基于固有光学量的东海赤潮遥感提取算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮是东海主要海洋灾害之一,建立准确的遥感赤潮提取算法是对其及时有效的监测,降低危害的重要前提。目前海洋赤潮的遥感提取算法主要是叶绿素浓度异常或直接的光谱(表观光学量)算法。东海赤潮高发区水体光学性质复杂,受水体有色溶解有机物、悬浮颗粒等的干扰,已有的赤潮光谱提取算法在该海域的应用往往失效。为有效提取该海域的赤潮,需要结合赤潮藻类粒径、生理特性等,从固有光学量入手对水体性质进行分析,以实现对该海域赤潮水体的有效提取。对于赤潮的防范和治理,人们不仅需要对其发生范围的有效监测,还更加关注有害赤潮类型的准确识别与预警,目前国内在这方面的研究工作还较少展开。
     固有光学量能够直接反映水体物质的生理生化特性,随水体物质的变化而表现出差异,在有效排除近岸水体物质干扰,实现赤潮水体与非赤潮水体的有效区分和赤潮藻种识别方面有着巨大的潜力。因此,本文从水体固有光学量入手,对东海的赤潮与非赤潮水体,以及甲藻和硅藻赤潮进行分析,建立适用于该海区的赤潮提取算法。主要研究内容和成果为:
     (1)论文首先利用2009年东海海域夏季和冬季两个大型调查航次实测数据,系统分析了海区水体吸收和散射系数等固有光学要素在季节上和空间上的分布与变化情况,获得了东海赤潮的固有光学量背景场。发现在中等浑浊水体中,陆源输入的有色溶解有机物和非藻类碎屑颗粒对色素吸收光谱存在明显干扰。
     (2)对东海近十年来发生的赤潮事件进行分析,发现东海典型赤潮藻种以甲藻(东海原甲藻、米氏凯伦藻)和硅藻(中肋骨条藻)等类型为主,其中甲藻类常形成有毒赤潮。论文分析了长江口与温州南麂列岛海域观测到的硅藻与甲藻赤潮事件水体固有光学性质参数,获得了东海赤潮与非赤潮环境水体吸收系数与散射系数的固有光学性质差异,发现甲藻类与硅藻类赤潮水体在实测固有光学性质上可以实现区分。
     (3)论文分别从实测数据和遥感赤潮数据对东海典型赤潮事件固有光学量参数进行对比分析,建立了用以识别赤潮水体以及区分甲藻与硅藻类不同赤潮的算法模型,包括色素吸收比重,叶绿素比吸收系数,散射-吸收比值和后向散射比率四种吸收和散射固有光学性质赤潮模型,并开发了基于遥感反射率的赤潮水体光谱高度法识别模型。在此基础上,建立了综合的赤潮卫星遥感识别算法,可用于对东海赤潮水体的提取和甲藻与硅藻赤潮的判别。
     (4)将建立的基于固有光学量赤潮识别算法模型应用于近年来东海大型赤潮事件卫星遥感数据集,实现了对赤潮水体发生范围和具体藻种门类的准确识别,总体获得了良好的效果。在试验的十六次样本中,对赤潮藻种门类的判别准确率达到了92%。本文研究的主要创新点为:
     (1)在深化认识赤潮水体区别于正常水体的固有光学特性的基础上,发现了东海甲藻与硅藻赤潮水体的固有光学性质差异,对相关赤潮发生、发展和消亡等的科学研究有重要意义。
     (2)基于赤潮水体以及甲藻与硅藻间的固有光学特征,建立了光谱高度法、色素比重法和后向散射比值法三种卫星遥感监测赤潮模型以及两藻种的分类模型,验证表明该模型有实用性,对自动化监测赤潮有应用价值。
Harmful Algal Bloom (HAB) is one of the most common disasters in the East China Sea (ECS), and the establishment of an accurate remote sensing algorithm of HAB extraction is the primary concern of timely and effective monitoring and predicting to minimize the harm. The Ocean Color remote sensing algorithms of HAB extractions now mainly concentrate on chlorophyll concentration anormaly or spectral (Apparent Optical Properties) extraction algorithms. The seawater properties in the HAB highly occur area in ECS is very complicated, which is under severe influences of colored dissolved organic matter as well as suspended particles, and thus the spectral extraction algorithms are usually prone to be invalid. In order to extract the HAB effectively, the seawater Inherent Optical Properties (IOPs) including algal cell size and physiological properties need to be analyzed. Typically, researchers are more willing to develop a targetable algorithm for a typical algal type, which usually tends to be more harmful and popular, so as to prevent and govern the disasters more effectively. Currently, research in this area is little yet.
