小麦与条锈菌互作机理研究及抗条锈相关基因的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由条形柄锈菌(Puccinia striiformis f. sp. tritici)引致的小麦条锈病是一种气传性真菌病害,在全世界小麦种植区域均有不同程度发生。在我国,小麦条锈病发生、危害十分严重,已成为影响小麦生产可持续发展的限制因素。国内外的研究、实践证明,选育和种植抗病品种是防治小麦条锈病最经济、有效、安全的措施。因而,小麦抗条锈病机制以及小麦与条锈菌互作机理等方向的研究一直是植物抗病性及其利用领域中的研究热点。然而,由于条锈菌是专性寄生菌,且尚未发现其有性时代,加之小麦基因组庞大复杂,限制了对该病害的深入系统研究。因此,从转录组水平上全面系统了解小麦与条锈菌互作的基因表达特征,克隆抗条锈相关基因并利用病毒诱导的基因沉默技术分析其功能,为阐明小麦与条锈菌互作的分子机理奠定基础,并为小麦抗条锈性的合理利用和小麦抗条锈性的遗传改良及条锈病的持久控制提供理论依据和技术支撑。
     本文以小麦品种水源11分别与条锈菌条中CY31和CY23构成的亲和与非亲和组合为材料,采用cDNA-AFLP技术对其进行表达谱分析,同时分离差异表达的TDF(transcripts-derived fragment);利用qRT-PCR技术验证cDNA-AFLP表达谱以及分析重要基因的表达特征;通过PCR筛选文库和RACE方法,克隆蛋白激酶、病程相关蛋白及与HR(hypersensitive reaction)相关的基因,并通过生物信息学分析基因的基本特性;运用BSMV-VIGS(virus induced gene silencing)技术对候选基因进行了初步的功能分析。主要研究内容及结果如下:
     1.分别在小麦接种条锈菌后6 h、12 h、18 h、24 h、36 h、48 h、72 h、96 h、120 h、144 h及168 h取样,抽提总RNA,反转录合成cDNA,然后利用cDNA-AFLP进行差异表达谱分析;利用64对引物检测到亲和与非亲和组合中表达的TDFs分别为54,912和52,992个,其中的33对引物具有较好的多态性。在亲和组合中,2,306个TDFs的表达谱发生了改变(占表达谱的4.2%),呈上调表达的有1,340个TDFs,下调表达的有966个TDFs。在非亲和组合中约2,437个TDFs表达受到抑制或促进(占表达谱的4.6%),其中1,787个TDFs呈上调表达,650个TDFs的表达受到抑制。
     亲和组合与非亲和组合分别回收215个和300个TDFs,经克隆、测序和聚类分析后,亲和组合unigenes为186个,非亲和组合unigenes为255个。利用GO分类方法分别对两个组合的unigenes进行功能注释,两个组合的ESTs均分为14大类,包括代谢、能量、细胞生长、转录、蛋白质合成、蛋白质储藏与运输、转运子、胞内运输、细胞结构、信号转导、疾病与防御、转座、功能未知以及没有匹配的序列。数据分析发现,亲和与非亲和组合中分别有60%和56%的ESTs功能未知或者为No hits;两个组合中,差异表达的基因以基础代谢、信号及抗病类为主,表明小麦与条锈菌互作时,基础代谢以及信号传导等相关基因转录活跃,寄主通过加快自身的代谢以及积累更多的营养物质,以满足自身及小麦条锈菌专性寄生的需要,同时也会启动一系列信号途径响应病原菌的侵染。
     2.分别从亲和及非亲和文库中挑选部分基因进行qRT-PCR分析,以验证cDNA-AFLP技术的准确性。研究结果表明,基因的表达趋势与cDNA-AFLP表达谱基本一致,并且大部分基因均受条锈菌诱导表达。说明利用cDNA-AFLP分析小麦与条锈菌互作的基因表达谱及分离差异表达的基因是可行的。
     3.以非亲和差异表达TDFs文库中的unigenes为Qurey方,用BLASTN搜索亲和互作数据库DB-TDFs进行比对分析。结果发现,两个组合中共有161条ESTs序列相似性很高,94条非亲和组合中的ESTs序列在亲和组合中没有匹配或相似性很低,它们编码的产物涉及基础代谢、信号与抗病反应及蛋白质代谢等各功能分类。对两个组合中相似性较高及没有匹配的部分ESTs片段进行了qRT-PCR分析,结果表明:大部分基因在亲和互作及非亲和互作中均受诱导表达,但在两个组合中表达的强度和启动表达的时间有所不同。由qRT-PCR分析的结果并结合cDNA-AFLP的表达谱可推测,在小麦与条锈菌互作体系中,基因表达的种类在亲和与非亲和互作中基本一致,基因表达的强度与时间的不同可能是引致寄主植物抗病性变化的因素之一。
     4.利用PCR筛选cDNA文库方法,获得了5个激酶类基因,分别暂命名为TaRLK(2393 bp),TaCIPK(1993 bp),TaLRR-RLK(2272 bp),TaSTK(1831 bp),TaCDPK(1441 bp)。它们分别编码受体激酶(684 aa),CBL互作蛋白激酶(439 aa),LRR-受体激酶(605 aa),丝氨酸/苏氨酸激酶(433 aa)和钙依赖蛋白激酶(342 aa);InterProScan分析表明,它们所编码的蛋白具有蛋白激酶的活性位点,属于激酶类基因,且TaRLK,TaCIPK,TaSTK三个蛋白的磷酸化作用需依赖ATP,TaCIPK具有该蛋白家族特有的NAF基序,NAF编码25个氨基酸,主要调控TaCIPK与钙调磷酸酶B(CBL)的相互作用;TargetP预测发现,TaRLK及TaLRR-RLK类受体激酶编码蛋白具有N端信号肽,可能是分泌蛋白质;Tmpred分析表明,TaCIPK和TaLRR-RLK编码的蛋白具有跨膜区;经Psort预测,TaRLK,TaCIPK,TaLRR-RLK蛋白分布在质膜的可能性较大,TaCDPK则可能位于细胞质,而TaSTK蛋白可能分布在过氧化物酶体或细胞核;氨基酸比对及进化树分析表明,TaRLK,TaCDPK,TaCIPK,TaLRR-RLK及TaSTK分别与小麦(Triticum aestivum,AAK20741)、水稻(Oryza sativa,BAD53576)、大麦(Hordeum vulgare,ABQ09285)、玉米(Zea mays,NP_001147794)、大麦(H. vulgare,ABF18544)等激酶具有很高相似性;qRT-PCR分析表明,在转录水平上,TaSTK在小麦与条锈菌互作中的表达变化不显著,其余四个基因在互作早期均受条锈菌诱导表达,并且与亲和组合相比,这四个基因在非亲和互作中表达的强度较大,而且启动时间要早。结果表明,在小麦与条锈菌互作的早期,TaRLK,TaCDPK,TaCIPK及TaLRR-RLK转录产物迅速积累,可能参与了小麦对条锈菌的抗病反应,而TaSTK是否在转录后或翻译水平调控小麦与条锈菌互作需要进一步研究。
     5.采用BSMV-VIGS技术,对16个差异表达的激酶类基因进行功能分析。结果显示,11个发生基因沉默的小麦接种条锈菌CY23后症状表型发生了不同程度的变化(野生型接种条锈菌表现为抗病反应,表型为0;),且组织学观察的结果与其表型变化基本一致。其中Su11_CY31_4885、Su11_CY31_5766、Su11_CY23_C304(TaCIPK)、Su11_CY23_2159(TaSTK)、Su11_CY23_C90等5个基因沉默后,过敏性坏死面积较大,仅有少量夏孢子产生,反应型为1+型;Su11_CY31_1189、Su11_CY31_C193(TaRLK)、Su11_CY31_3468、Su11_CY23_2780等4个基因的转录产物受到抑制后,枯死面积相对较小,并在褪绿斑周围产生少量夏孢子堆,反应型为2型,但对条锈菌CY23仍表现为抗病反应;而基因Su11_CY31_2485和Su11_CY31_1437的转录产物被沉默后,小麦对CY23的反应型,由0;转变为3+反应型,即由非亲和反应转变为亲和反应。以上结果表明:Su11_CY31_4885、Su11_CY31_5766、Su11_CY23_C304、Su11_CY23_2159、Su11_CY23_C90、Su11_CY31_1189、Su11_CY31_C193、Su11_CY31_3468及Su11_CY23_2780等基因参与小麦对条锈菌CY23的抗性反应,但对条锈菌的抗性贡献较小,而Su11_CY31_2485和Su11_CY31_1437两个基因在水源11对条锈菌CY23的抗病反应中起着重要作用。
     6.利用PCR筛选cDNA文库及RACE方法,获得了TaPR1b(862 bp)、TaPR5(810 bp)和TaPR10b(975 bp)三个病程相关蛋白基因,分别编码164、173、166个氨基酸;TMpred预测发现,TaPR1b、TaPR5、及TaPR10b蛋白均不含跨膜区。SignalIP 3.0预测TaPR1b蛋白的前24个氨基酸和TaPR5蛋白的前20个氨基酸是典型的信号肽结构,TaPR10b蛋白没有信号肽。另外,Psort预测显示,TaPR1b、TaPR5蛋白可能是胞外蛋白,而TaPR10b可能是胞质蛋白。
     在转录水平上,TaPR1b、TaPR5、及TaPR10b基因均受条锈菌诱导表达,且在亲和与非亲和组合中的表达变化趋势基本一致,只是在表达强度上,非亲和组合高于亲和组合。在12 hpi(Hour post inoculation),基因转录达到第一次表达高峰,在24 hpi-72 hpi,三个基因的表达相对稳定,在120 hpi出现第二次表达高峰,且强度均高于第一次。以上结果表明TaPR1b、TaPR5、及TaPR10b基因参与了小麦与条锈菌互作体系中的基础防御反应,只是在非亲和组合中它们对条锈菌抗性的贡献要大。而在120 hpi,三个病程相关蛋白基因的表达强度高于第一次表达高峰,表明由于在此阶段大量次生菌丝会产生更多的吸器,从而引发更强烈的小麦应激反应,同时也暗示吸器在条锈菌与小麦互作中的重要作用。
     另外,外源SA、JA和ET处理小麦叶片后,qRT-PCR的研究结果表明,TaPR1b、TaPR5、及TaPR10b基因表达对SA和JA比较敏感,在早期即被诱导表达,并保持较高表达水平。而对ET的诱导表现不敏感。因此,它们可能主要通过SA和JA信号途径参与了小麦对条锈菌的抗性反应。
     洋葱表皮亚细胞定位表明,融合蛋白TaPR5-hGFP在非原生质体中高强度表达。TaPR5的免疫细胞化学标记结果显示:超薄切片经TaPR5抗体孵育和山羊抗鼠免疫球蛋白-胶体金标记后,胶体金颗粒主要沉积于寄主细胞壁上,亲和组合中寄主细胞壁上胶体金颗粒的密度远低于非亲和组合。寄主细胞质和细胞器上几乎无标记的金颗粒,病菌细胞没有金颗粒分布。表明TaPR5参与了小麦对条锈菌的抗性反应。
     7.通过PCR筛选cDNA文库及RACE方法克隆了TaBI-1(1095 bp)、TaDAD2(608 bp)、TaPrx(689 bp)、TaELMO(1146 bp)和TaLLS(1786 bp)等与HR相关基因的全长,并利用生物信息学方法明确了它们的分类地位;小麦与条锈菌互作过程中的表达特征分析显示,它们参与了小麦与条锈菌的互作过程;另外,外源SA和JA诱导TaPrx、TaELMO基因的表达,TaBI-1、TaDAD2和TaLLS在SA及JA诱导下,表达变化不显著,而五个基因对ET诱导均不敏感,表明它们通过不同的信号途径参与小麦对条锈菌的互作过程。利用VIGS进行功能分析的结果显示:TaBI-1和TaDAD2基因分别发生沉默后,再接种条锈菌CY23,小麦叶片过敏性坏死反应面积较对照和γ病毒接种CY23后的明显减少,且坏死斑周围有少量夏孢子产生,表明TaBI-1和TaDAD2参与了小麦对条锈菌的抗性反应,并且可能是小麦与条锈菌HR反应的负调控子。而TaLLS沉默后的小麦叶片过敏性坏死的数量明显减少,表明TaLLS可能是HR反应的正调控因子。
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is a devastating disease in wheat worldwide. The use of resistance cultivars offers the most economic and environmental friendly way to control the disease. In China, we have made great achievements on the control of wheat stripe rust through research on epidemiology and control of the disease. Systemic research on the mechanisms between wheat-Pst has been extensively conducted in the fields of histology, cytology, molecular biology, and biochemistry. However, due to special features of hexaploid wheat with large and complex genome and difficulties for transformation, and of Pst without clearly defined sexual reproduction and hard to culture on media, studies of genes involved in the wheat-Pst interactions using genetic and molecular techniques were largely limited. Therefore, deciphering the expression profiling of wheat-Pst interactions at the transcriptome level, along with identification and characterization of the resistance related genes, is of greatly importance to elucidate the molecular mechanisms of wheat-Pst interactions, which will be useful for development of genetically improved disease resistance and appropriate deployment of resistant cultivars to achieve sustainable control of the disease.
