一种可扩展的大规模地球物理勘探数据采集系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进行深入而详细的地球物理勘探是急需的,也是必要的,一方面,进行地球物理勘探能够帮助人类掌握地下矿产资源的分布,另一方面,能够有效预警各类地质灾害。
     勘探范围广,采样通道空间密度高是当今大规模地球物理勘探数据采集系统的发展趋势之一。采样通道数空间密度的提高,使得地球物理勘探的分辨率信噪比,保真度均得到提高。在传统的大规模地球物理勘探数据采集系统中,由于采集站与数据中心之间的联系过于紧密,采样通道数扩展时,对数据中心的性能要求也会提高,这成为了系统扩展的瓶颈。
     本文在分析采样通道数扩展对数据采集系统管理能力,存储能力和授时能力的要求的基础上,提出一种具有分布式管理能力,分布式存储能力和分布式授时能力的大规模地球物理勘探数据采集系统,使得系统在具有良好采样通道数扩展性的同时,具有高可靠性和高灵活性。
     在可扩展的大规模地球物理勘探数据采集系统中,电源站除具有电源管理这一基本功能外,还具有分布式管理能力,分布式存储能力和分布式授时能力,为采集站进行数据采集提供了完备的条件。将电源站与采集站封装在一起,成为新系统的基本单元,使得新系统的基本单元具有良好的独立性,不再依赖于数据中心。在此基础上,各级站体均具有一定的管理能力和存储能力。在系统扩展的同时,整个系统的管理能力,存储能力和授时能力也会相应提高,使得系统具有良好的扩展性,可靠性和灵活性。
     本论文共分为以下五章:
     第一章为绪论,阐述了大规模地球物理勘探数据采集系统采样通道数扩展的发展趋势,分析了传统数据采集系统中,采集通道数受制于数据中心性能的原因。设计一种可扩展的大规模地球物理勘探数据采集系统,能够为地球物理勘探的后期数据处理提供信噪比高,保真度高的采样数据,从而提高勘探的探测深度和分辨率。
     第二章阐述了采集系统设计过程中运用到的设计思想,和实现采样通道数扩展的方法。根据采样通道在勘探区域内的分布情况,提出了域的概念,通过赋予系统分布式管理能力,分布式存储能力和分布式授时能力,使得系统各个域能够独立完成数据采集工作,使得数据中心面向的对象成为整个系统,使系统采样通道数不再受数据中心性能的制约。
     第三章详细阐述了可扩展的地球物理勘探数据采集原型系统中,线缆及各类站体的具体硬件实现。描述了各个站体的结构,站体内部各部分之间的接口定义和应用,以及系统数据传输的过程,系统时钟同步的过程以及电源设计。
     第四章介绍了采集系统已经实现的功能,并对分布式同步时钟源的精度进行了初步测试,并对测试结果进行了分析。
     最后是整篇论文的总结与展望,对本原型系统中尚待实现的功能以及存在的问题进行了总结,并为系统的改进和投入应用提出建议。
It is urgently needed and necessary to conduct in-depth and detailed geo-physical exploration because on the one hand the geophysical exploration can help people grasp the distribution of underground mineral resources, on the other hand, it can help us know some geological disasters in advance.
     Today's large-scale geophysical data acquisition system has the develop-ment trend of wider exploration range and higher sampling channel density. The improvement of the density of sampling channel improves the SNR and fidelity in geophysical exploration. However, in traditional large-scale geophysical data acquisition systems, the performance of data center becomes the bottleneck of sys-tem expansion because of too much connection between acquisition station and data center. Based on the analysis of the requirement when conducting sampling channel expansion, this passage proposed a kind of large-scale geophysical data acquisition system which has distributed management capabilities, distributed storage capacity and distributed timing capabilities. These characteristics give the system high reliability, flexibility as well as good sampling channel expansion ability.