     IOPs can reflect the physiological and biochemical properties of the water body and reflect differences due to the substance changes. It plays significant role in developing proper extraction algorithms, and possesses huge potentials in HAB monitoring and identification. Accordingly, the thesis starts with the IOPs of seawater of dinoflagellates and diatom type HAB and the normal environment in ECS to establish the extraction algorithm. The content and achievement of this thesis is as follows:
     (1) Based on the research and analyses of seawater IOPs parameters from the two large scale investigations conducted in ECS in summer and winter,2009. the seasonal and spatial distributions and variations of seawater absorption and scattering coefficients are analyzed, and it forms the background of HAB in ECS. It is found that, in moderate turbid seawaters, the terrestrial colored dissolved organic matter as well as non-algal detritus particles will apparently interfere the pigment absorption spectra.
     (2) By analyzing the HAB events occurred in the last ten years in ECS, it is found that the main type of HAB is dinoflagellates (i.e. Prorocentrum donghaiense and karenia mikimotoi) and diatom (i.e. Skeletonema costatum). and the dinoflagellates type usually forms toxic HAB. And accordingly, the IOPs of these type HAB events measured from the Changjiang Estuary and Nanji Islands respectively are analyzed, and the differences of seawater absorption and scattering coefficient are gained for discrimination.
     (3) The IOPs data from insitu and remote sensing of HAB waters in ECS are analyzed, and a model for eliminating the HAB region and identifying the algal type is established, based on the pigment absorption ratio, the chlorophyll specific phytoplankton absorption coefficient, the back scattering-to-total absorption coefficient ratio, and the backscattering coefficient ratio, respectively. With aid of reflectance spectral properties, the extraction and identification of different algal classes such as diatom and dionflagellates are achieved.
     (4) The established model is applied to the big HAB events in ECS and the final result of extraction and identification is satisfied. The accuracy rate of identification for the test of the 16 samples is up to 92%.
     The main innovations of this work are:
     (1) The characteristics and discrimination of IOPs between HAB water and normal seawater as well as dinoflagellates and diatom type HAB seawater in ECS are eliminated, which is of significance to the scientific research on HAB development.
     (2) A series of extraction models including the spectra relative height, the pigment absorption proportion and the backscattering ratio based on IOPs of seawater absorption and backscattering coefficient are established and applied for HAB extraction and class type discrimination, and it is proved to be practical and of reference value for automatic HAB detection.
引文
1水团是指源地和形成机制相近,具有相对均匀的物理、化学和生物特性及大体一致的变化趋势,而与周围海水存在明显差异的宏大水体。海洋学中的水系定义为“符合一个给定条件的水团的集合”。
    [1]张利民主编.中国赤潮研究与防治-中国海洋学会赤潮研究与防治学术研讨会论文集[M].北京:海洋出版社,2005.
    [2]赵冬至等.中国典型海域赤潮灾害发生规律[M].北京:海洋出版社,2010.
    [3]中国赤潮研究与防治(二)-中国海洋学会赤潮研究与防治学术研讨会论文集[M].北京:海洋出版社,2008.
    [4]Strong A E. Remote Sensing of Algal Blooms by Aircraft and Satellite in Lake Erie and Lake Utah [J]. Remote Sensing of Environment,1974,3:99-107.
    [5]HUANG, W. G.& LOU, X. L. AVHRR detection of red tides with neural networks[J]. International Journal of Remote Sensing,2003,24(10):1991-1996.
    [6]楼琇林.浙江沿岸上升流遥感观测及其与赤潮灾害关系研究[D].博士学位论文,中国海洋大学,2010.
    [7]Steidinger, K. A.,& Haddad, K. D. Biologic and hydrographic aspects of red tides [J]. Bioscience,1981,.31,814-819.
    [8][美]Seelye Matin.海洋遥感导论[M].蒋兴伟等译.北京:海洋出版社,2008.
    [9]Stumpf, R. P. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms [J]. Journal of Human and Ecological Risk Assessment,2001,7,1363-1368.
    [10]Chang, F. H., Uddstrom, M.,& Pinkerton, M. Studies of the winter 2000 Gymnodinium catenatum outbreaks in New Zealand using remotely sensed sea surface temperature and chlorophyll a data from satellites [J]. Proceedings of the Marine Biotoxin Science Workshop, 2001,15,165-173. New Zealand:Wellington.