     In the study for my Ph.D. degree, expression profiling of wheat cultivar‘Suwon11’infected by Pst pathotypes CY31 and CY23, representing compatible and incompatible reactions, respectively, were analyzed using the cDNA-AFLP technique, followed by isolation of the differentially expressed transcript derived fragments (DE-TDFs). Quantitative RT-PCR (qRT-PCR) analyses were used to verify the cDNA-AFLP patterns of selected important resistance-related genes. A wheat full-length cDNA library was screened using a PCR method, together with the bioinformatics characterization to identify resistance-related genes encoding kinases, pathogenesis related proteins and hypersensitive reaction induced genes. The biological functions of the identified candidate genes were determined using the BSMV-VIGS (Barley Stripe Mosaic Virus-Virus Induced Gene Silencing) approach. The follow most important results were obtained:
     1. Suwon11 had compatible and incompatible reactions when infected with CY31 and CY23, respectively. Leaf samples were collected at each time point of 12, 18, 24, 36, 48, 72, 96, 120, 144, and 168 h after inoculation with Pst to extract total RNA and synthesize cDNA using reverse transcription. cDNA from each of the samples were used to determine differential expression profiling through cDNA-AFLP analyses. A total of 54,912 and 52,992 DE-TDFs from the compatible and incompatible interactions were detected, respectively, using 64 AFLP primer combinations, of which 33 produced reliable polymorphic bands. Expression profiling of 2,306 DE-TDFs in the compatible interaction showed differentially expressed (accounting for 4.2% of the whole compatible profiling), of which 1,340 DE-TDFs were up-regulated and 966 down-regulated. In the incompatible interaction, 2,437 DE-TDFs were differentially expressed (accounting for 4.6% of the whole incompatible profiling), of which 1,787 DE-TDFs were up-regulated and 650 down-regulated. From the characterized DE-TDF, 186 from the compatible interaction and 255 from the incompatible interactions were successfully cloned, sequenced, and assembled. A large portion of the DE-TDFs with unclear classification or no hits accounted for more than 60% in the compatible and 56% in the incompatible interaction. The majority of the DE-TDFs with function identified in each interaction were mainly involved in basal metabolism, signal transduction, and disease/defense groups. The results suggest that the host strengthens its metabolism and accumulates more nutrients to fulfill the wheat-Pst interactions. Additionally, based on their functional classification from both of the interactions, 47 genes were selected for further qRT-PCR analyses, along with their expression patterns in the mock-inoculated samples. The expression patterns revealed by qRT-PCR analyses were basically consistent with the cDNA-AFLP patterns. Because the expression changes of the genes in mock-inoculated samples were not significant, the identified DE-TDFs were most likely pathogen-induced genes.
     2. To compare genes in the compatible interactions with those in the incompatible interaction, BLASTN analyses were conducted to search against the database of DB-TDFs from the compatible interaction using the unigenes from the incompatible interaction as the query. The results showed that the 161 genes were shared by the two interactions. These genes were predicted to encode proteins involved in energy and metabolism, signal transduction and disease/defense, and protein metabolism. In contrast, 94 genes were unique in the incompatible interaction, which were also in the above mentioned categories. The results of qRT-PCR analysis to compare the expression patterns of selected shared and unique genes showed that most of the genes were induced in both of the incompatible and compatible interaction, but with different expression levels and at different time points between the two interactions. Therefore, we proposed that differentially expressed genes with different functional categories were most similar in two interactions, and the expression level or time of these genes might determine the resistance phenotype.
     3. Five kinase-encoding genes were obtained using the PCR-based method of screening the full-length cDNA library. These genes were TaRLK (2,393 bp), TaCIPK (1,993 bp), TaLRR-RLK (2,272 bp), TaSTK (1,831 bp), and TaCDPK (1,441 bp), encoding receptor protein kinase, CBL interacting protein kinase, LRR-receptor protein kinase, Ser/Thr protein kinase, and Ca2+ dependent protein kinase, respectively. The results of the InterProScan analyses characterized the five genes to encode kinases. TaRLK, TaCIPK, and TaSIK proteins were found to have an ATP-dependent phosphorylation feature. Kinases-like TaRLK and TaLRR-RLK contained N-terminus signal peptides, which might be helpful for secretion. TaCIPK and TaLRR-RLK each contained a trans-membrane domain. TaCIPK had a typical NAF motif of its protein family, encoding 25 amino acids in responsible of regulating the TaCIPK and CBL interaction. The analysis of multiple alignment and phylogenetic tree demonstrated that TaRLK, TaCDPK, TaCIPK, TaLRR-RLK, TaSTK were highly similar to kinase genes in wheat (AAK20741), rice (BAD53576), barley (ABQ09285 and ABF18544), and maize (NP_001147794). Expression patterns revealed by the qRT-PCR analysis indicated that these genes, except for TaSTK, were induced with high levels of expression at the earlier time points during the incompatible interaction. The rapid accumulation of these genes in the early wheat-PST interaction might be a sign of implication to wheat defense response to Pst for these genes.
     4. Sixteen kinase-encoding DE-TDFs were selected for further functional characterization using the BSMV-VIGS technique. Positive silencing for each of the gene was detected using qRT-PCR. Of the 16 genes, 11 showed phenotypic changes on the plants with the genes silenced. Further histological observations supported the results. Plants with silenced genes including Su11_CY31_4885, Su11_CY31_5766, Su11_CY23_C304, Su11_CY23_2159, and Su11_CY23_C90 showed larger area of hypersensitive cell death with slight amount of sporulation (infection type 1+). Wheat plants with silenced Su11_CY31_1189, Su11_CY31_C193, Su11_CY31_3468, or Su11_CY23_2780 gene showed little sporulation around the small area of hypersensitive cell death, indicating a resistant reaction (infection type 2). Plants with silenced Su11_CY31_2485 or Su11_CY31_1437 gene showed a compatible reaction (infection type 3+) when being challenged with CYR23. The results indicated that Su11_CY31_4885, Su11_CY31_5766, Su11_CY23_C304, Su11_CY23_2159, Su11_CY23_C90, Su11_CY31_1189, Su11_CY31_C193, Su11_CY31_3468, and Su11_CY23_2780 are involved in wheat defense response against CYR23 with low-level effects, while Su11_CY31_2485 and Su11_CY31_1437 play a more important role in the defense response. In addition, compared with control plants without virus inoculation, plants inoculated by wild-type BSMV virus showed larger area of hypersensitive cell death after CYR23 inoculation, without sporulation, therefore indicating that virus may induce defense response as well.
     5. Three wheat pathogenesis-related (Pr) protein genes, TaPR1b (862 bp), TaPR5 (810 bp), and TaPR10b (975 bp), were successfully identified by screening the cDNA library and using the RACE technique. The encoded proteins of TaPR1b, TaPR5 and TaPR10b consisted of 164, 172, 166 amino acids, respectively. The TaPR1b and TaPR5 proteins were found to have a signal peptide within its N-terminal residues lacking of transmembrane, suggesting the putatively secretary function, while TaPR10b did not have a transmembrane or signal peptide structure. TaPR1b, TaPR5 and TaPR10b transcripts were induced upon Pst inoculation, with slightly higher transcription levels in the incompatible reaction than the compatible reaction, indicating that TaPR1b, TaPR5, and TaPR10b may be involved in wheat against the stripe rust fungus. Additionally, they were sensitive to SA and JA, and therefore, may play a role in resistance to Pst in the signal pathway of SA and JA. Transient expression analyses using gun-mediated bombardment method revealed that TaPR5 proteins were located in the epidermal cell walls. Immunocytochemical localization of TaPR5 in wheat-Pst interactions showed more gold particles were deposited over host cell wall in incompatible reaction, indicating that TaPR5 may take part in resistance to Pst.
     6. Five wheat genes, TaBI-1 (1,095 bp), TaDAD (608 bp), TaPrx (689 bp), TaELMO (1,146 bp), and TaLLS (1783 bp), were successfully cloned by screening the cDNA library and using the RACE technique. These genes were identified using a series of bioinformatical methods. To further characterize their functions, TaDAD2, TaBI-1, and TaLLS were silenced with the BSMV-based VIGS system. The results showed that conspicuous hypersensitive response (HR) was elicited by CYR23 on leaves pre-infected with BSMV:γor BSMV:TaDAD2as and BSMV:TaBI-1as, as well as mock-inoculated plants. However, limited fungal sporulation around the necrotic spots was observed only on leaves infected with BSMV:TaDAD2as and BSMV:TaBI-1as by 10 day post inoculation. Therefore, knocking down TaDAD2 or TaBI-1 expression reduced fungal-induced cell death and allowed limited fungal growth and uredium development, which indicate that TaDAD2 may function as a suppressor of cell death in the early stages of wheat-stripe rust fungus interaction. Additionally, necrotic cell areas were significantly smaller compared with BSMV:γand mock-inoculated treatments when TaLLS was knocked down. These results suggested that TaLLS was a positive regulator of plant cell death in wheat-Pst interaction.
     In conclusion, the results of this study have elucidated molecular mechanisms and advanced our understanding of wheat-Pst interactions. The genes identified to be related to resistance could be used to improve stripe rust resistance in wheat cultivars through transformation or genetic manipulation.
引文
Allen R. A cytological study of infection of Baart and Kanred wheats by Puccinia graminis tritici[J]. Agric. Res., 1923, 23: 131-152.
    Alonso J M, Hirayama T, Roman G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science, 1999, 284: 2148-2152.
    Altschul S F, Gish W, Miller W, et al. Basic Local Alignment Search Tool[J]. Journal of Molecular Biology, 1990, 215: 403-410.
    Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic acids research, 1997, 25: 3389-3402.
    Andaya C B, Ronald P C. A catalytically impaired mutant of rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv oryzae[J]. Physiological and Molecular Plant Pathology, 2003, 62: 203-208.
    Anderson I., Brass A. Searehing DNA database for similarities to DNA sequences: when is a match significant?[J]. Bioinformatics, 1998, 14(4): 349-356.
    Archana Sanjay, Jie Fu. et al. DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex[J]. The Journal of Biological Chemistry, 1998, 273(40): 26094-26099.
    Asai T, Stone J M, Heard J E, et al. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell, 2000, 12: 1823-1836
    Asai T, Tena G, Plotnikova J,Willmann MR,Chiu WL et al. MAP kinase signaling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415:977-983.
    Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S. Genome-wide identification of the rice calcium- dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice[J]. Plant Cell Physiol, 2005, 46:356-366.
    Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology[J]. Nature Genetics, 2000, 25: 25-29.
    Assmann S M, Simoncini L, Schroeder J I. Blue light activates electrogenic ion pumping in guard cell protoplasts of Viciafaba[J]. Nature, 1985, 318: 285-287.
    Ayliffe M A, Roberts1 J K, Mitchell H J, et al. A plant gene up-regulated at rust infection sites[J]. Plant Physiology, 2002, 129: 169-180.
    Bachem C W, Oomen, R J F, Visser R G. Transcript imaging with cDNA-AFLP: a step-by-step protocol[J]. Plant Molecular Biology Report, 1998, 16: 157-173.
    Bachem, C W B, van der Hoeven R S, de Bruijn S M, et al. Visualisation of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development[J]. Plant J, 1996, 9:745-753.
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar S P. Signaling in plant-microbe interactions. Science, 1997, 276:726-733.
    Baldwin D, Crane V, Rice D. A comparison of gel-based, nylon filter and micronarray techniques to detect differential cultivar of Triticum aestivum L. under conditions of aluminium stress[J]. Plant Physiology, 1999, 104: 1007-1013.
    Bandino S, Hansen S, Brettschneider R, et al. Molecullar characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family[J]. Planta, 2001, 213: 1-10.
    Bantignies B., Seguin J., Muzac I., Dedaldechamp F., Gulick P., and Ibrahim R. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots[J]. Plant Mol. Biol., 2000, 42(6): 871-881.
