seoul,2004,2:525-532.
    [133]Fangang Meng, Hanmin Zhang, Fenlin Yang, et al. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors [J] Separation and Purification Technology 2006,51(8):95-103
    [134]Tae-Young Jeon, Gi-Cheol Cha, LK-Keun Yoo, Dong-Jin Kim. Characteristics of bio-fouling in a submerged MBR [J]. Desalination,2007,207(8):107-113
    [135]茹临峰.生物铁法-MBR处理印染废水[M].硕士学位论文.上海,东华大学,2003
    [136]Lee W, Lang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors [J]. Journal of membrane science,2003,216(8):217-227
    [137]李秀芬,张丽娜,李靖梅,等.pH对膜污染层EPS污染特征的影响及机理分析[J].膜科学与技术.2009,29(6):45-51
    [138]冯斐.厌氧MBR处理垃圾渗滤液的实验研究[M].硕士学位论文.南昌,南昌大学,2007
    [139]梁治齐.实用清洗技术手册.北京:化学工业出版社,2000
    [140]Yu KaiChang, Wen XianHua, Bu QingJie, et al. Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treatment wastewater[J]. Journal of Membrane Science.2003,224:69-79
    [141]杨继贤.MBR复合工艺膜污染及其清洗特征[J].中国环境干部管理学院学报.2009,19(2):46-50
    [142]黄霞,莫曪.MBR在净水工艺中膜污染特征及清洗[J].中国给水排水.2003,19(5):8-13
    [143]曹斌,黄霞,杨瑜芳,等.MBR-RO组合工艺污水回收中试研究[J].环境科学.2008,29(4):915-919
    [144]Ma H, Allen H E, Yin Y. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent [J]. Water Research,2001, 35(4):985-996
    [145]Fersi C, Gzara L, Dhahbi M. Treatment of textile effluents by membrane technologies. Desaliation,2005,185:399-409
    [146]Yang W B, Cicek N, State of the art of membrane bioreactors:Worldwide research and commercial applications in North America[J]. Journal of membrane science,2006, 270:201-211.
    [147]王大保.反渗透系统设计及预处理工艺探讨[J].工业水处理.1997,17(4):6-9
    [148]王建泰,李天增,苏宏,等.反渗透处理尾矿废水脱盐率的影响因素研究[J].工业水处理.2009,29(2):32-35
    [149]陈欢林,戴兴国,吴礼光.反渗透、纳滤膜技术脱除小分子有机物的研究进展[J].膜科学与技术.2009,29(3):1-10
    [150]杨靖,陈杰瑢,余嵘.纳滤/反渗透分离中有机物的特征参数对截留率的影响研究[J].膜科学与技术.2004,26(2):36-42
    [151]孟庆义,袁生,陈衍东.反渗透技术在电站锅炉水处理中的应用[J].2007,28(4):25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700