    [11]Chen, C., Zhu, J., Beardsley, R. C.,& Franks, P. J. S. Physical-biological sources for dense algal blooms near the Changjiang River [J]. Geophysical Research Letters,2003,30.
    [12]Tang, D. L., Kester, D. R., Ni, I. H., Qi, Y. Z.,& Kawamura, H. In-situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998 [J]. Harmful Algae News,2003,2,89-99.
    [13]Gitelson, A. A., Schalles, J. F.& Hladik, C. M. Remote chlorophyll-a retrieval in turbid, productive estuaries:Chesapeake Bay case study[J]. Remote Sensing of Environment,2007, 109(4):464-472.
    [14]Groom, S. B.,& Holligan, P. M. Remote Sensing of Coccolithophore Blooms [J]. Advances in Space Research,1987,7 (2):73-78.
    [15]Holligan, P. M., Viollier, M.& Harbour, D. S.et al. Satellite and ship studies of coccolithophore production along a continental shelf edge[J]. Nature,1983,304(5924):339-342.
    [16]Stumpf, R. P.& Tyler, M. A. Satellite detection of bloom and pigment distributions in estuaries[J]. Remote Sensing of Environment,1988,24(3):385-404.
    [17]Gower, J. F. R. Red tide monitoring using AVHRR HRPT imagery from a local receiver[J]. Remote Sensing of Environment,1994,48(3):309-318.
    [18]毛显谋,黄韦艮.多波段卫星遥感海洋赤潮水华的方法研究[J].应用生态学报,2003.14(7).
    [19]Prangsma. G. J.& Roozekrans, J. N. Using NOAA AVHRR imagery in assessing water quality parameters[J]. International Journal of Remote Sensing,1989,10(4):811-818.
    [20]Gower, J. F. R. Observations of in situ fluorescence of chlorophyll-a in Saanich Inlet[J]. Boundary-Layer Meteorology,1980,18(3):235-245.
    [21]Carder, K. L., Cannizzaro, J. P.& Chen, F. R.et al. Detecting HAB's in the Gulf of Mexico: Problems with atmospheric correction and shallow waters[M].
    [22]黄韦艮,丁德文,主编.赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [23]黄韦艮,陈立娣,毛显谋,等.赤潮卫星遥感跟踪预报方法研究[A].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [24]Shanmugam, P., Ahn, Y.& Ram, P. S. SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelf-slope waters of the Northwest Pacific during summer[J]. Remote Sensing of Environment,2008,112(7):3248-3270.
    [25]Tang, D. L., Kawamura, H.& Doan-Nhu, H.et al. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam[J]. J. Geophys. Res.,2004,109(C3):C3014.
    [26]邓素清,汤燕冰,邓霞君.浙江近海赤潮气象统计预报试验[J].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [27]Stumpf, R. P., Culver, M. E.& Tester, P. A.et al. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data[J]. Harmful Algae,2003,2(2): 147-160.
    [28]Brown, C.W.,&Yoder, J. A. Distribution pattern of coccolthophorid blooms in the western North Atlantic Ocean[J]. Continental Shelf Research,1994,14,175-197.
    [29]Subramaniam, A., Brown, C.W., Hood, R. R., Carpenter, E. J.,& Capone, D. G. Detecting Trichodesmium blooms in SeaWiFS imagery [J]. Deep-Sea Research. Part 2. Topical Studies in Oceanography,2002,49,107-121.
    [30]IOCCG Report 5:Remote sensing of inherent optical properties:Fundamental, testes of algorithms, and application,2006.
    [31]Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., and Clark, D.K. A semianalytic radiance model of ocean color [J]. Journal of Geophysics Research,1988, 93:10,909-10,924.
    [32]Devred, E., Fuentes-Yaco, C.& Sathyendranath, S.et al. A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from Sea WiFS data[J]. Indian Journal of Marine Sciences,2005,34(4):356-367.
    [33]汪文琦,董强,商少凌,等.基于两种半分析算法的水体吸收系数反演[J].热带海洋学报,2009(5):35-42.
    [34]Shanmugam, Palanisamy& Ahn et al. An Evaluation of Inversion Models for Retrieval of Inherent Optical Properties from Ocean Color in Coastal and Open Sea Waters around Korea[J], 2010,66(6):16.
    [35]Cannizzaro, J. P., Carder, K. L.& Chen, F. R.et al. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data[J]. Continental Shelf Research,2008,28(1):137-158.
    [36]Barocio-Leo n, O. A., Milla n-Nu n ez, R.& Santamari a-del-A ngel, E.et al. Bio-optical characteristics of a phytoplankton bloom event off Baja California Peninsula (30-31°N)[J]. Continental Shelf Research,2008,28(4-5):672-681.