    Barcellos A L, Roelfs A P, Moraes-Fernandes M I B. Inheritance of adult plant leaf rust resistance in the B rizilian wheat cultivar Toropi[J]. Plant Disease, 2000, 84: 90-93.
    Bariana H S and McIntosh R A. Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar‘Hybridede-Bersee’[J]. Plant Breeding, 1995, 114: 485-491.
    Bauer Z, Gomez-Gomez L, Boller T, Felix G. Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites[J]. J Biol Chem, 2001, 276:45669-45676.
    Beeraft P W. Receptor kinases in plant development[J]. Trends Plant Sci, 1998, 3:384-388.
    Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners[J]. Curr Opin Plant Biol, 2004, 7: 391-399.
    Beresford R M. Stripe rust (Puccinia striiformis), a new disease of wheat in New Zealand[J]. Cer Rusts Bull, 1982, 10: 35-41.
    Bernier F, Berna A. Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? [J]. Plant Physiol. Biochem., 2001, 39:545-54.
    Bestwick C S, Bennet M H, Mansfield J W. Hrp mutant of Pseudomonas syringae pv. Phaseolicola induces alterations but not membrane damage leading to the hypersensitive reaction in lettuce[J]. Plant Physiol, 1995, 108: 503-516.
    Bestwick C S, Brown I R, Mansfield J W. Localized Changes in Peroxidase Activity Accompany Hydrogen Peroxide Generation during the Development of a Nonhost Hypersensitive Reaction in Lettuce[J]. Plant Physiol, 1998, 118: 1067-1078.
    Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9Mb of contiguous sequence from chromosome4 of Arabidopsis thaliana[J]. Nature, 1998, 391: 485-488.
    Boekes D J. Defense-related protein in higher plant[J]. Annu Rev Biochem, 1990, 59: 873-907.
    Bohlmann H. The role of thionins in plant protection[J]. Crit. Rev. Plant Sci., 1994, 13:1-16.
    Bolduc, N., Brisson, L.F et al. Antisense down regulation of NtBI-1 in tobacco BY-2 cells induces accelerated cell death upon carbon starvation[J]. FEBS Lett., 2003, 532: 111–114.
    Bonnerot C, Briken V, Brachet V, et al. STK protein tyrosine kinase regulates receptor gamma-chain- mediated transport to lysosomes[J]. EMBO, 1998, 17: 4606-4616.
    Bowing S A, Guo A, Cao H, et al. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance[J]. Plant cell, 1994, 6:1845-1857.
    Bozkurt O, Unver T, Akkaya M S. Genes associated with resistance to wheat yellow rust disease identified by differential display analysis[J]. Physiol Mol Plant Pathol, 2008, 71: 230-239.
    Bramle, P M. Regulation of carotenoid formation during tomato fruit ripening and development[J]. J. Exp. Bo, 2002, 53: 2107-2113.
    Breyne P, Dreesen R, Cannoot B, et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies[J]. Molecular Genetics and Genomics, 2003, 269: 173-179.
    Breyne P, Zabeau M. Genome-wide expression analysis of Plant cell cycle modulated genes[J]. Current Opinion in Plant Biology, 2001, 4: 136-142.
    Brodersen P., Petersen M., Pike H. M., et al. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense[J]. Genes Dev, 2002, 16(4): 490-502.
    Broeker K, Bernard F, Moerschbacher B M. An EST library from Puccinia graminis f. sp. tritici reveals genes potentially involved in fungal differentiation[J]. FEMS Microbiol Lett, 2006, 256: 273-281.
    Brueggeman R, Drader T, Kleinhofs A. The barley ser/thr kinase gene rpg1 providing resistance to stem rust belongs to a gene family with five other members encoding kinase domains[J]. Theor Appl Genet, 2006, 114(6): 1147-1158.
    Brueggeman R, Rostoks N, Kudma D. The barley stem rust resistance gene rpg1 is a novel disease resistance gene with homology to receptor kinases[J]. PNAS, 2002, 99: 9328-9333.
    Brugmans B, Del Cartnen A F, Baehem C W, et al. A novel method for the construction of genome wide transcriptome maps[J]. Plant Journal, 2002, 31: 211-222.
    Bufe A, Spangfort MD, Kahlert H, Schlaak M, Becker W-M. The major birch pollen allergen, Betv, shows ribonuclease activity[J]. Planta, 1996, 199:413-15.
    Burch-Smith T M, Anderson J C, Martin G B, et al. Applications and advantages of virus-induced gene silencing for gene function studies in plants[J]. Plant Journal, 2004, 39(5): 734-746.
    Burton R A, Gibeaut D M, Bacic A, et al. Virus-induced silencing of a plant cellulose synthase gene[J]. Plant Cell, 2000, 12: 691-706.
    Buttlee T. M. Sandstom P A. Oxidative stress as a mediator of apoptosis[J]. Immunol Today, 1994, 15: 710. Camoni L, Harper J F, Palmgren M G. 14-3-3 protein activate a plant calcium-dependent protein kinase (CDPK)[J]. FEBS lett, 1998, 430: 381-384.
    Catanzariti W A M, Dodds P N, Lawrence G J, et al. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors[J]. The Plant Cell, 2006, 18: 243-256.
    Catherine F, Gabriele S and Beat K. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. The Plant Journal, 1997, 11(1): 45-52.
    Century K S, Adkisson M, Morlan J, Lagman R, Tobias R, Schwartz K, Smith A, Love J, Ronald P C, Whalen M C. Developmental control of Xa21 mediated disease resistance in rice . The Plant Cell, 1999, 20 (2): 231-236.
    Chae H. Z., Robison K., Pool L. B., et al. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes[J]. Proc. Natl. Acad. Sci, 1994, 91: 7017-7021.
    Chandra A, Martin G B, Low P S. The ptokinase mediates a signaling pathway leading the oxidative burst in tomato[J]. Proc Natl Acad Sci USA, 1996, 93: 13393-13397.
    Chang C, Kwok S F, Bleecker A B, et al. Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators[J]. Science, 1993, 262: 539-544.
    Chen X and Line R F. Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant(HTAP)resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis[J]. Phytopathology, 1995a, 85: 573-578.
    Chen X M and Line R F. Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis[J]. Phytopathology, 1995b, 85: 567-572.
    Chen X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat[J]. Can J Plant Pathol, 2005, 27: 314-337.
    Chenk P W and Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases[J]. Biochem Biophys Acta, 1999, 1449: 1-24.
    Chong J, Harder D. Ultrastructure of haustorium development in Puccinia coronata avenae: some host responses[J]. Phytopathology, 1982, 72: 1518-1526.
    Christensen AB, Ho Cho B, Naesby M, Gregersen PL, Brandt J, et al. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins[J]. Mol. Plant Pathol, 2002, 3:135-44.
    Clogh S G, Fengler K A, Yu I C, et al. The Arabidopsis dndl“defense, no death”gene encodes a mutated cyclic nucleotide-gatedion channel[J]. Proc Nat Acad Sci USA, 2000, 97: 9323-9328.
    Cogoni C, Macino G.. Post-transcriptional gene silencing across kingdoms[J]. Curr.Opin.Gene.t Dev, 2000, 10: 638-643.
    Cogoni C, Romano N,Macino G.. Suppression of gene by homologous transgenes[J]. Antonie Van Leeuwenhoek, 1994, 65: 205-209.
    Colditz F, Braun H P, Jacquet C, Niehaus K, and Krajinksi F. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula[J]. Plant Mol. Biol., 2005, 59: 387-406.
    Colditz F, Niehaus K, and Krajinski F. Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches[J]. Planta, 2007, 226: 1-57.
    Comménil P, Belingheri L, Bauw G, et al. Molecular characterization of a lipase induced in Botrytis cinerea by components of grape berry cuticle[J]. Physiol Mol Plant Pathol, 1999, 55: 37-43.
    Constantin G D, Krath B N, MacFarlane S A,et al. Virus-induced gene silencing as a tool of functional genomics in a legume species[J]. Plant Journal, 2004, 40: 622-631.
    Coram T E, Settles M L, Chen X M. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction[J]. Mol Plant Pathol, 2008, 9:479-493.
    Coram T E, Settles M L, Wang M N, et al. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus[J]. Theor Appl Genet, 2008, 117: 401-411.
    Coram T E, Wang M N, Chen X M. Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction[J]. Mol Plant Pathol, 2008, 8: 157-169.
    Cornelissen B J C, Hooft van Huijsduijnen R A M, Bol J F. A tobacco mosaic virus-induced protein is homologous to the sweet-tasting protein thaumatin [J]. Nature, 1986, 21: 531-532.
    Cornelissen B J C, Horowitz J, Van Kan J A L, Goldberg R B, Bol J F. Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group[J]. Nucleic Acids Res., 1987, 15:6799-811.
    Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407:321-326.
    Cosio E G, Popperl H, Schmidt W E, et al. High-sffinity binding of fungal beta-glucan fragments to soybean microsomal fraction and protoplasts[J]. Eur J Biochem, 1988, 175: 309-315.
    Custers J H H V, Harrison S J, Sela-Buurlage M B,Van Deventer E, Lageweg W, et al. Isolation and characterization of a class of carbohydrate oxidases from higher plants, with a role in active defence[J]. Plant J., 2004, 39:147-60.
    Cuzin, M. DNA chips: a new tool for genetic analysis and diagnostics[J]. Transfus Clin Biol, 2008, (3): 291-296.
    Dangl J L, Jones J G D. Plant pathogens and integrated defense responses to infection insight review articles[J]. Nature, 2001, 411: 826-833.
    Daniel J. Kelleher, Reld Gilmore. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA, 1997, 94(10)4994-4999.
    Danon A, Delorme V Mallhac N GaUois P. Plant programmed cell death: A common way to die [J]. Plant Physiol Biochem, 2000, 38:641- 655.
    Darnet S and Rahier A. plant sterol biosynthesis: indentification of two distinct families of sterol 4 alpha-methyl oxidases[J]. Biochemical journal, 2004, 378: 889-898.
    Del Pozo O, Lam E. Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene-mediated disease resistance response to tobacco mosaic virus. Mol Plant Microbe Interact, 2003, 16: 485-494.
    Dellagi A, Birch P R, Heilbronn J, et al. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora[J]. Microbiology, 2000, 146: 165-171.
    Desikan R, A H-Mackerness S, Hancock J T, et al. Regulation of the Arabidopsis transcriptome by oxidative stress[J]. Plant Physiol., 2001, 127: 159-172.
    Diener A C and Ausubel F M. Resistance to fusarium oxysporum, a dominant Arabidopsis resistance gene, is not race specific[J]. Genetics, 2005, 171(1): 305-321.
    Dietrich R A, Delaney T P, Uknes S J, et al. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565-577.
    Dietz K. J., Jacob S., Oelze M. L., et al. The function of peroxiredoxins in plant organelle[J]. Journal of Experimental Botany, 2006, 57(8): 1697-1709.
    Ditt R F, Nester E W, Comai L. Plant gene expression response to Agrobacrerium tumefaciens[J]. Proceedings of The National Academy of Sciences of The United States of America, 2001, 98: 10954-10959.
    Do H M, Hong J K, Jung H W, et al. Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. Vesicatoria in Capsicum annuum[J]. MPMI, 2003, 16: 196-205.
    Dong F, Wang P, Zhan L. The role of hydrogen peroxide in salicylic acid including stomatal closure in vicia faba guard cells[J]. Acta Phyto Physiologica Sinca, 2001, 27 (4): 296-302.
    Dong X. SA, JA, ethylene, and systemic acquired resistance[J]. Curr. Opini. Plant Biol., 1998, 1: 316-323.
    Dong Y-H, Zhan X-C, Kvarnheden A, et al. Expression of a cDNA from apple encoding a homologue of DAD1, an inhibitor of programmed cell death[J]. Plant Sci, 1998, 139: 165-174.
    Dunaevsky Y E, Elpidina E N, Vinokurov K S, et al. Protease inhibitors in improvement of plant resistance to pathogens and insects[J]. Mol Biol, 2005, 39: 608-613.
    Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose[J]. Proc. Natl. Acad. Sci. USA, 1998, 95: 10328-10333.
    Durrant W E, Rowland O, Piedras P, et al. cDNA-AFLP reveals a striking overlap in Race-specific resistance and wound response gene expression Profiles[J]. Plant Cell, 2000, 12: 963-977.
    Eckey C, Korell M, Leib K, et al. Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase[J]. Plant Molecular Biology, 2004, 55: l-15.
