MgZnO薄膜及其紫外光电探测器制备和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MgZnO材料具有晶格匹配的衬底,无毒环保、带隙可调范围宽等优势,因此近年来MgZnO材料的制备及紫外探测器的研制成为了一个研究热点。本论文利用反应磁控溅射和金属有机物化学气相沉积方法(MOCVD)制备出六角和立方结构的MgZnO薄膜,并研究MgZnO薄膜的性质及其在紫外探测器件方面的应用。主要研究内容如下
     [1]利用反应多靶磁控溅射的方法,在石英和c面蓝宝石衬底上获得了单一六角取向Mg_(0.53)Zn_(0.47)O薄膜材料。并在所生长Mg_(0.53)Zn_(0.47)O薄膜上制备了可探测270-320nm紫外光的探测器件。并开展了不同衬底对Mg_(0.53)Zn_(0.47)O薄膜紫外光吸收和紫外光响应性质影响的研究。
     [2]用反应磁控溅射的方法,在石英衬底上制备了不同Mg组分的立方结构MgZnO薄膜,并研究薄膜的结晶及光学性质。优化生长条件,在不同面的蓝宝石衬底上制备了立方MgZnO薄膜。并且开展了不同退火温度对不同面蓝宝石衬底上立方MgZnO结晶质量,表面形貌,吸收光谱等性质的影响。
     [3]利用MOCVD的方法,在晶格匹配的单晶MgO衬底上,通过在生长MgZnO之前加入一层MgO缓冲层的方法,获得了高平整度的Mg_(0.58)Zn_(0.42)O单晶薄膜,并且在平整表面的Mg_(0.58)Zn_(0.42)O薄膜上制备了响应峰值在240nm,响应截止边在255nm的MSM结构日盲紫外探测器。开展了MgO缓冲层对立方MgZnO薄膜结晶质量、表面形貌、吸收光谱等性质影响的研究。通过优化生长条件,在MgO衬底上获得了高质量的单晶立方MgZnO薄膜。通过湿法刻蚀的方法在薄膜制备具有内增益的光导型太阳盲紫外探测器。当探测器工作在大于15V偏压时,器件对238nm紫外光的量子效率大于100%。
     [4]首次利用两步退火的方法制备了Au/Mg_(0.27)Zn_(0.73)O/In肖特基光伏型紫外探测器,器件在-5V偏压下可见光响应度比原生样品上制备的探测器小了近一个数量级。通过对两步退火方法对六角结构MgZnO薄膜表面形貌、光致发光等性质影响的研究揭示退火处理造成Au电极与MgZnO薄膜间接触特性变化的原因。
MgZnO material has many advantages, such as: no Toxicity, no pollution to environment, wide band gap adjustable region, has lattice matched substrate , so in recent years the fabrication of MgZnO Materials and MgZnO based UV detectors has become a hotspot. In this thesis, hexagonal and cubic structure MgZnO thin films would be grown by reactive magnetron sputtering and metal organic chemical vapor deposition (MOCVD) methods, and the prorperties of MgZnO and its application in UV detectors would be studied. The main contents are as follows:
     [1] Hexagonal orientation Mg_(0.53)Zn_(0.47)O thin films were prepared on quartz and c-plane sapphire substrate by multi-target reactive magnetron sputtering method. And UV detectors with detectable wavelength range from 270-320nm were fabricated on prepared Mg_(0.53)Zn_(0.47)O thin films. The study on effect of different substrates on light absorption and UV response characteristics of MgZnO thin films was carried out.
     [2]Cubic structure MgZnO thin films with different Mg composition were prepared on fused quartz substrates by the method of reactive magnetron sputtering, the crystallization and optical properties of cubic MgZnO thin films were studied. Under optimal growth conditions, cubic MgZnO thin films were prepared on different plane sapphire substrates. The Effect of different annealing temperature on crystal quality, surface morphology, and absorption spectra properties of cubic MgZnO on different plane sapphire substrates was studied.
     [3] Through introducing a MgO buffer layer, slick surface Mg_(0.58)Zn_(0.42)O thin film on lattice matched single crystal MgO substrates by MOCVD method. And MSM structure solar-blind UV detector was fabricated on prepared high quality Mg_(0.58)Zn_(0.42)O with response peak at 240nm, cut-off response edge at 255nm. The effect of MgO buffer layer on crystal quality, surface morphology, absorption spectrum and other properties of cubic MgZnO thin films were studied. Under optimized growth conditions, high quality single crystal cubicMgZnO film was prepared on MgO substrate, and solar-blind photoconductive UV detector was fabricated on the MgZnO thin film By wet etching method with internal gain. At bias voltage over 15V bias, the quantum efficiency of the device at 238nm is more than 100%.