    [37]Roesler, C. S., Etheridge, S. M.& Pitcher, A. G. C. Application of an Ocean Color Algal Taxa Detection Model to Red Tides in the Southern Benguela[J],2000.
    [38]Roesler, C. S.& Boss, E. Spectral beam attenuation coefficient retrieved from ocean color inversion[J]. Geophys. Res. Lett.,2003,30(9):1468.
    [39]曹文熙,杨跃忠,许晓强,等.珠江口悬浮颗粒物的吸收光谱及其区域模式[J].科学通报,2003(17).
    [40]唐军武,王晓梅,宋庆君,等.黄、东海二类水体水色要素的统计反演模式[J].海洋科学进展,2004,22(B10):1-7.
    [41]汪小勇,李铜基,杨安安.黄东海海区表观光学特性和固有光学特性春季模式研究[J].海洋技术,2004,23(4).
    [42]王晓梅,唐军武,宋庆君,等.黄海、东海水体总吸收系数光谱特性及其统计反演模式研究[J].海洋与湖沼,2006,37(3):256-263.
    [43]宋庆君和唐军武.黄海、东海海区水体散射特性研究[J].海洋学报(中文版),2006,28(4):56-63.
    [44]林宏,董天临,马泳,等.海洋悬浮粒子的光学后向散射率特性研究[J].大气与环境光学学报,2008,3(1).
    [45]Gong, G.2Absorption coefficients of colored dissolved organic matter in the surface 2waters of the East China Sea[J]. Atmospheric and Oceanic Sciences (TAO),2004,15(1):75-87.
    [46]吴璟瑜.中国东南近海光吸收特性研究[D].博士学位论文,厦门大学,2006.
    [47]吴璟瑜.南海西部水体光吸收特征及其对水色遥感的启示[M].厦门:厦门大学,2009.
    [48]邢小罡,赵冬至,刘玉光,等.渤海非色素颗粒物和黄色物质的吸收特性研究[J].海洋环境科学,2008,27(6):595-598.
    [49]周雯,曹文熙,杨跃忠,等.大亚湾水体后向散射比率的光谱变化[J].热带海洋学报,2010(2):39-45.
    [50]韩宇超.近岸海域溶解有机物的光学性质研究[D].硕士学位论文,厦门大学,2006.
    [51]周雯.不同类型水体有色溶解有机物质CDOM时间变化特征及其影响机制研究[D].硕士学位论文,厦门大学,2007.
    [52]王福利.九龙江流域-河口CDOM吸收和荧光特性的季节性变化研究[D].硕士学位论文,厦门大学,2009.
    [53]丘仲锋,席红艳,何宜军,等.东海赤潮高发区半分析算法色素浓度反演[J].环境科学,2006(8):1516-1521.
    [54]丘仲锋.东海赤潮高发区水色遥感算法及赤潮遥感监测研究[D].博士学位论文,中国科学院研究生院(海洋研究所),2006.
    [55]许大志,曹文熙,王桂芬.南海北部水体叶绿素a浓度反演的生物光学模型[J].热带海洋学报,2007(2):15-21.
    [56]杨伟,陈晋,松下文经.基于生物光学模型的水体叶绿素浓度反演算法[J].光谱学与光谱分析,2009,29(1).
    [57]曲慧,马国平,陈敏,等.东海原甲藻的培养及色素分离分析[J].烟台大学学报(自然科学与工程版),2008(3):197-203.
    [58]姚鹏,邓春梅和于志刚.通过色素特征统计分析对海洋浮游硅藻进行分类[J].中国科技论文在线.
    [59]Edited by R. W. faribfidge. The Encyclopedia of Oceanography. Reinbold Publishing Corporation.
    [60]孙湘平.中国近海区域海洋.海洋出版社.2006.
    [61]许东禹,等主编.中国近海简况.1963.北京:地质出版社.
    [62]中国大百科全书——大气·海洋·水文卷.中国大百科全书出版社.1987.
    [63]陈冠贤主编.中国海洋渔业环境.杭州:浙江科学技术出版社.1991.
    [64]冯士笮,李凤岐,李少菁,主编.海洋科学导论.1999.高等教育出版社.
    [65]程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算.地理学报,1984,39(4):412-426.
    [66]陈则实,等主编.渤、黄、东海海洋图集——水分分册.海洋出版社.1992.