     In this kind of scalable large-scale geophysical data acquisition system, the power station has distributed management capabilities, distributed storage capac-ity and distributed timing capabilities in addition to simple power management ability. So the power station provides the acquisition station with all the needed working conditions. Packing these two stations together will achieve the new base unit for this new system. This new base unit does not rely on the data center. So when conducting system expansion, the managing capabilities, storage capacity and timing capabilities of the system will increase accordingly, making the sys-tem has good scalability, reliability and flexibility The thesis is divided into the following five chapters:
     The first chapter is an introduction to the development trend of sampling channels extension of the large-scale geophysical data acquisition system. It ex-plains the reason why the number of sampling channels is affected by the perfor-mance of data center. A kind of scalable large-scale geophysical data acquisition system is designed. It can provide sampling data with high signal to noise ra-tio and high fidelity, thereby enhancing the probing depth and resolution in the exploration.
     The second chapter describes the design ideas used in the design process of the acquisition system and the way to achieve the sampling channel extension. The concept of domain is put forward according to the distribution of sampling channels in the exploration area. By giving the system a distributed management capabilities, distributed storage capacity and distributed time service capabilities, each domain of the system can complete the work of data acquisition indepen-dently. So that the data center orients the entire system, making the number of sampling channels being no longer constrained by data center performance any more.
     The third chapter elaborates the implementation of cables and other specific hardware in the prototype of scalable geophysical data acquisition systems. It explains the structures of each station and the definitions and application of the interface of each part. It also elaborates the process of data transmission, clock synchronization and the design of the power station.
     The fourth chapter describes the implemented function of the acquisition system and make a preliminary test to the precision of distributed synchronous clock source. The test results are analyzed
     Finally, The thesis is summarized and makes recommendations for improve-ment.
引文
[1]何樵登,韩立国,王德利.地震勘探.地质出版社,2009.
    [2]牛滨华,孙春岩.地震波理论研究进展——介质模型与地震波传播.地球物理学进展,2004,19(2):255-263.
    [31王绪松,钱雪峰,李波涛.第一菲涅尔带半径与地震资料的横向分辨力.勘探地球物理进展,2006,29(4):244-248.
    [4]马在田.反射地震成像分辨率的理论分析.同济大学学报:自然科学版,2006,33(9):1144-1153.
    [5]钱荣钧.关于地震采集空间采样密度和均匀性分析.石油地球物理勘探,2007,42(2):235-243.
    [6]田梦,张梅生,万传彪,et a1.宽方位角地震勘探与常规地震勘探对比研究.大庆石油地质与开发,2008,26(6):138-142.
    [7]黄凯,徐群洲.地震波能量的驶衰及其影响因索.新疆石油地质,1997,18(3):212-216.
    [8]刘光鼎,张丽莉,祝靓谊.试论复杂地质体的油气地震勘探.地球物理学进展,2006,21(3):683-686.
    [9]田佳.地震勘探仪器中Sigma Delta AD转换器的设计[M].山东大学,2012.
    [10]王喜双,谢文导,邓志文.高密度空间采样地震技术发展与展望.中国石油勘探,2007,12(1):49-53.
    [111刘欣欣,吴国忱,梁锴.单点高密度地震勘探技术研究综述.地球物理学进展,2009,(4):1354-1366.
    [12]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展.地球物理学进展,2007,22(4):1195-1200.
    [13]Nabighian M M N. Electromagnetic methods in applied geophysics, volume 2. SEG Books,1988.
    [14]牛之琏.时间域电磁法原理,volume 12中南大学出版社,2007.
    [15]Wright D A, Ziolkowski A, Hobbs B A, et al. Hydrocarbon detection with a multichannel transient electromagnetic survey.71st Ann. Internat. Mtg:Soc. of Expl. Geophys., pp.1435A1438,2001.
    [16]谢明璞.大规模陆上地震仪器结构设计的关键技术[D].中国科学技术大学,2009.
    [17]Estrin D, Govindan R, Heidemann J, et al. Next century challenges:Scalable coordination in sensor networks. Proceedings of Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking. ACM,1999.263-270.