     [4] For the first time, Au/Mg_(0.27)Zn_(0.73)O/In Schottky photovoltaic detector was fabricated by a two-step anneal treatment method. Under -5V bias voltage, visible responsivity of the detector is about an order of magnitude smaller than the detector on as-grown MgZnO thin film. By surface morphology and photoluminescence measurements, the reason for the improvement of the contact characteristics between the Au electrode and the MgZnO is discussed.
引文
[1] M. Razeghi, A. Rogalski. Semiconductor ultraviolet detectors. Journal of Physics Letters, 1996, 79, 7433-7473
    [2] Peter Sandvik, Kan Mi, Fatemeh Shahedipour, Ryan McClintock, Alireza Yasan, Patrick Kung, Manijeh Razeghi. AlxGa1-xN for solar-blind UVdetectors. Journal of Crystal Growth, 2001, 231, 366–370
    [3]李慧蕊.新型紫外探测器件及其应用[J].光电子技术,2000,20(1),45.
    [4] Sugeta T, Urisu T, Sakata S, Mizushima Y. Metal-Semiconductor-Metal Photodetector for High-Speed Optoelectronic Circuits. Japanese Journal of Applied Physics, 1980, 19, 459-464
    [5] Michael D. Whitfield, Stuart P. Lansley, Olivier Gaudin, Robert D. McKeag, Nadeem Rizvi, Richard B. Jackman. Diamond photodetectors for next generation 157-nm deep-UV photolithography tools. Diamond and Related Materials, 2001,10, 693-697
    [6] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, J. C. Campbell. Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN. Journal of Applied Physics, 1998, 83, 6149-6159
    [7] X.G. Zheng, Q.Sh. Li, J.P. Zhao, D. Chen, B. Zhao, Y.J. Yang, L.Ch. Zhang. Photoconductive ultraviolet detectors based on ZnO films. Applied Surface Science, 2006, 253, 2264–2267
    [8] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, J. F. Chen. GaN Metal–Semiconductor–Metal Ultraviolet Photodetectors with Transparent Indium–Tin–Oxide Schottky Contacts. Ieee Photonics Technology Letters, 2001, 13, 848-850
    [9] F. Binet, J. Y. Duboz, N. Laurent, and E. Rosencher, O. Briot, and R. L. Aulombard. Properties of a photovoltaic detector based on an n-type GaN Schottky barrier. Journal of Applied Physics, 1997, 81(9), 6449-6454
    [10] O. Katz,V. Garber, B. Meyler, G. Bahir, and J. Salzman. Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry. Applied Physics Letters, 2002, 80, 347-349
    [11] Z.C. Huang, J.C. Chen, Dennis Wickenden. Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors. Journal of Crystal Growth, 1997, 170, 362-366
    [12] G. M. Smith, J. M. Redwing, R. P. Vaudo, E. M. Ross, J. S. Flynn, and V. M. Phanse. Substrate effects on GaN photoconductive detector performance. Applied Physics Letters, 1999,75, 25-27
    [13] E. Monroy, F. Calle, E. Mun?oz, F. Omne`s. AlGaN metal–semiconductor–metal photodiodes. Applied Physics Letters, 1999, 74, 3401-3403
    [14] S.J. Chang, T.K. Ko, J.K. Sheu, S.C. Shei, W.C. Lai, Y.Z. Chiou, Y.C. Lin, C.S. Chang, W.S. Chen, C.F. Shen. AlGaN ultraviolet metal-semiconductor-metal photodetectors grown on Si substrates. Sensors and Actuators A, 2007, 135, 502–506
    [15] J.L. Pau, E. Monroy, M.A. Sa′nchez-Garc?′a, E. Calleja, E. Mun?oz. AlGaN ultraviolet photodetectors grown by molecular beam epitaxy on Si(111) substrates. Materials Science and Engineering 2002, B93, 159-162
    [16] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell. Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN. Journal of Applies Physics, 1998, 83, 6148-6160