    [67]毛汉礼,任允武,孙国栋.南黄海和东海北部(28。-37。N)夏季的水文特征及海水类型(水系)的初步分析.海洋科学集刊,01号,23-77.见:毛汉礼著作选集.1996.北京:学苑出版社,147-202.
    [68]中国海洋志. 《中国海洋志》编委会编著.郑州:大象出版社.2003.
    [69]Bearsley R C, Limebumer R, Yu H et al. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research,1985,4(1/2):57-76.
    [70]苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(4):1-16.
    [71]袁耀初,苏纪兰,赵金山.东中国海陆架环流的单层模式.海洋学报,1982,4(1):1-11.
    [72]苏纪兰主编.中国近海水文.北京:海洋出版社,2005.
    [73]许建平,苏纪兰,仇德忠.黑潮入侵南海的水文分析.1996.中国海洋学文集,第6集,1-12.
    [74]颜延壮.中国沿岸上升流成因类型的初步分析.海洋通报,1991,10(6):1-6.
    [75]胡敦欣,吕良洪,熊庆成.关于浙江沿岸上升流的研究.科学通报,1980,25(25):159-163.
    [76]Chen, C. T. A. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems,2009,78(3):394-410
    [77]金翔龙主编.东海海洋地质.北京:海洋出版社,1992.
    [78]张志忠.长江口悬沙及其运移[J].海洋科学,1983(5):6-11.
    [79]张志忠.长江口细颗粒泥沙基本特性研究[J].泥沙研究,1996(1).
    [80]国家海洋信息中心,海洋环境质量公报.中国海洋信息网,http://www.coi.gov.cn.
    [81]Hooker, S.B., G. Zibordi, G.Lazin, and S. McLean,1999:The SeaBOARR-98 Field Campaign. NASA Tech. Memo.206892, Vol.3, S.B. Hooker and E.R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, MD.40pp.
    [82]Toole, D.A., D.A. Siegel, D.W. Menzies, M.J. Neumann and R.C. Smith. Remote-sensing reflectancedeterminations in the coastal ocean environment:impact of instrumental characteristics and environmental variability[J]. Applied Optics.2000,39:456-468.
    [83]Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements[J]. Applied Optics.1999,38:7442-7455.
    [84]Fargion, G.S., and J.L.Muller,2003:Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, NASA/TM-2003-211621.
    [85]Fougnie, B., R. Frouin, P. Lecomte and Pierre-Yves Deschamps. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance[J]. Applied Optics.1999,38:3844-3856.
    [86]NASA. Protocols_Ver4_VolⅣ Inherent Optical Properties:Instruments, Characterizations, Field Measurements and Data Analysis Protocols[M],2003
    [87]B. Greg Mitchell, Annick Bricaud, Kendall Carder, etc. Ocean Optics Protocles For Satellite Ocean Color Sensor Validation, Revision 2, Chapter 12.
    [88]Tassan S. and G. M. Ferrari. A sensitivity analysis of the 'Transmittance-Reflectance' method for measuring light absorption by aquatic particles[J]. Journal of plankton research,2002,24, 757-774.
    [89]中国国家标准化管理委员会.海洋调查规范第8部分-海洋地质地球物理调查GB/T 12763.8[M],2007.
    [90]宋庆军,唐军武,马超飞.黄东海区水体后向散射系数与总散射系数的关系.第14届全国遥感技术学术交流会.2003,10.
    [91]Tassan, S., Ferrari, G.M.. Proposal for the measurement of backward and total scattering by mineral particles suspended in water[J]. Applied Optics,1995,34 (36),8345-8353.
    [92]Lee, Z.P., Carder, K.L., and Arnone, R. Deriving inherent optical properties from water color:A multi-band quasi-analytical algorithm for optically deep waters[J]. Applied Optics.2002,41: 5755-5772.
    [93]Gordon, H.R., and M. Wang. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:A preliminary algorithm[J], Applied Optics.,1994,33:443-452.
    [94]He Xianqiang, Pan Delu, Mao Zhihua.Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Acta Oceanologica Sinica,2004,23 (4),609-615.
    [95]齐雨藻等.中国沿海赤潮[M].北京:科学出版社,2003.
    [96]郭皓等.中国近海赤潮生物图谱[DB/CD].北京:海洋出版社,2004.
    [97]韩笑天.主要赤潮藻种名录及图谱.中国有害赤潮信息网.
    [98]陆斗定,齐雨藻,Goebel Jeanette,等.东海原甲藻修订及与相关原甲藻的分类学比较[J].应用生态学报,2003,14.