    [18]Rialan J. Method for transmitting to a central recording device seismic data collected by acquisition apparatus distributed over the ground and a device for implementing same, February 27,1990. US Patent 4,905,205.
    [19]Morgan P M, Guyton W A, Williamson K G. Continuous data seismic system, February 13,2001. US Patent 6,188,962.
    [20]陶知非,马磊,张慕刚.单点接收的地震数据采集系统的回顾与展望.物探装备,2013,23(3):141-149.
    [21]李秋成.国外电缆遥测地震系统发展中的问题和趋势.石油仪器,1991,2:001.
    [22]王兵.高分辨地震勘探仪器设计研究[D].中国科学技术大学,2008.
    [23]Sloman M. Network and distributed systems management. Addison-Wesley Longman Publishing Co., Inc.,1994.
    [24]吴锡祺,何镇湖,et al.多级分布式控制与集散系统,2000.
    [25]徐非,杨广文,鞠大鹏,et a1.基于Peer-to-Peer的分布式存储系统的设计[J].软件学报,2004,15(2):268-277.
    [26]Therrien D G, Pownell.1 E, VanderSpek A, et al. Method and apparatus for storage system to provide distributed data storage and protection, July 17,2007. US Patent 7,246,140.
    [27]张庆民.高速中频采样和数字下变频的研究[D].中国科技大学,00年,2000,5.
    [28]吴增海,宋克柱,杨俊峰et al陆上地震勘探数据同步采集与实时传输的设计与实现.核电子学与探测技术,2013,32(11):1233-1237.
    [29]世伟.锁相环路原理及应用.兵器工业出版社,1990.
    [30]Razavi B. Monolithic phase-locked loops and clock recovery circuits:theory and design. John Wiley & Sons,1996.
    [31]Egan W F. Frequency synthesis by phase lock. Wiley New York,2000.
    [32]Brown G. Discovering the STM32 Microcontroller. Cortex,2012,3:34.
    [33]Longaker H L. Time synchronization for seismic exploration system, November 2,1999. US Patent 5,978,313.
    [34]张九宾,张丕状,杜坤坤.基于GPS的无线传感器网络时间同步技术.传感器与微系统,2009,28(6):31-33.
    [35]赵军祥,李建辉,常青,et al.GPS授时校频方法研究与试验结果.北京航空航天大学学报,2004,30(8):762-766.
    [36]欧阳明星.基于无线通信网及GPS的双时钟源授时设计.实验室研究与探索,2013,32(7):258-262.
    [37]周书民,周建勇,潘仕彬,et al.无线传感网络中时钟同步的研究.电子技术应用,2006,9:24-26.
    [38]Xie M, Wu J, Zhang J. Clock data recovery based on delay chain for medium data rate transmission. Proceedings of Real Time Conference,2009. RT'09.16th IEEE-NPSS. IEEE,2009.137-140.
    [39]Eidson J C. Measurement, control, and communication using IEEE 1588. Springer,2006.
    [40]Lee K, Eidson J C, Weibel H, et al. IEEE 1588-Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. Proceedings of Conference on IEEE, volume 1588,2005.
    [41]Allan D W, Ashby N, Hodge C C. The science of timekeeping. Hewlett-Packard,1997.
    [42]李成,王鹏,丁天怀et al. RS-485总线的高速串行远距离数据传输方法.清华大学学报:自然科学版,2009,49(5):684-687.
    [43]刘利生,苏淑靖,张凯琳et al基于LVDS的远程数据传输系统.仪表技术与传感器,2012,(12):38-39.
    [44]邢立冬,蒋林.总线LVDS驱动器电路设计.微计算机信息,2010,(14):181-183.
    [45]游雪峰,文玉梅:李平et al以太网分布式数据采集同步和实时传输研究.仪器仪表学报,2006,27(4):384-388.
    [46]乔森.以太网中MAC地址的研究Software Guide,2010,9(2).