    Edens L, Hesling L, Klock R, et al: Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli [J]. Gene, 1982, 18:1-12.
    Eichmann R,Schultheiss H,Kogel K H,et al. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f.sp. tritici[J]. Mol Plant Microbe Interact, 2004, 17: 484-490.
    Ekengren S K, Liu Y, Schiff M, et al. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato[J]. Plant J, 2003, 36(6): 905-917.
    Ellis J, Dodds and Pryor T. Structure, function and evolution of plant disease resistance genes[J]. Curr. Opin. Plant Biol., 2000, 3: 278-284.
    Epple P, Apel K, Bohlmann H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum[J]. Plant Cell., 1997, 9:509-20.
    Faivre-Rampant O, Gilroy E M, Hrubikova K, et al. Potato virus X-induced gene silencing in leaves and tubers of potato[J]. Plant Physiol, 2004, 134(4): 1308-1316.
    Fantl W J, Johnson D E, Williams L T. Signaling by receptor tyrosine kinases[J]. Annu Rev Biochem, 1993, 62:453- 481.
    Fath A,Bethke P C,Jones R L.Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberelle acid-induced programmed cell death in barley aleurone[J].Plant physiology, 2001, 126:156-166.
    Felix G, Grosskopf D G, Regenass M, et al. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells[J]. Proc Natl Acad Sci USA, 1991, 88: 8831-8834.
    Feng X H, Zhao Y, Bottino P J, et al. Clong and characterization of a novel member of protein kinase family from soybean[J]. Biochimicaet Biophysica Acta, 1993, 1172: 200-204.
    Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus in wheat[J]. Plant J, 1997, 11(l): 45-52.
    Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance[J]. Trends Genet, 2000, 16(10):449-455.
    Fire A, Xu S Q, Montgomey M K, et al. Potnet and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391: 806-811.
    Fitzmaurice W P, Holzberg S, Lindbo J A, et al. Epigenetic Modification of Plants with Systemic RNA Viruses[J]. OMICS, 2002, 6(2): 137-151.
    Flor H H. Current status of the gene-for-gene concept[J]. Annu Rev Phytopathol, 1971, 9: 275-296.
    Fofana B, Travis W, Strelkov S E, et al. Temporal gene expression profiling of the wheat leaf rust pathosystem using cDNA microarray reveals differences in compatible and incompatible defence[J]. International Journal of Plant Genomics, 2007, 2007:1-13.
    Fofana I B F, SangaréA, Collier R, et al. A geminivirus-induced gene silencing system for gene function validation in cassava[J]. Plant Molecular Biology, 2004, 56:613-624.
    Foyer C H, Noctor G. Oxygen processing in photosynthesis: regulation and signaling[J]. New Phytol, 2000, 146:359-388.
    Friedrich L, Lawton K, Dincher S, et al. Benzothiadiazole induces systemic acquired resistance in tobacco[J]. Plant J, 1996, (10):61-70.
    Fu D, Uauy C, Distelfeld A, et al. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust[J]. Science, 2009, 323:1357-1360.
    Fukuda T, Kido A, Kajino K, et al. Cloning of differentially expressed genes in highly and low metastatic rat osteosarcomas by a modified cDNA-AFLP method[J]. Biochemical and Biophysical Research Communications, 1999, 261:35-40.
    Gabri?ls S H E J, Takken F LW, Vossen J H, et al. cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response[J]. Molecular Plant-Microbe Interactions, 2006, 19:567-576.
    Gallois P, Makishima T, Hecht V, et al. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant[J]. Plant J. 1997, 11:1325-1331.
    Gao C, Xing D, Li L, et al. Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure[J]. Planta, 2008, 227(4):755-767.
    Garc′?a-Olmedo F, Molina A, Segura A, Moreno M. The defensive role of nonspecific lipid-transfer proteins in plants[J]. Trends Microbiol, 1995, 3:72-74.
    Garcia-Brugger A, Lamotte O, Vandelle E, et al. Early signaling events induced by elicitors of plant defenses[J]. Mol Plant-Microbe Interact, 2006, 19:711-724.
    Garcia-Mata C, Gya R, Sokolovski S, et al. Nitric oxide regulated KR and CIS channels in guard cells through a subset of abscisic acid-evoked signaling pathways[J]. Proc. Natl. Acad. Sci. USA, 2003, 100:11116-11121.
    Gomez-Escobar N, Chou C F, Lin W W, et al. The G11 gene located in the major histocompatibility complex encodes a novel nuclear serine/threonine protein kinase[J]. J Biol Chem, 1998, 273:30954-30960.
    Gossele V, Fache I, Meulewaeter F, et al. Sviss-a novel transient gene silencing system for gene function discovery and validation in tobacco[J]. Plant J, 2002, 32(5):859-866.
    Grant M,Brwon I,Adams S,et al. The RPMI plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death[J]. Plant J, 2000, 23:441-450.
    Gray J, Close P S, Briggs S P, et al. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize[J]. Cell, 1997, 89(1):25-31.
    Greenberg J T, Ailan G, Klessig D F, et al. Programmed cell death in plants: A pathogen- triggered responseactivated coordinately with multiple defense functions[J]. Cell, 1994, 77:551-563.
    Greenberg J T, Silverman F P, Liang H. Uncoupling salicylic acid dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5[J]. Genetics, 2000, 156:341-350.
    Greenberg J T, Yao N. The role and regulation of programmed cell death in plant pathogen interactions[J]. Cellular Micro biology, 2004, 6(3):201-211.
    Greenberg J. T., Ausubel F. M. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging[J]. Plant J, 1993, 4(2):327-341.
    Grenville-Briggs L J, van West P. The biotrophic stages of oomycete-plant interactions[J]. Advances in Applied Microbiology, 2005:217-243.
    Gunawardena A H L A N,Pearce D M,Jackson M B,Hawes C R,Evans D E.Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize[J]. Planta, 2001, 212:205-214.
    Guo H, Ecker J R. The ethylene signaling pathway: New insights[J]. Curr Opin Plant Biol, 2004, 7:40-49.
    Guo H, Yang H, Mockler T, et al. Regulation of flowering time by Arabidopsis photoreceptors[J]. Science, 1998, 279:1360-1363.
    Guo S,Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81:611-620.
    Habu Y, Fukada-Tanaka S, Hisatomi Y, et al. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochemical and Biophysical Research Communications, 1997, 234:516-521.
    Hahn M, Neef U, Struck C, et al. A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae[J]. Mol Plant-Microbe Interact, 1997, 10:438-445.
    Haixin X, Michele C H. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus[J]. Plant Cell, 1998, 10:585-597.
    Hajgaard J, Jacobsen S, Svendsen I. Two antifungal thaumatin like proteins from barley grain[J]. FEBS Lett, 1991, 291:127-131.
    Hammond K E, Jones J D G. Plant disease resistance genes[J]. Plant Mol Biol, 1997, 48:575-607.
    Hanks S K, Quinn A M, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains[J]. Science, 1988, 241:42-52.
    Harder D, Samborski D J, Rohringer R, et al. Electron microscopy of susceptible and resistant near-isogenic(sr6/Sr6) lines of wheat infected by Puccinia graminis tritici,Ⅲ. Ultrastructure of incompatible interactions[J]. Canadian Journal of Botany, 1979, 57:2626-2634.
    Harper J F, Breton G, Hannon A. Decoding Ca2+ signals through plant protein kinase[J]. Annu Rev Plant Biol, 2004, 55:263-288.
    Hashimoto M., Kisseleva L., Sawa S., Furukawa T., Komatsu S., and Koshiba T. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway[J]. Plant Cell Physiol, 2004, 45(5):550-559.
    He S Y, Bauer D W, Collmer A, et al. Hypersensitive response elicited by Erwinia amylovora harpin requires active plant metabolism[J]. Mol Plant-Microbe Interact, 1994, 7:289-292.
    He SY, Huang H C, Collmer A. Pseudomonas syringae pv. syringae-harpin Pss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants[J]. Cell, 1993, 73(7):1255-1266.
    He X, Anderson J C, del Pozo Olga, et al. Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death[J]. Plant Journal, 2004, 38(4):563-577.
    He Z H, Wang Z Y, Li J M, Qun Zhu, Chris Lamb, Ronald P C Joanne Chory. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1[J]. Science, 2000, 288:2360-2363.
    Heath, M C. Hypersensitive response-related death[J]. Plant Molecular Biology, 2000, 44(3):321-34.
    Hegde P, Qi R, Abernathy K, et al. A concise guide to cDNA microarray analysis[J]. Biotechniques, 2000, 29(3): 548-562.
    Hein I, Barciszewska-Pacak M, Hrubikova K, et al. Virus-induced gene silencing-based functional characterization of genes associated withpowdery mildew resistance in barley[J]. Plant Physiol, 2005, 138(4): 2155-2164.
    Heo W D, Lee S H, Kim J C, et al. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of p disease resistance responses[J]. Proc Natl Acad Sci USA, 1999, 96:766-771.
    Hippe-Sanwald S, Marticke K H, Kieliszewski M J, et al. Immunogold localization of HRGP-like epitrpes in the haustorial interface of obligate, biotrophic fungi on monocots [J]. Protoplasma, 1994, 178:138-155.
    Hoeberichts F A and Woltering E J. Cloning and analysis of a defender against apoptotic cell death (DAD1) homologue from tomato[J]. J Plant Physiol, 2001, 158:125-128.
    Hoeberichts F A, Woltering E J. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators[J]. Bio Essays, 2002, 25:47-57.
    Hofer A M, Brown E M. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol, 2003, 4:530-538.
    Hoffman T, Schmidt J S, Zheng X, et al. Isolation of ethylene-insensitive soybean mutants that alter in pathogen susceptibility and gene-for-gene resistance[J]. Plant Physiol, 1999, 119:935-950.
    Hoffmann-Sommergruber K, VanekKrebitz M, Radauer C, Wen J, Ferreira F, and Scheiner O. Genomic characterization of members of the Bet v 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions[J]. Gene, 1997, 197:91-100.
    Hofte H, Desprez T, Amselen J, et al. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana[J]. The Plant Journal, 1993, 4(6):1051-1061.
    Holzberg S, Brosio P, Gross C, et al. Barley stripe mosaic virus-induced gene silencing in a monocot plant[J]. Plant J, 2002, 30(3):315-327.
    Horling F, K?nig J, Dietz K J Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins[J]. Plant physiology and Biochemistry, 2002, 40:491-499.
    Hortensteiner S., Wuthrich K. L., Matile P., et al. The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase[J]. J Biol Chem, 1998, 273(25):15335-15339.
    Hu G G, Rikenberg F H J. Ultrastructural studies of the intercellular hyphae and huastorium of Puccinia recondita f.sp. tritici[J]. Journal of Phytopathology, 1998, 146,39-50.
    Hu G, Richter T E, Hulbert S H, et al. Disease lesion mimicry caused by mutations in the rust resistancegene rp1. The plant cell, 1996.8:1367-1376.
    Hua J, Chang C, Sun Q, et al. Ethylene insensitivity conferred by Arabidopsis ERS gene[J]. Science, 1995, 269:1712-1714.
    Huang L, Brooks S A, Li W, et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat[J]. Genetics, 2003, 164:655-664.
    Huang X Q, Madan A. CAP3: A DNA sequence assembly program[J].Genome Research. 1999, 9(9):868-877.
    Huang X, Stettmaicer K, Michel C, et al. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana[J]. Planta, 2004, 218:938-946.
    Huckelhoven R, Dechert C, Kogen K H. Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis[J]. Proc Natl Acad Sci USA, 2003, 100:5555- 5560.
    Hückelhoven R, Fodor J, Preis C, Kogel K H. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation[J]. Plant Physiol, 1999, 119:1251-1260.
    Hulbert S H, Bai J, Fellers J P, et al. Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18[J]. Pytopathology, 2007, 97:1083-1093.
    Hunter T. 1001Portein kinases reudx: towards[J]. Seminas Cell Biol, 1994, 5:367-376.
    Huynh Q K, Borgmeyer J R, Zobel J F: Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds [J]. Biochem Biophys Res Commun, 1992, 182:1-5.
    Ivashikina N, Becker, D, Ache P, et al. K+ channel profile and electrical properties of Arabidopsis root hairs[J]. Febs Letters, 2001, 508:463-469.
    Jin H L, Liu Y D, Kwang-Yeo, et al. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco[J]. Plant J, 2003, 33(4):719-731.