    [99]萧云朴,李扬,李欢,等.温州南麂列岛海域硅藻、甲藻群落变化与环境因子的关系[J].海洋环境科学,2009,28(2):167-169.
    [100]范丽,程金平和王文华.我国东海海域赤潮发生年际变化趋势及其影响因素分析[J].上海环境科学,2009,28(1):15-17,23.
    [101]陈炳章,王宗灵,朱明远,等.温度、盐度对具齿原甲藻生长的影响及其与中肋骨条藻的比较[J].海洋科学进展,2005,23(1).
    [102]赵冬至,赵玲,张丰收.赤潮海水温度预报方法研究[A].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [103]黄韦艮,陈立娣,楼琇林,等.基于AVHRR的赤潮水色水温遥感方法[J].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [104]翟自强,王咏亮,缪国芳.诱发赤潮的水文气象条件[A].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [105]王正方,张庆,吕海燕等.长江口溶解氧赤潮预报简易模式[J].海洋学报(中文版),2000(4):125-129.
    [106]吴玉霖,傅月娜,张永山,等.长江口海域浮游植物分布及其与径流的关系[J].海洋与湖沼,2004(3):246-251.
    [107]何琴燕.东海赤潮高发区温度、盐度与流场的数值研究[D].硕士学位论文,国家海洋局第二海洋研究所,2007.
    [108]许卫忆,卜献卫,朱德弟,等.赤潮发生机制探讨Ⅰ[A].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [109]许卫忆,朱德弟,朱根海,等.赤潮发生机制探讨Ⅱ-象山港实例验证[A].赤潮灾害预报机理与技术[C],北京:海洋出版社,2004.
    [110]徐家声.水动力状况与赤潮生物的聚集和扩散[J].海洋环境科学,1994,13(3).
    [111]Carder, K. L., Steward, R. G.& Harvey, G. R.et al. Marine humic and fulvic acids:Their effects on remote sensing of ocean chlorophyll[J]. Limnology and Oceanography,1989,34(1):68-81.
    [112]Gong, G., Lee Chen, Y.& Liu, K. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer:implications in nutrient dynamics[J]. Continental Shelf Research, 1996,16(12):1561-1590.
    [113]Gong, G., Shiah, F.& Liu, K.et al. Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea[J]. Continental Shelf Research,2000,20(4-5):411-436.
    [114]Tang, T. Y., Tai, J. H.& Yang, Y. J. The flow pattern north of Taiwan and the migration of the Kuroshio[J]. Continental Shelf Research,2000,20(4-5):349-371.
    [115]Yentsch, C. S. AND C. A. REICIIEHT.1961. The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae. Botan. Marina.
    [116]潘玉球,苏纪兰,徐端蓉.东海冬季高密水的形成和演化[A].黑潮调查研究论文选(三)[C].北京:海洋出版社,1991.183-192.
    [117]许建平.浙江近海上升流区冬季水文结构的初步分析.东海海洋,1986,4(3):18-23.
    [118]浦泳修.长江冲淡水扩展方向的周、旬时段变化[J].东海海洋,2002,20(2).
    [119]Ferrari, G. M.& Dowell, M. D. CDOM Absorption Characteristics with Relation to Fluorescence and Salinity in Coastal Areas of the Southern Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 1998,47(1):91-105.
    [120]Nieke, B., Reuter, R.& Heuermann, R.et al. Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (Case 2 waters)[J]. Continental Shelf Research,1997,17(3):235-252.
    [121]Hong, H., Wu, J.& Shang, S.et al. Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China[J]. Marine Chemistry,2005,97(1-2): 78-89.
    [122]Babin, M., Stramski, D.& Ferrari, G. M.et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe[J]. Journal of Geophysical Research C:Oceans,2003,108(7):1-4.
    [123]Roesler, C.S., Perry, M.J., Carder, K.L.. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters[J]. Limnology And Oceanography 1989, 34(8),1510-1523.
    [124]Keith, D.J., Yoder, J.A., Freeman, S.A.. Spatial and Temporal Distribution of Coloured Dissolved Organic Matter (CDOM) in Narragansett Bay, Rhode Island:Implications for Phytoplankton in Coastal Waters. Estuarine, Coastal and Shelf Science 2002,55 (5),705-717.
    [125]Du, C., Shang, S., Dong, Q., Hu, C., Wu, J.. Characteristics of chromophoric dissolved organic matter in the nearshore waters of the western Taiwan Strait. Estuarine[J], Coastal and Shelf Science,2010,88 (3),350-356.