    [47]Zubair M, Hartmann K, Loffeld O. Design and implementation of a wireless geophone sensor node for target detection and classification. Proceedings of SPIE Defense, Security, and Sensing. International Society for Optics and Photonics,2012.83910Q-83910Q.
    [48]KeZhu S, Ping C, JunFeng Y, et al. A high-speed transmission method for large-scale marine seismic prospecting systems. Journal of Geophysics and Engineering,2012,9(6):737.
    [49]ST. STM32L151xx and STM32L152xx advanced ARM-based 32-bit MCUs,15965 Rev 4, February, 2012.
    [50]Oudjida A K, Berrandjia M L, Tiar R, et al. FPGA implementation of 12 C & SPI protocols: A comparative study. Proceedings of Electronics, Circuits, and Systems,2009. ICECS 2009.16th IEEE International Conference on. IEEE,2009.507-510.
    [51]Widmer A X, Franaszek P A. A DC-balanced, partitioned-block,8B/10B transmission code. IBM Journal of research and development,1983,27(5):440-451.
    [52]Burns L M, Fisher D A, Muther S E. Power transfer apparatus for concurrently transmitting data and power over data wires, November 30,1999. US Patent 5,994,998.
    [53]ublox. u-blox 6 GPS Modules, GPS.G6-HW-09005-E, December,2011.
    [54]ST. STM32F40xxx, STM32F41xxx, STM32F42xxx, STM32F43xxx advanced ARM-based 32-bit MCUs,018909 Rev 4, February,2013.
    [55]马毅超.大规模陆上地震仪器中高速可靠数据传输方法的研究[D].合肥:中国科学技术大学,2011.
    [56]xilinx. LogiCORE IP FIFO Generator v12.0, PG057, April,2014.
    [57]Zeinalipour-Yazti D, Kalogeraki V, Gunopulos D, et al. Towards in-situ data storage in sensor databases. Proceedings of Advances in Informatics. Springer,2005:36-46.
    [58]Yang Y, Chen Z B, Zhang Y, et al. Review and Prospect for the Land Seismic Data Acquisition System. Advanced Materials Research,2013,684:394-397.
    [59]Sausen P S, Sousa J, Spohn M A, et al. Dynamic power management with scheduled switching modes in wireless sensor networks. Proceedings of Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,2007. MASCOTS'07.15th International Symposium on. IEEE, 2007.1-8.
    [60]Chalasani S, Conrad J M. A survey of energy harvesting sources for embedded systems. Proceedings of Southeastcon,2008. IEEE. IEEE,2008.442-447.
    [61]TI. Industrial Temp, Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver, SLLS931B, August,2009.
    [62]Lewis F L. Wireless sensor networks. Smart environments:technologies, protocols, and applica-tions,2004.11-46.
    [63]Ivo V, Josef H. Phase noise measurement. Proceedings of the Radioelectronika 2001, BRNO 2001, 2001.131-134.
    [64]TI. VCXO Application Guideline for CDCE(L)9xx Family, SCAA085A. Technical report, June, 2007.
    [65]TI. Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V,2.5-V, and 3.3-V Outputs, SCAS849E, March,2010.
    [66]李强,王宏,王乐春.基于P2P的分布式网络管理模型研究.计算机工程,2006,32(13);150-152.
    [67]Cao P, Song K z, Yang J f, et al. Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network. Journal of Geophysics and Engineering,2011,8(1):27.
    [68]Piedra A, Braeken A, Touhafi A. Sensor systems based on FPGAs and their applications:A survey. Sensors,2012,12(9):12235-12264.
    [69]Bux W, Kummerle K, Truong H. Balanced HDLC procedures:A performance Analysis. Commu-nications. IEEE Transactions on,1980,28(11):1889-1898.
    [70]Auerbach J S, Drake Jr J E, Gopal P M, et al. Distributed management communications network, May 27,1997. US Patent 5,634,011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700