    [17] G. Mazzeo and G. Conte, J.-L. Reverchon, A. Dussaigne, J.-Y. Duboz. Deep ultraviolet detection dynamics of AlGaN based devices. Applied Physics Letter, 2006, 89, 223513
    [18] L. Hirsch, P. Moretto, J. Y. Duboz, J. L. Reverchon, B. Damilano, N. Grandjean, F. Semond, J. Massies. Field distribution and collection efficiency in an AlGaN metal–semiconductor–metal detector. Journal of Applies Physics, 2002, 91, 6095-6098
    [19] T. Palacios, E. Monroy, F. Calle, F. Omne`s. High-responsivity submicron metal-semiconductor-metal ultraviolet detectors. Applied Physics Letters, 2002, 81, 1902-1904
    [20] Serkan Butuna, Mutlu G?kkavas, HongBo Yu, Ekmel Ozbay. Low dark current metal-semiconductor-metal photodiodes based on semi-insulating GaN. Applied Physics Letters, 2006, 89, 073503
    [21] Stanislav V. Averin, Petr I. Kuznetzov, Victor A. Zhitov, Nikolai V. Alkeev. Solar-blind MSM-photodetectors based on AlxGa1?xN heterostructures. Optical Quantum Electron 2007, 39, 181–192
    [22] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, T. Yasuda. MgxZn1-xO as a II–VI widegap semiconductor alloy. Applied Physics Letters, 1998, 72, 2467-2468
    [23] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, and T. Venkatesan, H. Shen. Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films. Applied Physics Letters, 2001, 78, 2787-2789
    [24] Takashi Minemoto, U, Takayuki Negami, Shiro Nishiwaki, Hideyuki Takakura, Yoshihiro Hamakawa. Preparation of ZnMgO films by radio frequency magnetron sputtering. Thin Solid Films, 2000, 372, 173-176
    [25] Sanjeev Kumar, VinayGupte, K Sreenivas. Structural and optical properties of magnetron sputtered MgxZn1?xO thin films. Journal of Physics: Condensed. Matter, 2006, 18, 3343–3354
    [26] Fabricius H,Skettrup T,Bisggard P.Ultraviolet detectors in thin sputtered ZnO films[J].Applied Optics,1986,25, 2764-2767
    [27] Liu Y,Gorla C R,Liang S,et a1. Ultraviolet detector based on epitaxial ZnO films grown by MOCVD[J].Journal of Electronic Materials,2000,29(1), 69-73
    [28] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lua, H. Shen.ZnO schottky ultraviolet photodetecors[J].J Crystal Growth,2001,225,110-113
    [29]叶志镇,张银珠,陈汉鸿,何乐年,邹璐,黄靖云,吕建国.ZnO光电导紫外探测器的制备和特性研究[J].电子学报,2003,31(11), 1605
    [30] YE Zhi-zhen,U Bei,HUANG Jing-yun,YUAN Guo-dong,ZHAO Bing-hui.Preparation of ZnO thin film schottky barrier diode. Chinese J Luminescence,2004,25(3), 283
    [31]高晖,邓宏,李燕.ZnO肖特基势垒紫外探测器[J].发光学报,2005,26(1), 135
    [32]张洁.基于氧化锌(ZnO)的导弹羽烟探测器.光电技术应用.2006,21(3), 50
    [33] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, and T. Venkatesan, R. D. Vispute, H. Shen. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si.(100) for deep ultraviolet photodetectors. Applied Physics Letters, 2003, 82, 3424-3426
    [34] Dayong Jiang, Chongxin Shan, Jiying Zhang, Youming Lu, Bin Yao, Dongxu Zhao, Zhenzhong Zhang, Xiwu Fan, Dezhen Shen. Schottky Barrier Photodetectors Based on Mg0.40Zn0.60O Thin Films, Crystal. Growth&Design., 2009, 9 (1), 454-456
    [35] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, X. W. Fan. MgxZn1?xO-based photodetectors covering the whole solar-blind spectrum range, Applied Physics Letter, 2008, 93, 173505
    [36]丛秋滋《多晶二维X射线衍射》科学出版社1997 p36
    [37]沈学础,半导体光学性质,科学出版社,第五章,p 307
    [38] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, Nitrogen-bonding environments in glow-discharge-deposited a-Si:H films, Physics Review B, 1983, 28, 3234-3240.