    [126]Kuwahara, V.S., Ogawa, H., Toda, T., Kikuchi, T., Taguchi, S.. Variability of Bio-optical Factors Influencing the Seasonal Attenuation of Ultraviolet Radiation in Temperate Coastal Waters of Japan[J]. Photochemistry And Photobiology,2000,72 (2),193-199.
    [127]Guo, W., Stedmon, C.A., Han, Y., Wu, F., Yu, X., Hu, M. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters[J]. Marine Chemistry,2007,107 (3),357-366.
    [128]Nelson, N.B., Carlson, C.A., Steinberg, D.K.. Production of chromophoric dissolved organic matter by Sargasso Sea microbes[J]. Marine Chemistry,2004,89 (1-4),273-287.
    [129]Nelson, N.B., Siegel, D.A., Carlson, C.A., Swan, C., Smethie, J.W.M., Khatiwala, S. Hydrography of chromophoric dissolved organic matter in the North Atlantic[J]. Deep Sea Research Part I:Oceanographic Research Papers,2007,54 (5),710-731.
    [130]Green, S.A., Blough, N.V., Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters[J]. Limnology And Oceanography,1994,39 (8), 1903-1916.
    [131]Bricaud, A., Morel, A. A. B. M.& Allali, K.et al. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters:Analysis and implications for bio-optical models[J]. J. Geophys. Res.,1998,103(C13):31033-31044.
    [132]Liu, J., Li, A., Xu, K., Velozzi, D.M., Yang, Z., Milliman, J.D., DeMaster, D.J., Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research,2006,26 (17-18),2141-2156.
    [133]金祥龙.中国海洋地质[M].北京:海洋出版社,1992.
    [134]Liu, F., Huang, H., Gao, A. Distribution of suspended matter on the Yellow Sea and the East China Sea and effect of ocean current on its distribution[J]. Marine Sciences,2006,30(1),68-72.
    [135]Lutz, V. A., Subramaniam, A.& Negri, R. M.et al. Annual variations in bio-optical properties at the'Estacio'n Permanente de Estudios Ambientales (EPEA)' coastal station, Argentina[J]. Continental Shelf Research,2006,26(10):1093-1112.
    [136]Siegel, D.A., Michaels, A.F. Quantification of non-algal light attenuation in the Sargasso Sea: Implications for biogeochemistry and remote sensing[J]. Deep Sea Research Part II:Topical Studies in Oceanography,1996,43 (2-3),321-345.
    [137]Magnuson, A., Harding, J.L.W., Mallonee, M.E., Adolf, J.E. Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight. Estuarine[J]. Coastal and Shelf Science,2004,61 (3), 403-424.
    [138]Ahn, Y.& Shanmugam, P. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters[J]. Remote Sensing of Environment,2006,103(4):419-437.
    [139]Wang, J., Wu, J. Occurrence and potential risks of harmful algal blooms in the East China Sea[J]. Science Of The Total Environment,2009,407 (13).4012-4021.
    [140]Bidigare, R. R., Ondrusek, M. E.& Morrow, J. H.et al. In-vivo absorption properties of algal pigments[M]. Orlando, FL, USA:SPIE,1990:290-302.
    [141]Johnsen, G., Samset, O., Granskog, L., Sakshaug, E. In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton:taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis[J]. Marine Ecology Progress Series,1994,105,149-157.
    [142]Aguirre-Gomez, R., Weeks, A.R., Boxall, S.R. The identification of phytoplankton pigments from absorption spectra[J]. International Journal Of Remote Sensing,2001,22 (2),315-338.
    [143]Hoepffner, N.& Sathyendranath, S. Effect of pigment composition on absorption properties of phytoplankton[J]. Marine Ecology Progress Series,1991,73:11-23.
    [144]Nelson, J. R.& Guarda, S. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States[J]. J. Geophys. Res.,1995,100(C5):8715-8732.
    [145]Fujiki, T.& Taguchi, S. Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance[J]. J. Plankton Res.,2002,24 (9): 859-874.
    [146]Morel, A.& Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton[J]. Deep Sea Research Part A, Oceanographic Research Papers,1981,28(11):1375-1393.
    [147]Bricaud, A., Babin, M.& Morel, A. A. C. H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton:Analysis and parameterization[J]. J. Geophys. Res.,1995, 100(C7):13321-13332.
    [148]Bricaud, A.& Stramski, D. Spectral Absorption Coefficients of Living Phytoplankton and Nonalgal Biogenous Matter:A Comparison Between the Peru Upwelling Area and the Sargasso Sea[J]. Limnology and Oceanography,1990,35(3):562-582.