    Jin H, Axtell M J, Dahlbeck D, et al. NPK1, an MEKK1-like Mitogen-Activated Protein Kinase Kinase Kinase, Regulates Innate Immunity and Development in Plants[J]. Developmental Cell, 2002, 3(2):291-297.
    Johnson R and Law. Cytogenetic studies on the resistance of the wheat variety Bersee to Puccinia striiformis[J]. Cereal Rusts Bull, 1973, 1:38-43.
    Jones L, Hamilton A J, Voinnet O, et al. RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing[J]. Plant Cell, 1999, 11:2291-2302.
    Jones L, Ratcliff F, Baulcombe D. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance[J]. Current Biology, 2001, 11:747-757.
    Jord′a L, Conejero V, Vera P. Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin-like proteinase family from tomato plants[J]. Plant Physiol, 2000, 122:67-73.
    Jwa N S, Kumar Agrawal G, Rakwal R, Park C H, and Agrawal V P. Molecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10,from rice (Oryza sativa L.) seedling leaves[J]. Biochem Biophys Res Commun, 2001, 286(5):973-983.
    Kanaki S K, Saitoh H, Ito A, et al. Cytosolic HSP90 and HSP70 response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana[J]. Mol Plant Pathol, 2003, 4:383-391.
    Kang Z S, Huang L L, Buchenauer H. Subecellular localization of chitinase andβ-1,3-glucanase in compatible and incompatible interactions between wheat and Puccinia striiformis[J]. Journal of Plant Diseases and Protection, 2003, 110(2):170-183.
    Kang Z S, Huang L L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis[J]. Journal of Plant Diseases and Protection, 2002, 109(1):25-37.
    Katoh H, Fujimoto S, Ishida C, et al. Differential distribution of ELMO1 and ELMO2 mRNAs in the developing mouse brain[J]. Brain Res, 2006, 1073-1074:103-108.
    Kawai M, Pan L, Reed J C, et al. Evolutionally conserved plant homologue of the Bax inhibitor-1(BI-1) gene capable of suppressing Bax-induced cell death in yeast [J]. FEBS Lett, 1999, 464:143-147.
    Kawai-Yamada M, Jin L, et al. Mammalian Bax-induced plant cell death can be downregulated by overexpression of Arabidopsis Bax Inhibitor-1(AtBI-1)[J]. Proc Natl Acad Sci USA, 2001, 98:12295-12300.
    Keller T, Damude H G, Werner D, et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs[J]. Plant cell, 1998, 10:255-266.
    Kelman Z. PCNA: Structure, functions and interactions[J]. Oncogene, 1997, 4:629-640.
    Kemen E, Kemen A C, Rafiqi M, et al. Identification of a protein from rust fungi transferred from haustoria into infected plant cells[J]. MPMI, 2005, 18(11):1130-1139.
    Kim K N, Cheong Y H, Grant J J, Pandey G K, LuanS. CIPK3, a calcium Sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis[J]. Plant Cell, 2003a, 15:411-423.
    Kim K N, Cheong Y H, Gupta R, Luan S. InteraCtion specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases[J]. Plant Physiol, 2000, 124:1844-1853.
    Kim K N, Lee J S, Han H, Choi S A, Go S J, Yoon I S. Isolation and Characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts[J]. Plant Mol Biol, 2003b, 52:1191-1202.
    Kim M, Ahn J W, Jin U H, et al. Activation of the programmed cell death pathway by inhibition of proteasome function in plants[J]. Journal of biological Chemistry. 2003a, 278:19406-19415.
    Kim M, Yang K S, Kim Y K, et al. Molecular characterization of NbPAF encoding theα6 subunit of the 20S proteasome in Nicotiana benthamiana[J]. Molecules and Cells, 2003b, 15:127-132.
    Kjemtrup S, Sampson K S, Peele C G, et al. Gene silencing from plant DNA carried by a germinivirus[J]. Plant J, 1998, 14(1):91-100.
    Klessig D, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense[J]. Proc Natl Acad Sci. USA, 2000, 97:8849-8855.
    Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. Plant J, 1997, 12:1067-1078.
    Kobe B, Deisenhofter J. The leucine-rich repeat: a versatile binding motif[J]. Trends Plant Sci, 1994,19:415-421.
    Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK Signaling networks[J]. Plant Physiol, 2004, 134:43-58.
    Krattinger S G, Lagudah E S, Spielmeyer W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323:1360-1363.
    Kumagai M H, Donson J, della-Cioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA[J]. Proc Natl Acad Sci USA, 1995, 92:1679-1683.
    Lacomme C, Hrubikova K, Hein I. Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats[J]. Plant J, 2003, 34(4):543-553.
    Lamb C, Doxin R A. The oxidative burst in plant disease resistance[J]. Auun Rev Plant Physiol Plant Mol Boil, 1997, 48:251-275.
    Lamers M B A C, Antson A A, Hubbard R E, et al. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine[J]. J Mol Biol, 1999, 285:713-725.
    Lauber K, Blumenthal S G, Waibel M, et al. Clearance of apoptotic cells: getting rid of the corpses[J]. Mol Cell, 2004, 14(3):277-287.
    Lawrence G J, Finnegan E J, Ayliffe M A, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N[J]. The Plant Cell, 1995, 7:1195-1206.
    Lawton K A, Friedrich L, Hunt M, et al. Benzothiadiazole induced disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway[J]. Plant J, 1996, 10:71-82.
    Lay F T, Anderson M A. Defensins-components of the innate immune system in plants[J]. Curr Protein Pept Sci, 2005, 6:85-101.
    Lease K, Ingham E, Walker J C. Challeges in understanding RLK function[J]. Curr Opin Plant Biol, 1998, 1:388-392.
    Lee J, Klessing D F, Nurberger T. A harpin binding site in tobacco plasma membrances mediates activation of the pathogenesis-related gene HINI independent of extracelllular calcium but dependent on mitogen-activated protein kinase activitu[J]. Plant cell, 2001, 13:1079-1093.
    Lemieus B, Aharoni A, Schena M. Overview of DNA chip technology[J]. Mol Breeding, 1998, 4:227-289.
    Levine A, Pennell R I, Alvarez M E, et al. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol, 1996, 6:427-437.
    Levine A, Tenhaken R[J]. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell, 1994, 79:583-593.
    Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassionsteroid signal transduction[J]. Cell, 1997, 90:929-938.
    Li J, Wen J, Lease K A, Doke J T, Tax F E, Walker J C. BAKI, an Arabidopsis LRR receptor-like protein kinase, interacts with BRll and modulates brassinosteroid signaling[J]. Cell, 2002, 110:213-222.
    Li W L, Faris J D, Chittoor J M, et al. Genomic mapping of defense response genes in wheat[J]. Theor Appl Genet, 1999, 98:226-233.
    Li X, Clarke J D, Zhang Y, et al. Activation of an EDSI-mediated R-gene pathway in the snc1 mutant leadsto constitutive, NPR1-independent pathogen resistance[J]. Mol Plant-Microbe Interac, 2001, 14:1131-1139.
    Lichtenthaler H K. Chorophylls and carotenoides: pigments of photosynthetic biomembranes[J]. Meth Enzymol, 1987, 148:350-382.
    Ligterink W, Kroj T, Nieden U, et al. Receptor-mediated activation of a MAP kinase in pathogen defense of palants[J]. Science, 1997, 276:2054-2057.
    Lin F and Chen X. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa[J]. Theor Appl Genet, 2007, 114:1277-1287.
    Lin F and Chen X. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express[J]. Theor and Appl Genet, 2009, On line: http://dx.doi.org/ 10.1007/s00122-008-0894-0.
    Lin K C, Bushnell W R, Szabo L J, et al. Isolation and expression of a host response gene family encoding thaumatin-like proteins in incompatible oat-stem rust fungus interactions[J]. Mol Plant-Microbe Interact, 1996, 9:511-522.
    Lindbo A J, Silva-Rosales L, Porebsting W M, et al. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance[J]. Plant Cell, 1993, 5:1749-1759.
    Lindholm P, Kuittinen T, Sorri O, et al. Glycosylation of phytepsin and expression of dad1, dad2, and ost1 during onset of cell death in germinating barley scutella[J]. Mech Dev, 2000, 93:169-173.
    Ling P, Wang M, Chen X, et al. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici)[J]. BMC Genomics, 2007, 8:145.
    Lino B, Baizabal-aguirre V M, Gonzalez de la Vara L E. The plasma-membrane H+-ATPase from beet roots is inhibited by a calcium-dependent phosphorylation[J]. Planta, 1998, 204:352-359.
    Linthorst H J M. Pathogenesis-related proteins of plants[J]. Crit Rev Plant Sci, 1991, 10:123-150.
    Liu G Z, Pi L Y, Walker J C, Ronald P C, Song W Y. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21[J]. J Biol Chem, 2002, 277(23):20264-20269.
    Liu J J, Ekramoddoullah A K M, and Yu X. Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening[J].Physiol Plant, 2003, 119(1):544-553.
    Liu Y, Burch-Smith T, Schiff M, et al. Molecular chaperone HSP90 associates with resistance protein N and its signaling proteins SGT1 and RAR1 to modulate an innate immune response in plants[J]. J Biol Chem, 2004b, 279:2101-2108.
    Liu Y, Jin H, Yang K Y, et al. Interaction between two mitogen-activated protein kinases during tobacco defense signaling[J]. Plant Journal, 2003, 34(2):149-160.
    Liu Y, Nakayama N, Schiff M, et al. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana[J]. Plant Mol Biol, 2004, 54(5):701-711.
    Liu Y, Schiff M, Dinesh-Kumar S P. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, Col1 and CRT1 in N-mediated resistance tobacco mosaic virus[J]. Plant J, 2004c, 38:800-809.
    Liu Y, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato[J]. Plant J, 2002c, 31(6):777-786.
    Liu Y, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus[J]. Plant J, 2002d, 30(4):415-429.
    Liu Y, Schiff M, Serino G, et al. Role of SCF Ubiquitin-ligase and the COP9 signalosome in the N gene–mediated resistance response to Tobacco mosaic virus[J]. Plant Cell, 2002b, 14(7): 1483-1496.
    Lu H, Higgins VJ. The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fulvum [J]. Physiol Mol Plant Path, 1999, 54:131-143.
    Lu R, Malcuit I, Moffett P, et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance[J]. The EMBO Journal, 2003, 22:5690-5699.
    Lucioli A, Noris E, Brunetti A, et al. Tomato yellow leaf curl sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated[J]. Journal of Virology, 2003, 77(12):6785-6798.
    Luderer R, Rivas S, Nurnberger T, Mattei B, Van den Hooven H W, Van der Hoom R A, Romeis T, Wehrfritz J M, Blume B, Nennstiel D, Zuidema D, Vervoort J, De Lorenzo G, Jones J D, De Wit P J, Joosten M H. No evidence for binding between resistance gene product Cf-9 of tomato and avirulence gene product AVR9 of Cladosporium fulvum[J]. Mol Plant Microbe Interact, 2001, 14:867-876.
    Ludwig A, Tenhaken R. Defense gene expression in soybean is linked to the status of the cell death program[J]. Plant Mol Biol, 2000, 44:209-218.
    Lund S T, Stall R E, Klee H J. Ethylene regulates the susceptible response to pathogen infection in tomato[J]. Plant Cell, 1998, 10:371-382.
    Lurie S and Halford N G. The role of protein kinases in the regulation of plant growth and development[J]. Plant growth regul, 2001, 34:253-265.
    Mach J M, Castillo A R, Hoogstraten R, et al. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms[J]. Proc Natl Acad Sci USA, 2001, 98(2):771-776.
    Maddison A C, Manners J G. Sunlight and viability of cereal rust urediospores[J]. Trans Br Mycol Soc, 1972, 59:429-443.
    Maki Kawai-Yamada, Yuri Ohori, et al. Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death[J]. The Plant Cell, 2004, 16:21-32.
    Mallard S, Negre S, Pouya S, et al. Adult plant resistance-related gene expression in 'Camp Remy' wheat inoculated with Puccinia striiformis[J]. Molecular Plant Pathology, 2008, 9:213-225.
    Marianna P, Filomena D, Alberto F, et al. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola[J]. BMC Genomics, 2008, 9:142.
    Martin I, Hoth S, Deeken R, et al. AKT3, a phloem-localized K+ channel is blocked by protons[J]. PNAS, 1999, 96:7581-7586.
    Massino D, Jurgen Z, Adriano M, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proc Natl Acta Sci USA, 2001, 98:13454-13459.
