铝合金车体结构焊接变形的模拟优化控制工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高速列车铝合金车体焊后出现的变形问题,开展了车体焊接应力、变形分析以及焊后矫形技术的研究。通过对车体焊接装配过程和火焰矫形过程的有限元模拟,揭示了车体的变形规律,从而为优化焊接工艺,确定变形控制措施奠定基础。
     本文首先对小尺寸车体结构模型的焊接进行了有限元数值模拟,并对其计算结果进行了实验验证。结果表明模拟结果与测量结果吻合良好,证明了模型的建立以及求解条件施加的合理性。但是这种车体型材结构不但会使得建模的时间大大增加,还会使整个车体模型的单元数量巨大而使现有计算机硬件水平无力承担。因此,本文提出了两种简化结构,并与小尺寸的实际结构模型进行了静力与焊接情况下的等效分析。结果表明,这两种结构不但能够保证与原结构在刚度、焊接残余应力等方面达到等效,而且能够大大减少单元数量从而提高运算速度。
     利用简化结构建立了整个车体的模型并对其进行了虚拟装配焊接。在对车体八条主要焊缝焊接后,产生了与实际焊接出现的趋势一致的挠曲变形,即两个侧墙均向车体外凸出,中部凸出最为严重,极大破坏了纵向母线直线度。针对这一现象,本文采用了优化焊接次序和焊后火焰矫形的方法来减小车体焊后挠曲变形,并在火焰矫形的模拟计算中采用自行设计的子程序来实现水枪断续行走的动态过程。结果表明,优化的焊接次序和火焰矫形都可以在一定程度上改善焊后挠曲变形。本文还模拟了实际火焰矫形工作中由于不规范操作而出现的压曲失稳变形,研究了火焰加热位置、角度、加热温度等对其影响规律,以此来指导实践生产,保证既可实现对焊后变形的合理调控,又能避免矫形过程中可能出现的压曲失稳变形。
This article is mainly analyzing the welding stress and distortion behavior of the aluminum alloy trains for the purpose of controlling the welding distortion and minishing the amending workload. Through the FEM simulation of welding processing of the whole trains’assembling, find out the distortion rules, consequently optimizing the welding technics.
     The article first simulates the welding processing of small scale plate and validates the simulation results. The validation shows that the simulation result is preferably tally the test result, the established model, the material performance and fixed boundary condition are all advisable. Considering this kind of model will be highly increase the establishing time because of the complicate configuration and the huge number elements of the model even can’t be compute in the present hardware condition. Thereby, bring up two simple configurations to replace the complicate one, and analyze the equivalence of the three configurations. The result indicates that both the two predigestion configurations are equal to the original, and both largely cut down the element number.
     Establishing the train model by using the predigestion configurations, and assembling it by welding four main parts. After welding the 8 welds including 2 discontinuity fillet weld, appears the same deflection as actual production: both the side walls protrude to the outside of the train, seriously damage the lineless of the vertical- generatrix. Against this phenomenon, this article adopts optimized welding consequence and flame-correction to amend weld deflection, and programmes the process of water-cooling. The result shows that both the two ways could amend the deflection a certain extent. Then simulates the wave transformation because of the improper manipulation during the flame-correction, certificate the effect of some factors, for instance , calefaction position, angle, temperature and so on. This work not only realizes the amending of distortion by optimized welding consequence and flame-correction, but also insures that the flame-correction won’t bring any new distortion.
引文
1葛维龙,高建平,曹霞.磁悬浮列车铝合金车体制造及焊接工艺研究.城市车辆. 2001, (5): 40-42
    2 J.H.Wang, H.Lu and Murakawa. Mechanical behavior in local post heat treatment(Report 1) visco-elastic-plastic FEM analysis of local PWHT. Trans of JWRI. 1998, 27(1): 83~88
    3姚曙,许平,高速磁悬浮列车车体国产化.交通运输工程学报. 2004, 4(2): 40-44
    4王炎金,丁国华.铝合金车体制造关键技术研究.中国铁道车辆焊接技术论坛. 2007, (7): 12-16
    5王炎金,丁国华,王俊玖.铝合金车体制造技术在中国的发展现状及展望.焊接. 2004, (10): 5~7
    6俞展猷.铝合金车体及最新焊接技术.铁道机车车辆. 2003, 23 (5): 16-20
    7李刚.焊接应力与焊接变形控制.水利水电技术. 2004, (6): 46~47
    8孟宪福,高栋.铝合金工件的焊接变形及控制措施.铁道机车车辆工人. 2007, (2): 25~26
    9杨跃,谢旦甲.火焰矫形焊接弯曲变形高效法.焊接. 1994, (2): 6~7
    10杨元修.火焰矫形弯曲变形的新工艺及原理.河北工业科技. 1998, 15 (2): 5~6
    11奉小桃.浅议火焰矫形法.应用技术研究. 2002, (4): 11~12
    12吴言高.焊接数值模拟技术发展现状.焊接学报. 2002, (6): 89~92
    13汪建华,陆皓.焊接预测理论和数值模拟技术的发展.造船技术. 2001, 4(3): 21~24