    [149]Yentsch, C. S. Measurement of Visible Light Absorption by Particulate Matter in the Ocean[J]. Limnology and Oceanography,1962,7(2):207-217.
    [150]Cleveland, J. S. Regional models for phytoplankton absorption as a function of chlorophyll a concentration[J]. J. Geophys. Res.,1995,100(C7):13333-13344.
    [151]Wang, G., Cao, W.& Yang, D.et al. Partitioning particulate absorption coefficient into contributions of phytoplankton and nonalgal particles:A case study in the northern South China Sea[J]. Estuarine, Coastal and Shelf Science,2008,78(3):513-520.
    [152]Pop, R. M. and Fry, E. S. Absorption Spectrum (380-700) of Pure Water Ⅱ. Ingetrating Cavity Measurements[J]. Applied Optics,1997, Vol.36,8710-8723.
    [153]Sogandares, F. M. and Fry, E. S. Asorption Spectrum (380-640nm) of Pure Water. Ⅰ. Photothermal Measurements[J]. Applied Optics,1997, Vol.36,8699-8799.
    [154]IOCCG,2000. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group, No.3, IOCCG, Dartmouth, Canada.
    [155]Schofield, O., Bergmann, T.& Oliver, M. J.et al. Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight[J]. J. Geophys. Res.,2004,109 (C12): C12S-C14S.
    [156]Yentsch, C. S., and Reiciieht, C. A. The interrelationship between water soluble yellow substances and chloroplastic pigments in marine algae[J]. Botanica Marina,1961.
    [157]Mobley, C. D. Light and Water-Radiative Transfer in Natural Waters[M]. San Diege: Academic Press,1994.
    [158]Boss, E., Stramski, D.& Bergmann, T.et al. Why should we measure the optical backscattering coefficient[J]. Oceanography,2004,17(2):44-49.
    [159]Sathyendranath, S.& Platt, T. Analytic model of ocean color[J]. Applied Optics,1997,36(12): 2620-2629.
    [160]Baker, E. T.& Lavelle, J. W. The Effect of Particle Size on the Light Attenuation Coefficient of Natural Suspensions[J]. J. Geophys. Res.,1984,89(C5):8197-8203.
    [161]Hofmann, A., and Dominik, J. Turbidity and mass concentration of suspended matter in lake water:A comparison of two calibration methods. Aquatic Sciences,1995,57:54-69.
    [162]Gordon, H. R.& Morel, A. Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery:a Review[J]. Journal of the Marine Biological Association of the United Kingdom,1983,64(04):969.
    [163]Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S.,& Hamykowski, D. Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures[J]. Journal of Geophysics Research,1999,104, pp:5403-5421.
    [164]白雁.中国近海固有光学量及有机碳卫星遥感反演研究[D].博士学位论文,中国科学院研究生院(上海技术物理研究所),2007.
    [165]Hoepffner, N.,& Sathyendranath, S. Determination of the major groups of phytoplankton pigments from the absorption spectra of total paniculate matter. Journal of Geophysics Research[J],1993(90), pp:22789-22803.
    [166]Stramski, D., Bricaud, A.& Morel, A. Modeling the Inherent Optical Properties of the Ocean Based on the Detailed Composition of the Planktonic Community[J]. Applied Optics,2001, 40(18):2929-2945.
    [167]Morel, A.& Prieur, L. Analysis of Variations in Ocean Color[J]. Limnology and Oceanography, 1977,22(4):709-722.
    [168]Balch, W.M., Holligan, P.M., Ackleson, S.G., Voss, K.J. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine[J]. Limnology and Oceanography,1991, 36,629-643.
    [169]Subramaniam, A., Caprpenter, J. E.& Karentz, D.et al. Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra[J],1999,44(3).
    [170]Mahoney, K.L. Backscattering of light by Karenia brevis and implications for optical detection and monitoring. Ph.D., University of Southern Mississippi, Stennis Space Center,2003.
    [171]Cannizzaro, J. P., Carder, K. L.& Chen, F. R.et al. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data[J]. Continental Shelf Research,2008,28(1):137-158.
    [172]李炎,商少凌,张彩云,等.基于可见光与近红外遥感反射率关系的藻华水体识别模式[J].科学通报,2005(22).
    [173]王其茂,马超飞,唐军武,等.EOSMODIS遥感资料探测海洋赤潮信息方法[J].遥感技术与应用,2006,21(1).
    [174]何贤强,唐军武,白雁,等.2003年春季长江口海域黑水现象研究[J].海洋学报(中文版),2009,31(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700