    Matsumura H, Nirasawa S, Kiba A, et al. Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells[J]. Plant J. 2003, 33:425-434.
    Matsuoka. Activation of AtMEKI, an arabidopsis mitogen-activated protein kinase kinase,in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings[J]. Plant J, 2002, 29:637-647.
    Mauch-Mani B and Slrenko A J. Production of salicylic acid precursors is major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica[J]. Plant Cell, 1996, 8:203-212.
    Mcclelland M, Mthieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarily primered PCR[J]. Trends in Genetics, 1995, 11:242-246.
    McIntosh R A, Devos K M, Dubcovsky J, et al. Catalogue of gene symbols for wheat: 2007 supplement. Netgrated Database of Wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/ macgene//supplement2007.pdf.
    McIntosh R A, Wellings C R and Park R F. Wheat Rusts: An atlas of resistance genes. Melbourne: CSIRO Publications. 1995.
    McIntosh R A. Pre-emptive breeding to control wheat rusts[J]. Euphytica, 1992, 63:103-113.
    McIntyre C L,Hermann S M,Casu R E, et al. Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum[J]. Theoretical and Applied Genetics, 2004, 109(4):875-883.
    Mehdy, M C. Active oxygen species in plant defense against pathogen[J]. Plant physiol, 1994, 105: 467-472.
    Meszaros T,Helfer A,Hatzimasoura E, et al. The Arabidopsis MAP kinase kinase MKKI Participates in defence responses to the bacterial elicitor flagellin[J]. Plant J, 2006, 48(4):485-98.
    Midoh N, and Iwata M. Cloning and characterization of a probenaole-inducible gene for an intracellular pathogenesis-related protein in rice[J]. Plant Cell Physiol, 1996, 37:9-18.
    Mittler R, Herr E H, Orvar B L, et al. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection[J]. Proc Natl Acad Sci USA, 1999, 96:14165-14170.
    Mittler R, Lam E. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death[J]. The Plant Cell, 1995, 7:1951-1962.
    Mittler R, Lam E. In situ detection of DNA fragmentation during the differentiation of tracheary elements in higher plants[J]. Plant Physiol, 1995, 108:489-493.
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9):405-410.
    Mittler R, Lam E, Shulaev V, et al. Signals controlling the expression of cytosolic ascorbate peroxidase during pathogen induced programmed cell death in tabacco[J]. Plant Molecular Biology, 1999, 39(5):1025-1035.
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9(10):490-498.
    Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen- activated protein kinase[J]. Trends Biochem, 1997, 15:15-19.
    Moiseyev G P, Fedoreyeva L I, Zhuravlev Y N, Yasnetskaya E, Jekel P A, and Beintema J J. Primary structures of two ribonucleases from ginseng calluses. New members of the PR-10 family of intracellular pathogenesis-related plant proteins[J]. FEBS Letters, 1997, 407:207-210.
    Moldenhauer J, Pretorius Z A, Moerschbacher B M, et al. Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat[J]. Molecular Plant Pathology, 2008, 9: 137-145.
    Money T, Reader S, Qu L J, et al. AFLP-based mRNA fingerprinting[J]. Nucleic Acids Research, 1996, 24:2616-2617.
    Moriguchi T, Komatsu A, Kita M, et al. Molecular cloning of a homologue of dad-1 gene in citrus: distinctive expression during fruit development[J]. Biochim Biophys Acta, 2000 1490:198-202.
    Mould M J R, Heath M C. Ultrastructural evidence of differential changes in transcription, translation, and cortical microtubeles during in planta penetration of cells resistant or susceptible to rust infection[J]. Physiol Mol Plant Path, 1999, 55:225-236.
    Moy P, Qutob D, Chapman B P, et al. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae[J]. Mol Plant-Microbe Interact, 2004, 17:1051-1062.
    Mrris E R, Wlkry J C. Receptor-like protein kinase: the key to response[J]. Curr Opin Plant Biol, 2003, 6:339-342.
    Mukai H, Munekata E, Higashijima T. G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding[J]. J Biol Chem, 1992, 267:16237-16243.
    Münch-Garthoff S, Neuhaus J M, Boller T, et al. Expression ofβ-1, 3-glucanases and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showing Sr5- or Sr24-specified race-specific rust resistance[J]. Planta, 1997, 201(2):235-244.
    Nagano M, Ihara-Ohori Y, et al. Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochromeb[J]. Plant J. 2009, 58(1):122-134.
    Nam H G. The molecular genetic analysis of leaf senescence[J]. Curr Opin Biotechnol, 1997, 8(2):200-207.
    Nam K H, Li J. BRll/BAKI, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110:203-212.
    Naohide Watanabe and Eric Lam. Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death[J]. The Plant Journal, 2006, 45,884-894.
    Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. Plant Cell, 1990, 2:279-289.
    Nathalie Bolduc, Mario Ouellet, et al. Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells[J]. Planta, 2003, 216:377-386.
    Navabi A, Tewari J P, Singh R P, et al. Inhritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum‘Cook’[J]. Genome, 2005, 48:97-107.
    Newman T, Bruijn F J D, Green P, et al. Genes galore: A summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones[J]. Plant Physiology, 1994, 106(4):1241-1255.
    Niu J S, Yu L, Ma Z Q, et al. Molecular cloning and characterization of a serine/threonine protein kinase gene from Triticum aestivum[J]. Acta Botanica Sinica, 2002, 44:325-328.
    Norman-Setterblad C, Vidal S, Palva E T. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora[J]. Mol Plant Microbe Interact, 2000, 13:430-438.
    Numberger T, Nennstiel D, Jabs T, et al. High affinity binding of a fungal oligopeptide elicitor to parsley plasm membranes triggers multiple defense responses[J]. cell, 1994, 78: 449-460.
    Orozeo-Cardenas M L, Ryan C A. Nitric oxide negatively modulates wound signaling in tomato plants[J]. Plant physiol, 2002, 130:487-493.
    Orzaez D and Granell A. The plant homologue of the defender against apoptotic death gene is down-regulated during senescence of flower petals[J]. FEBS Lett, 1997, 404:275-278.
    Overmyer K, Tuominen H, Kettunen R, et al. Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death[J]. Plant Cell, 2000, 12:1849-1862.
    Pallas J A, Paiva N L, Lamb C, et al. Tobacco plants epigenetically suppressed in phenylalanine ammonia- lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus[J]. Plant J, 1996, 10:281-293.
    Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, HungW, D’Angelo C, Weinl S, Kudla J, Luan S. The Calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Aiabidopsis[J]. Plant Cell, 2004, 16:1912-1924.
    Park C J, Kim K J, Shin R, Park J M, Shin Y C, and Paek K H. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway[J]. Plant J, 2004, 37:186-198.
    Passardi F, Penel C, Dunand C. Performing the paradoxical: How plant peroxidases modify the cell wall[J]. Trends Plant Sci, 2004, 9:534-40.
    Peart J R, Cook G, Feys B J, et al. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus[J]. Plant J, 2002, 29(5):569-79.
    Peart J R, Lu R, Sadanandom A, et al. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants[J]. Proc Natl Acad Sci USA, 2002b, 99 (16):10865-10869.
    Pena-Ahumada A., Kahmann U., Dietz K. J., et al. Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana[J]. Photosynth Res, 2006, 89: 99-112.
    Peng T H. High-density molecular map of chromosome region harboring stripe-rust resistance gene YrH52 and Yr15 derived from wild emmer wheat[J]. Genetica, 2000, 109:199-210.
    Pennel R I, Lamb C.Programmed cell death in plants[J]. The plant cell, 1997, 9:1157-1168.
    Pestenaacz A, Erdei L.Calcium-dependent protein kinase in maize and sorghum induced by polyethylene glycol[J]. Physiol Plant, 1996, 97:360-364.
    Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res, 2001, 29:45.
    Pierpoint W S, Jackson P J, Evans R M. The presence of a thaumatin-like protein, a chitinase and a glucanase among the pathogenesis-related proteins of potato (Solanum tuberosum) [J]. Physiol Mol Plant Path, 1990, 36:325-338.
    Pieterse C M J and van Loon L C. Salicylic acid-independent plant defence pathways[J]. Trends in plant science, 1999, 4:52-58.
    Polesani M, Desario F, Ferrarini A, et al. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola[J]. BMC Genomics, 2008, 9:142.
    Pritsch C, Muehlbauer G J, Bushnell W R, et al. Fungal development and induction of defense responsegenes during early infection of wheat spikes by Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2000, 13:159-169.
    Quintero F J, Ohta M, Shi H, Zhu J K, Pardo J M. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis[J]. Proc Natl Acad Sci U S A, 2002, 99:9061-9066.
    Ramamurthy M, Nina E. Screening insertion libraries form mutations in many genes simultaneously using DNA microarrays[J]. Proc Natl Aead Sci USA., 2001, 98(13): 7420-7425.
    Ratcliff F, Martin-Hernandez A M, Baulcombe D C. Tobacco rattle virus as a vector for analysis gene function by silencing[J]. Plant J, 2001, 25(2): 237-245.
    Rate C N, Cuenca J V, Bowman G R, et al. Again-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses and cell growth[J]. Plant Cell, 1999, 11:191-206.
    Rebman G, Mauch F, Dudler R. Sequence of a wheat cDNA encoding a pathogen-induced thaumatin-like protein[J]. Plant Mol. Biol, 1991, 17: 283-285.
    Ren, D. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis[J]. J Biol Chem, 2002. 77:559-565.
    Riehmond T, Somerville S. Chasing the dream: Plant EST microarrys[J]. Current oponion in plant biology, 2000, l:108-116.
    Rivas S, Rougon-Cardoso A, Smoker M, et al. CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence[J]. The EMBO Journal, 2004, 23:2156-2165.
    Robatzek S,Chinehilla D,Boller T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis[J]. Genes Dev, 2006, 20:537-542.
    Roberts J K, Pryor A. Isolation of a flax (Linum usitatissimum) gene induced during susceptible infection by flax rust (Melampsora lini) [J]. Plant J, 1995, 8:1-8.
    Robertson, D. VIGS vectors for gene silencing: Many targets, many tools[J]. Annual Review of Plant Biology, 2004, 55:495-519.
    Roelfs A P, Singh R P and Saari E E. Rust Diseases of Wheat: Concepts and Methods of Disease Management, Mexico City: CIMMYT. 1992.
    Romeis T, Ludwig A A, Martin R, et al. Calcium-dependent protein kinases play an essential role in a plant defence response[J]. The EMBO Journal, 2001, 20:5556-5567.
    Romeis T, Piedras P, Jones J D. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response[J]. Plant Cell, 2000, 12:803-816.
    Romeis T, Piedras P, Zhang S, Klessig D F, Hirt H, Jones J D. Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitorm wound, and salicylate responses[J]. Plant Cell, 1999, 11:273-287.
    Romeis T. Protein kinases in the plant defence response[J]. Current Opinion in Plant Biology, 2001, 4(5): 407-414.
    Rosmussen J B. Systemic induction of salicylic acid accumulation in cucumber after inoculation with psedomonas syrinae pv syringae[J]. Plant Physiol, 1991, 97:1342-1347.
    Rostoks N, Steffenson Brian J., Andris Kleinhofs. Structure and expression of the barley stem rust resistance gene Rpg1 messenger RNA[J]. Physiological and Molecular Plant Pathology, 2004, 64:91-101.
    Rothstein S J, DiMaio J, Strand M, et al. Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA[J]. Porc Natl Acad Sci USA, 1987, 84: 8439-8443.
    Rouhier N, Gelhaye E, Gualberto J M. Poplar peroxiredoxin Q. A thioredoxin linked chloroplast antioxidant functional in pathogen defense[J]. Plant Physiology, 2004, 134:1027-1038.
    Rowland O, Ludwig A A, Merrick C J, et al. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIKI, that is essential for full Cf-9 dependent disease resistance in tomato[J]. Plant Cell, 2005, 17:295-310.
    Ruan Y, Gilmore J, Conner T. Towards Arabidopsis genome analysis: Monitoring expression profiles of 1400 genes using cDNA microarrays[J]. The Plant Journal, 1998, 15(6):821-833.
    Ruiz M T, Voinnet O, Baulcombe D C. Initiation and maintenance of virus-induced gene silencing[J]. Plant Cell, 1998, 10 (6):937-946.
    Ruth E, Holger S, Karl-Heinz K, and Ralph H. The barley apoptosis suppressor homologue Bax Inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. Tritici[J]. MPMI, 2004, 17:484-490.