    14 Y. M. Zhang, R. Kovacevic. Dynamic analysis and identification of gas tungsten arc welding process for weld penetration control. Journal of engineering for industry transactions of the ASME. 1996, 118(1): 123~136
    15 W. Kim, S.J. Na. A study on the 3-dimensional analysis of heat and fluid-flow in gas metal arc-welding using boundary-fitted coordinates. Journal of Engineering for Industry Transactions of the ASME. 1994, 116(1): 78~85
    16刘仁培,董祖珏,魏艳红.不锈钢焊接凝固裂纹应力应变场数值模拟模型的建立.焊接学报. 1999, 20(4): 38~43
    17魏艳红,刘仁培.不锈钢焊接凝固裂纹应力应变场数值模拟结果分析.焊接学报. 2000, 21(2): 36~38
    18 L. M. Habib. U. Kleen. Numerical simulation of weld residual stresses and countermeasures in austenitic steel piping. International Conference on Nuclear Engineering. 1997: 25~29
    19汪建华,戚新海,钟小敏.焊接结构三维热变形的有限元模拟.上海交通大学学报. 1994, 28(6): 59~65
    20 J.A. Goldak. Error due to two dimensional approximation in heat transfer analysis of welding. Welding Journal. 1993, 72(9): 440~446
    21 S. Brown, H. Song. Finite element simulation of welding of large structures. Journal of Engineering for Industry Transactions of ASME. 1992, 114(4): 441~451
    22 P.S. Wei, W.H. Giedt. Surface tension gradient-driven flow around an electron beam welding cavity. Welding Journal. 1985, 64(9): 251~259
    23 Z.C. Lin, W.C. Pan. A coupled thermo-elastic-plastic model with a modified direct interaction method in a cold extrusion process. Journal of Strain Analysis. 1993, 128(2): 89~100
    24 Y. Ueda. Analysis of the thermal elastic-plastic stress and strain during welding. Trans. Japan Welding Soc. 1971, 2(2): 90~100
    25 H.D. Hibbitt, P.V. Marcal. A numerical thermo-mechanical model for the welding and subsequent loading of a fabricated structure. Computer& Structure. 1973, 3(5): 1145~1174
    26 K. Masubuchi. Prediction and control of residual stresses and distortion in welded structures. proc. Theoretical Prediction in Joining and Welding. 1996: 71~88
    27 Goldak J. Thermal stress analysis of welds. from melting point to room temperature. proc. Theoretical Prediction in Joining and Welding. 1996: 225~230
    28 L. Karlsson. Thermo-mechanical FE-analysis of residual stresses and stress redistribution in butt welding of a copper canister for spent nuclear fuel. Nuclear Engineering and Design. 2002, 212(1): 401~408
    29 N.Nasstrom. Combined 3-D and shell modeling of welding. proc. IUTAM symposium on the mechanical effects of welding. Lulea Sweden Germany, 1992: 197~206
    30 J.B.Leblond. A theoretical and numerical approach to the plastic behavior of steels during phase transformations. J. Mech. Phys. Solids. 1986, 34(4): 395~409
    31 Y.Ueda, K.Nakacho. Theory of thermal elastic-plastic analysis with a more general work harding rule. Transaction of JWRI. 1980, 19(1): 107~114
    32 J.Argyris, J.Simmat. Computational aspects of welding stress analysis. computer meth. appl. Mech&Eng. 1982, 133(4): 625~666
    33 B. Anderson. Thermal Stress in Large Butt-welded Plates. Journal of Thermal Stress. 1981, (4): 492~500
    34 O. Grong. Metallurgical modeling of welding. The Institute of Materials. 1994: 56~60
    35 T.L. Teng, C.P. Fung, P.H. Chang, W.C. Yang. Ananlysis of residual stresses and distortions in T-joint fillet Wwlds. International Journal of Pressure Vessels and Piping. 2001, 78: 523~538
    36薛小龙,桑芝富,朱加贵.多道间断焊T型接头的数值模拟.设计计算. 2004, 11(21): 27~31
    37唐慕尧.单面焊时终端裂纹的研究.焊接学报. 1987, 7(3): 123~132
    38陈楚.轴对称热弹塑性应力有限元分析在焊接中的应用.焊接学报. 1987, 8(4): 196~203
    39汪建华.考虑相变的焊接动态和残余应力的研究.第六届全国焊接学术会议论文集第5册.西安. 1990: 209~212
    40 J. Wang. Improvement in numerical accuracy and stability of 3-D FEM analysis in welding. Welding Journal. 1996, 75(4): 129~134
    41汪建华.薄板焊接失稳变形的热弹塑性有限元分析.计算机在焊接中应用的学术与技术交流会论文集.太原. 1996: 190~193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700