    [39]马金鑫,朱国凯,《扫描电子显微镜入门》,科学出版社,1985,p49
    [40] M.P. Ulmer, M. Razeghi, E. Bigan. Ultra-violet detectors for astrophysics, present and future. Proc. SPIE Int. 1995, 210, 2397
    [41] Antoni Rogalski. Infrared detectors: an overview. Infrared Physics & Technology 2002, 43, 187–210
    [42] A.M. Streltsov, K.D. Moll, A.L. Gaeta, P. Kung, M.D. Walker, M. Razeghi. Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode Applied Physics Letters, 1999, 75, 3378-3380
    [43] I. Takeuchi, W. Yang, K.-S. Chang, M.A. Aronova, T. Venkatesan. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads. Journal of Applied Physics, 2003, 94, 7336-7340
    [44] J. Chen, W.Z. Shen, N.B. Chen, D.J. Qiu, H.Z. Wu. e study of composition non-uniformity in ternary MgxZn1?xO thin films. Journal of Physics: Condensed Matter, 2003, 15, L475-L482
    [45] H. Tanaka, S. Fujita. Fabrication of wide-band-gap MgxZn1?xO quasi-ternary alloys by molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 192911
    [46] P. Yu, H.Z. Wu, T.N. Xu, D.J. Qiu, G.J. Hu, N. Dai. Cubic phase MgxZn1-xO thin films for optical waveguides. Journal of Crystal Growth, 2008, 310, 336–340
    [47] A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Holland. Optical and structural properties of epitaxial MgxZn1-xO alloys. Applied Physics Letters, 1999, 75, 3327-3329
    [48] A.F. McKinley, B.L. Diffey, A reference spectrum for ultraviolet induced erythema in human skin. CIE J. 6 (1987) 17
    [49] W. I. Park, Gyu-Chul Yi, H. M. Jang, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0≤x≤0.49) thin films. Applied Physics Letters, 2001, 79, 2022-2024
    [50] Z.L. Liu, Z.X.Mei, T.C.Zhang, Y.P.Liu, Y.Guo, X.L.Du, A.Hallen, J.J.Zhu, A.Yu.Kuznetsov, Solar-blind 4.55eV band gap Mg0.55Zn0.45O components fabricated using quasi-homo buffers. Journal of Crystal Growth, 2009, 311, 4356–4359
    [51] C. X. Cong, B. Yao, G. Z. Xing, Y. P. Xie, L. X. Guan, B. H. Li, X. H. Wang, Z. P. Wei, Z. Z. Zhang, Y. M. Lv, D. Z. Shen, X. W. Fan. Control of structure, conduction behavior, and band gap of Zn1?xMgxO films by nitrogen partial pressure ratio of sputtering gases. Applied Physics Letters, 2001, 89, 262108
    [52] V. Srikant, D. R. Clarke. Optical absorption edge of ZnO thin films: The effect of substrate. Journal of Applied Physics, 1997, 81, 6357-6364
    [53] G.H. Dohler. Doping Superlattices (‘‘n-i-p-i crystals’’). IEEE Journal of Quantum Electronics. 1986, 22,1682-1695
    [54] D.H. Zhang, D.E. Brodie, Effects of annealing ZnO films prepared by ion-beam-assisted reactive deposition. Thin Solid Films, 1994, 238, 95-100
    [55] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, Y. Ohya. Japanese Journal of Applied Physics, Photoconductivity of Ultrathin Zinc Oxide Films. 1994, 33, 6611-6615
    [56] S.A. Studenikin, N. Golego, M. Cocivera, Journal of Applied Physics. 2000, 87, 2413-2421
    [57] P. Sharma, A. Mansingh, K. Sreenivas. Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering. Applied Physics Letters, 2002, 80, 553-555
    [58] J. Chen, W.Z. Shen. Long-wavelength optical phonon properties of ternary MgZnO thin films. Applied Physics Letters. 2003, 83, 2154-2156
    [59] K. Koike, K. Hama, I. Nakashima, G.-y. Takada, K.-i. Ogata, S. Sasa, M. Inoue, M. Yano. Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-orientedSi substrate toward UV-detector applications. Journal of Crystal Growth 2005, 278, 288–292
    [60] B.P. Zhang, N.T. Binh, K. Wakatsuki, C.Y. Liu, Y. Segawa, N. Usami, Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect. Applied Physics Letters, 2005, 86, 032105