    Ruth E, Corelia D, et al.Transient over-expression of barley BAX Inhibitor 1 weakens oxidative defence and MLA12-mediated resistance to Bluneria graminis f.sp.hordei[J]. Molecular Plant Pathology, 2006, 7(6):543-552.
    Ryerson D E, Heath M C. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by funga1 infection or by abiotic treatments[J]. The Plant Cell, 1996, 8:393-402.
    Ryu C M, Anand A, Kang L, et al. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species[J]. Plant Journal, 2004, 40(2):322-331.
    Saban M R, Hellmich H, Nguyen N B, et al. Time course of LPS-induced gene expression in a mouse model of genitourinary inflammation[J]. Physiol Genomics, 2001, 5:147-160.
    Saedler R, and Baldwin I T. Virus-induced gene silencing of jasmonate-induced direct defense, nicotine and trypsin proteinase-inhibitors in nicotiana attenuate[J]. Journak of Experimental Botany, 2004, 55:151-157.
    Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. The Plant Joumal, 2000, 23:319-327.
    Saitoh H and Terauchi R. Virus-induced silencing of FtsH gene in Nicotiana benthmiana causes a striking bleached leaf phenotype[J]. Genes and Genetic Systems, 2002, 77(5):335-340.
    Sakai H, Hua J, Chen Q G, et al. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 1998, 95:5812-5817.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning (2nd eds) [M]. New York: Cold Spring Harbor Laboratory Press, 1989, 60-68.
    Samuel M A, Miles G P, Ellis B E. Ozone treatment rapidly activates MAP kinase signaling in plants. Plant J, 2000, 22:367-376.
    Sanchez, P, de Torres Zabala M. & Grant, M. AtBI-1, a plant homologue of Bax Inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge [J]. Plant J, 2000, 21,393-399.
    Sanchez-Barrena M J,Martinez-RiPoll M, Zhu J K, Albert A.The strucure of the Arabidopsis thalianaSOS3: molecular mechanism of sensing calcium for salt stress response[J]. J Mol Biol, 2005, 345:1253-1264.
    Sanders D, Brownlee C, Harper J F. Communicating with calcium. Plant Cell, 1999, 11:691-706.
    Sasabe M,Takeuchi K, Kamoun S, et al. Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture[J]. Eur J Biochem, 2000, 267:5005-5013.
    Sawhney R N, Sharm J B and Sharma D N. Genetic diversity for adult plant resistance to leaf rust (Puccinia recondita) in near-isogenic lines and in Indian wheats[J]. Plant Breeding, 1992, 109:248-254.
    Schaffrath U, Freydl E, Dudler R. Evidence for different signaling pathways activated by inducers of acquired resistance in wheat[J]. Mol Plant-Microbe Interact, 1997, 10:779-783.
    Schaller A and Aeckling C. Modulation of plasma membrance H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants[J]. Plant cell, 1999, 11:263-272.
    Schaller G E and Sussman M R. Phosphorylation of the plasma-membrance H+-ATPase of oat roots by a calcium stimulated protein kinase[J]. Planta, 1988, 173:509-518.
    Schaller G E, Harmon A C and Sussman M R. Characterization of a calcium and lipid-dependent protein kinase associated with plasma membrane of oat[J]. Biochemistry, 1992, 31:1721-1727.
    Schenk P M, Kazan K, Wilson I, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proc Natl Acad Sci USA, 2000, 97: 11655-11660.
    Schenk P W and Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases[J]. Biochim Biophys Acta, 1999, 1449:139-160.
    Scholes J D, Lee P J, Horton P, et al. Invertase: Understanding changes in the photosynthetic and carbohydrate metabolism of barley leaves with powdery mildew[J]. New Phytol, 1994, 126:213-222.
    Schultheiss H, Dechert C, Király L, Fodor J, Michel K, Kogel K H, Huckelhoven R. Functional assessment of the pathogenesis-related protein PR-1b in barley[J]. Plant Sci, 165(6):2003,1275-1280.
    Scofield S R, Huang L, Brandt A S, et al. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway[J]. Plant Physiol, 2005, 138:2165-2173.
    Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stress by using a full-length cDNA microarray[J]. Plant Cell, 2001, 13:61-72.
    Seo S, O`kamoto M, Seto H, et al. Tabacco MAP Kinase: a possible mediator in wound signal transduction pathway[J]. Science, 1995, 270:1988-1991.
    Sharma A and Komatsu S. Involvement of Ca2+-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, RubisCO activase, in rice[J]. BBRC, 2002, 290:690-695.
    Sharma PC, to A, Shimizu T, et al. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana[J]. Molecular Genetics and Genomics, 2003, 269(5):583-591.
    Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996, 274:1900-1902.
    Simoes-Araujo J L, Rodrigues R L, Gerhardt de A L B, et al. Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodules[J]. FEBS Lett, 2002, 515:44-50.
    Singh R P, Huerta-Espino J and William H M. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat[J]. Turk J Agric For, 2005, 29:121-127.
    Skipp R A, Harder D E, Samboski D J. Electron microscopy studies on infection of resistant (Sr6 gene) and susceptible near-isogenic wheat lines by Puccinia graminis f. sp. tritici[J]. Canadian Journal of Botany, 1974, 52:2615-2620.
    Smith P H, Koebner R M D, Boyd L A, et al. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro[J]. Theor Appl Genet, 2002, 104(8):1278-1282.
    Somerville C, Somerville S. Plant functional genomics[J]. Science, 1999, 285:380-383.
    Somssich I E, Schmelzer E, Kawalleck P, and Hahlbrock K. Gene structure and in situ transcript localization of pathogenesis- related protein 1 in parsley[J]. Mol Gen Genet, 1988, 213(1):93-98.
    Song F, Goodman R M. Activity of nitric oxide dependent on, but is partially requiredfor function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance[J]. Mol Plant Microbe Interact, 2001, 12:1458-1462.
    Song W Y, Pi L Y, Wang G L, Gardner J, Holsten T, Ronald P C. Evolution of the rice Xa21 disease resistance gene family[J]. Plant Cell, 1997, 9:1279-1287.
    Song W Y, Wang G L, Chen L L, Km H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquer C, Ronald P. A recptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270:1804-1806.
    Staskawiez B J, Ausubel F M, Baker B J, Ellis J G, Jones J D. Molecular genetics of plant disease resistance[J]. Science, 1995, 268:661-667.
    Sticher L. Systemic acquired resistance[J]. Annu Rev Phytopathol, 1997, 35:235-270.
    Stone J M,Walker J C, Plant Protein kinase families and signal transduction[J]. Plant Physiol, 1995, 108(2):451-57.
    Struck C, Hahn M and Mendgen K. Plasma membrane H+-ATPase activity in spores, germ tubes and haustoria of the rust fungus Uromyces viciae-fabae[J]. Fungal Genet Biol, 1996, 20:30-35.
    Stubbs R W, Roelfs A P, Bushnell W R. The cereal rusts, Diseases, distribution, epidemiology, and control of stripe rust[M]. Orlando, FL, USA, Academic Press, 1985, 2:61-101.
    Sudheer S and Adjaye J. Functional genomics of hunman pre-implantation development[J]. Brief Funct Genomic Proteomic, 2007, 6(2):120-132.
    Suzuki K,Yano A,Shinshi H.Slow and prolonged activation of the p47 protein kinase during hypersensitive cell death in a culture of tobacco cells[J]. Plant physiology, 1999, 119:1465-1472.
    Svalhein O, Robertsen B. Elicitation of H2O2 production in cucumber hypocotyl segments by oligo-1, 4-α-D-galacturonides and an oligo-β-glucan preparation from cell wall of Phytophthora megasperma f. sp. glycinea[J]. Physiol Plant, 1993, 88:675-683.
    Swiderski M R, Innes R W. The Arabidopsis pbs1 resistance gene encodes a member of a novel protein kinase subfamily[J]. Plant J, 2001, 26:101-112.
    Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases regulation and biosynthesis[J]. Plant Cell, 1999, 11:677-690.
    Tada Y, Mori T, Shinogi T, et al. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat[J]. Mol Plant Microbe Interact, 2004, 17:245-53.
    Takahashi F, Yoshida R, Ichirnura K, et al. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis[J]. Plant Cell, 2007, 19(3):805-818.
    Tanaka Y, Makishima T, Sasabe M, et al. Dad-1, a putative programmed cell death suppressor gene in rice[J]. Plant Cell Physiol, 1997, 38:379-383.
    Tao X R, Zhou X P. A modified virul satellite DNA that suppresses gene expression in plants[J]. Plant J, 2004, 38(5):850-860.
    Tao Y, Xie Z Y, Chen W Q, et al. Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae[J]. The Plant Cell, 2003, 15: 317-330.
    Taylor J, Mins C M. Fungal development and host cell responses to the rust fungus Puccinia substriata var. indica in seedling and mature leaves of susceptible and resistant pearl millet[J]. Canadian Journal of Botany, 1991, 69:1207-1219.
    Teige M,Seheikl E,EulgemT,Doczi R, et al. The MKK2 pathway mediates cold and salt stress signaling in Aiabidopsis. Mol Cell, 2004,15:141-152.
    Tena G, Asai T, Chiu W L, et al. Plant MAP kinase signaling cascades[J]. Curr Opin Plant Biol, 2001, 4:392-400.
    Tenhaken R, Anstatt C, Ludwig A, et al. WY-14 and other agonists of the peroxisome proliferator-activated receptor reveal a new mode of action for salicylic acid in soybean disease resistance[J]. Planta, 2001, 212:888-895.
    Thines E, Weber R W, Talbot N J. MAP kinase and protein kinase a-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea[J]. Plant Cell, 2000, 12:1703-1718.
    Thomma B P, Eggermont K, Tienens K F, et al. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botryktis cinerea[J]. Plant Physiol, 1999, 121:1093-1102.
    Thomma B P H J, Cammue B P A, Thevissen K. Plant defensins[J]. Planta, 2002, 216:193-202.
    Tiwari. A role for mitochondria in programmed cell death in plants[J]. Plant Physio, 2002, 128:1164-1165
    Torres M de, Sanchez P, Fernandez-Delmond I, et al. Expression profiling of the host response to bacterial infection: The transition from basal to induced defense responses in RPM1-mediated resistance[J]. Plant J, 2003, 33:665-676.
    Trewavas A J, Malho R. Ca2+-signalling in plant cells: the big network![J] Curr Opin Plant Biol, 1998, 1:428-433.
    Tsanko S, Gechev, Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death[J]. JCB, 2005, 168(1):17-20.
    Turnage M A, Muangsan N, Peele C G, et al. Germinivirus-based vectors for gene silencing in Arabidopsis[J]. Plant J, 2002, 30(1):107-114.
    Uauyn C, Brevis J C, Chen X, et al. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1[J]. Theoretical and Applied Genetics, 2005, 112:97-105.
    Ulm R, Revenkova E, Sansebastiano G P di, et al. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis[J]. Genes Dev, 2001, 15: 699-709.
    Urao T, Katagiri T, Mizoguchi T. Two gene that encode Ca2+-dependent protein kinase are induced by drought and high salt stress in Arabidopsis thaliana[J]. Mol Gen Genet, 1994, 244:331-340
    Van der WelH, Loeve K: Isolation and characterization of thaumatin I and II, the sweet tasting proteins from Thaumatococcus danielli Benth [J]. Biochem, 1972, 31:221-225.
    Van Loon L C, Pierpoint W S, Boller T, Conejero V. Recommendations for naming plant pathogenesis-related proteins[J]. Plant Mol Biol Rep, 1994, 12:245-64.
    Van Loon L C, Pieterse C M J. Biocontrol agents in signaling resistance. In Biological Control of Crop Diseases. 2002, ed. SS Gnanamanickam, pp. 355-86. New York: Marcel Dekker.
    Van Loon L C, Rep M, and Pieterse C M J. Significance of inducible defense-related proteins in infected plants[J]. Annu Rev Phytopathol, 2006, 44:135-162.
    Voigt C A, Sch?fer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals[J]. The Plant Journal, 2005, 42:364-375.
    Wan A M, Zhao Z H, Chen X M, et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp.tritici[J]. Plant Disease, 2004, 88:896-904.
    Wang C F, Huang L L, Buchenauer H, et al. Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f.sp. tritici[J]. Physiol Mol Plant Pathol, 2008, 71:230-239.
    Wang G L, Song W Y, Ruan D L, Sideris S, Ronald P C. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. Oryzae isolates in transgenic plants[J]. Mol Plant-Microbe Interact, 1996, 9:850-855.
    Wang G L, Ruan D L, Song W Y, Sideris S, Pi L Y, Zhang S P, Zhang Z, Fauquet C, Gaut B S, Whalen M C, Ronald P C. Xa21D encodes a receptor-like molecular with a leucine-Rich repeat domain that determines race specific recognition and is subject to adaptive evolution[J]. Plant Cell, 1998, 10:765-779.
    Wang H, Li J, Bostock R M, et al. Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development[J]. The Plant Cell, 1996, 8: 375-392.
    Wang J P, Bughrara S S. Detection of an effieient restriction enzyme combination for cDNA-AFLP analysis in Festuca mairei and evaluation of the identity of transcript-derived fragments[J]. Molecular Biotechnology, 2005, 29:211-220.
    Wang K T, Li H, Ecker J R. Ethylene biosynthesis and signaling networks[J]. Plant Cell, 2002, 14:S131-151.
    Wang X J, Zheng W M, Buchennauer H, et al. The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves[J]. Eur J Plant Pathol, 2008, 120:241-247.
    Wang X, Zafian P,Choudhary M,et al. The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related t o a family of plant defense proteins[J]. PNAS, 1996, 93:2598-2602.
    Wang Z, Brown D D. A gene expression screen[J]. Proe Natl Sci USA, 1991, 88: 11505-11509.
    Watanabe N, Lam E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis[J]. J. Biol. Chem. 2008, 283 (6):3200-3210.
    Wendehenne D, Lamotte O, Frachisse J M, et al. Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defence responses and hypersensitive cell death in tobacco[J]. Plant Cell, 2002, 14: 1937-1951.
    Wi1son C, Voronin V, Touraev A, et al. A developmentally regulated Map kinase activated by hydration in tobacco pollen[J]. Plant Cell, 1997, 9:2093-2100.
    Wubben J P, Joosten M H A J, Van Kan J A L, et al. Subcellular localization of plant chitinases and 1,3-β-glucanase in Cladosporium fulum(Syn. Fulvic fubxa)-infected tomato leaves [J]. Physiol Mol Plant Pathol, 1992, 41:23-32.
    Xu H, Reddy A. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein [J].Plant Molecular Biology, 1997, 34:949-959.
    Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A Protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell, 2006, 125:1347-1360.
    Xu Q, Reed J C. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast[J]. Mol Cell, 1998, 1:337-346.
    Yammanoto K, Sasaki T. Large-scale EST sequencing in rice[J]. Plant Molecular Biology, 1997, 35: 135-144.
    Yang H S, Huang H C, Collmer A. Pseudomonas syringae pv. syringae Harpin: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants[J]. Cell, 1993, 73:1255-1266.
    Yao N, Tada Y, Park P , et al. Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats [J] . Plant J, 2001, 28:13226.
    Yoshikawa M, Sugimoto K. A specific biding site on soybean membranes for a phytoalexin elicitor released from fungal cell walls by endoglucanase[J]. Plant Cell Physiol, 1993, 34:1229-1237.
    Yoshioka H, Numata N, Nakajima K, et al. Nicotiana benthamiana gp91 homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans[J]. Plant Cell, 2003, 15(3):706-718.
    You M K,Oh S Ok S H et al. Identification of putative MAPK kinases in Oryza minuta and Oryza sativa responsive to biotic stresses[J]. Mol Cells, 2007, 23(l):108-114.
    Young T E, Gallie D R. Programmed cell death during endosperm development[J]. Plant Mol Biol, 2000, 44:283-301.
    Yu D Q, Liu Y, Fan B, et al. Is the high hasal level of salicylic acid important for disease resistance in potato[J]. Plant Physiol, 1997, 110:343-349.
    Yu X M, Yu X D, Qu Z P, et al. Cloning of a putative hypersensitive induced reaction gene from wheat infected by stripe rust fungus[J]. Gene, 2008, 407:193-198.
    Yu Y G, Buss G R, Mroof M A S. Isolation of a super family of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site[J]. Genetic, 1996, 93:11751-11756.
    Yumiko S, Pradeep K, Jyoti S, et al. A gain of function mutation in an Arabidopsis toll interlekinl receptor nucleotide binding site leucine rich repeat type R gene triggers defense responses and results in enhanced disease resistance[J]. Plant Cell, 2002, 14:3149-3162.
    Yuri I O, Minoru N, et al. Cell death suppressor arabidopsis Bax Inhibitor-1 is associated with calmodulin binding and ion homeostasis1[J]. Plant Physiology, 2007, 143:650-660.
    Zadoks C. Yellow rust on wheat. Studies in epidemiology and physiologic specialization[J]. Tijidschrift voor planteziekten, 1961, 67:69-256.
    Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals[J]. Weed Research, 1974, 14:415-421.
    Zadoks J C. Yellow rust on wheat studies of epidemiology and physiologic specialization[J]. Neth J Plant Pathol, 1961, 67:69-256.
    Zhang C, Czymmek L J, Shapiro A D. Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response[J]. Mol Plant Microbe Interact, 2003, 16:962-972.
    Zhang H B, Zhang D B , Chan J , Yang Y H , Huang Z J , Huang D F , Wang X C , Huang R F. Tomato stress responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum[J]. Plant Mol Biol, 2004, 55: 825-834.
    Zhang L, Meakin H, Dickinson M. Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP[J]. Mol Plant Pathol, 2003, 4(6):469-477.
    Zhang M, Liang S, Lu Y T. Cloning and functional characterization of NtCpK4, a new tobacco calcium-dependent protein kinase[J]. Biochim BioPhys Acta, 2005, 1729:174-185.
    Zhang S,Du H,Klessing D F. 1998. Activation of the tobacco SPI kinase by both a cell wall-derived carbohydrate elicitor and purified porteinaceous elicitins from Phytopathora[J]. Plant cell, 10: 435-450.
    Zhang S,Klessig D F. MAPK cascades in Plant defense signaling[J]. Trends plant sci, 2001, 6:520-527.
    Zhang Y, Qu Z, Zheng W, et al. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici[J]. BMC Genomics, 2008, 9: 203-212.
    Zhou H, Li S, Deng Z, et al. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection[J]. The Plant Journal, 2007, 52(3):420-434.
    奥斯伯F,布伦特R,金斯顿R E (美)等.精编分子生物学实验指南[M].北京:科学出版社, 1998, 3-4.
    白志英,王冬梅,候春燕,韩胜芳.小麦与叶锈菌互作过程中细胞程序性死亡的生化证据[J],实验生物学报, 2004, 4:329-353.
    蔡循,陈国强,陈竺,王振义.线粒体跨膜电位与细胞凋亡[J].生物化学与生物物理进展,2001, 28(1): 3-6.
    陈翔,冉志华.微阵列芯片技术的应月进展[J].胃肠病学, 2006, 11(2):126-128.
    程宇,蔺瑞明,欧阳宏雨等.小麦条锈菌诱导性小麦cDNA文库的构建及其质量评价[J].分子植物育种, 2009, 7(1):184-187.
    董汉松.植物抗病防卫基因表达调控与诱导抗病遗传的机制[J].植物病理学报, 1996, 26(4):289-293.
    樊廷俊,夏兰,韩贻仁.线粒体与细胞凋亡[J].生物化学与生物物理学报, 2001, 33(1):7-l2.
    华玮,周德宝等. Atdad1的超量表达抑制烟草细胞凋亡[J].武汉植物学研究2003, 21(6): 475-479.
    贾志蓉,李丹等。拟南芥Atdad1超量表达对H2O2抗性的研究[J].武汉植物学研究, 2004, 22(5): 373-379.
    康振生,商鸿生,李振岐.小麦锈病组织荧光染色技术[J].植物保护, 1993, 19(2):27.
    康振生,王瑶,黄丽丽等.小品种对条锈病低反应型麦抗性的组织学和超微结构研究[J].中国农业科学, 2003, 36(9):1026-1031.
    康振生,李振歧.罗夫林10常温致病新菌系的发现[J].西北农学院学报, 1984, 4:18-28.
    康振生.植物病原真菌的超微结构[M].北京:中国科技出版社, 1996.
    李靖,赵沛基,鲁春华.水杨酸诱导美登木悬浮细胞产生脂氧合酶及多羟基脂肪酸的研究[J].云南植物研究, 2004, 26(5):543-548.
    李振岐,曾士迈.中国小麦条锈病[M].北京:中国农业出版社, 2002.
    李振岐.李振岐院士论文选集[C].西安:西北农林科技大学出版社, 1999.
    李振岐.我国小麦品种抗条锈性丧失原因及其控制策略[J].大自然探索, 1998, 17(66):21-25.
    李子银,陈受宜.植物的功能基因组学的研究进展[J].遗传, 2000, 22(l):57-60.
    梁小娥,张大鹏,贾文锁.苹果和葡萄果实蛋白激酶特性分析[J].植物生理学报, 2000, 26(3):257-262.
    刘晓东,张增艳,姚乌兰等.在小麦上实施大麦条斑病毒诱导的基因沉默[J].作物学报, 2005 ,11(31): 1518-1520.
    刘仪主编.小麦条锈菌与寄主互作关系研究进展[M].植物病害研究与防治, 1998.
    刘志勇,杜永臣,王孝宣等.高温胁迫下番茄叶片差异表达基因的cDNA-AFLP分析[J].园艺学报, 2008, 7:7-13.
    牛吉山.植物和小麦蛋白激酶的研究现状[J].西北植物学报, 2003, 23(1): 143-150.
    牛永春,刘红彦,吴立人等.小麦品种“Lee”中抗条锈病基因的RAPD标记[J].高技术通讯,1998, 12: 11-13.
    潘建伟,董爱华,朱睦元.高等植物的PCD研究进展(一).遗传, 2000, 22 (3):189-192.
    沙爱华,黄俊斌,林兴华等.水稻白叶枯病成株抗性与过氧化氢含量及几种酶活性变化的关系[J]. 2004, 34(4):340-345.
    邵映田,朱立煌.小麦抗条锈基因YR10的AFLP标记[J].科学通报, 2001, 46(8):669-672.
    陶彦彬,蒋建雄,易自力等.功能基因组学及真研穷方法[J].生物技术通报, 2007, 5:61-64.
    万安民,赵中华,吴立人. 2002年我国小麦条锈病发生回顾[J].植物保护, 2003, 29(2):5-8.
    王凤梅.水稻功能基因组学研究[J].生物技术通报, 2007, l:10-13.
    王强,丁裕斌,潘敏慧,鲁成.凋亡细胞被识别和吞噬机制[J].细胞生物学杂志, 2005, 27:383-386.
    王艳飞,屈志鹏,张永红等.小麦与条锈菌非亲和互作的cDNA文库构建及表达序列标签分析[J].中国农业科学, 2008, 41(10): 3376-3381.
    王永勤,曹家树,符庆功等.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异[J].中国农业科学, 2003, 36(5):557-560.
    魏国荣,康振生.介绍一种植物组织病理学研究的新方法[J].植物保护, 1996, 22(1):36-37.
    肖月华,罗明,侯磊等.棉花类LRR抗病蛋白(LRR-RL)基因的克隆和序列分析[J].遗传学报, 2002, 29(70):654-659.
    杨剑平,金文林,徐红梅. SA对水分胁迫下红小豆叶片过氧化物酶活性的影响[J].北京农学院学报, 2002, 17(4):11-14.
    杨民和,郑重, Leach J. E.水稻受稻瘟病菌侵染后过氧化物酶定位的超微观察[J].中国水稻科学, 2002, 16(1):57-62.
    杨征,蔡陈峻,宋运淳.动物细胞凋亡相关基因在植物中的同源性研究进展[J].细胞生物学杂志, 2000, 22(3):105-109.
    于明革,杨洪强,赵福庚等.植物细胞编程性死亡的调控[J].植物生理学通讯, 2002, 38 (5):493-499.
    余亮,吴青.新一代测序技术的先锋-SOLiD系统[J].生物通, 2008, 51:12-14.
    余叔文,汤章诚主编.植物生理与分子生物学. 1998,科学出版社: p784-803.
    喻修道,屈志鹏,郭军等.小麦与条锈菌亲和互作的差减文库构建及初步分析[J].中国农业科学, 2008, 41(5):1267-1273.
    曾士迈.小麦条锈病远程传播的定量分析[J].植病学报, 1988, 18(4): 219-223.
    赵剑华,王秀琴,刘芝华等.功能基因组学的内容与方法[J].生物化学与生物物理进展, 2000, 27(l): 6-8.
    朱沙,张春辉,李鲜菊.从基因组学到功能蛋白质组学的研究[J].生物学杂志, 2007, 24(l):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700