    [61] X. Dong, B.L. Zhang, X.P. Li,W. Zhao, X.C. Xia, H.C. Zhu, G.T. Du. Study on the properties of MgxZn1?xO-based homojunction light-emitting diodes fabricated by MOCVD. Journal of Physics D: Applied Physics, 2007, 40, 7298-7301
    [62] S. Choopun, R.D.a.W. Vispute, R.P. Yang, T. Sharma, Venkatesan. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films. Applied Physics Letters 2002, 80, 1529-1531
    [63] Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan. Structural variation of cubic and hexagonal MgxZn1?xO layers grown on MgO(111)/c-sapphire. Journal of Applied Physics, 2005, 98, 054911
    [64] J. Narayan, A.K. Sharma, A. Kvit, C. Jin, J.F.MO,W. Holland, Novel cubic ZnxMg1-xO epitaxial heterostructures on Si(100) substrate. Solid State Communication, 2002, 121, 9-13
    [65] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa. Preparation of ZnMgO films by radio frequency magnetron sputtering. Thin Solid Films, 2000, 372, 173-176
    [66] Chul-Hwan Choi, Seon-Hyo Kim. Effects of post-annealing temperature on structural, optical, and electrical properties of ZnO and Zn1-xMgxO films by reactive RF magnetron sputtering. Journal of Crystal Growth, 2005, 283, 170–179
    [67] S.W. Kang, Y.Y. Kim, C.H. Ahn, S.K. Mohanta, H.K.Cho. Growth and characteristics of ternary Zn1–xMgxO films using magnetron co-sputtering. Journal of Material Science Material in Electronics, 2008, 19, 755–759
    [68] C.X. Cong, B. Yao, Q.J. Zhou, J.R. Chen, Effect of growth ambient on the structure and properties of MgxZn1?xO thin films prepared by radio-frequency magnetron sputtering. Journal of Physics D: Applied Physics, 2008, 41, 105303
    [69] E.Y. Jung, S.G. Lee, S.H. Sohna, D.K. Lee, H.K. Kim. Electrical properties of plasma display panel with Mg1?xZnxO protecting thin films deposited by a radio frequency magnetron puttering method. Applied Physics Letters, 2005, 86, 53503
    [70] N.B. Chen, H.Z. Wu, D.J. Qiu, T.N. Xu, J. Chen, W.Z. Shen. Temperature-dependent optical properties of exagonal and cubic MgxZn1?xO thin-film alloys. Journal of Physics: Condensed Matter, 2004, 6, 2973-2980
    [71] P. Yu, H.Z. Wu, T.N. Xu, D.J. Qiu, G.J. Hu, N. Dai, Cubic phase MgxZn1-xO thin films for optical waveguides. Journal of Crystal Growth 2008, 310, 336–340
    [72] L. Zhuang, K.H. Wong, G..K.H. Pang, Domain matching epitaxy of cubic MgxZn1?xO films on LaAlO3 by pulsed laser deposition. Applied Physics A 2007, 89, 543–546
    [73] H.P. Zhou, W.Z. Shen, N. B. Chen, H. Z. Wu, Observation of negative thermo-optical coefficient in cubic MgZnO thin films. Applied Physics Letters, 2004, 85, 3723-3725
    [74] Stampe PA, Bullock M, Tucker WP, Kennedy Robin, Journal of Physics D: Applied Physics, 1999,32,1778–87
    [75] A.Y. Polyakov, N.B.Smirnov, A.V. Govorkov, E.A.Kozhukhova, A. I. Belogorokhov, H. S. Kim, D. P. Norton, S. J. Pearton, Annealing effects on electrical properties of MgZnO films grown by pulsed laser deposition. Journal of Applied Physics, 2008,103, 083704.
    [76] Z. G. Ju, C. X. Shan, C. L. Yang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, X. W. Fan. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method. Applied Physics Letters, 2009, 94, 101902
    [77] A. Cimpoia su, N.M. van der Pers, Th.H. de Keyser, A. Venema, M.J. Vellekoop. Stress control of piezoelectric ZnO films on silicon substrates Smart Materials and Structures. 1996, 5, 744–750
    [78] J. Chen,W.Z. Shen, N.B. Chen, D. JQiu, H.ZWu. The study of composition non-uniformity in ternary MgxZn1?xO thin films. Journal of Physics: Condensed Matter. 2003, 15, L475-L482
    [79] Zhang Siyuan, Li Huiling, Zhou Shihong, Pan Tianqi. Estimation Thermal Expansion Coefficient from Lattice Energy for Inorganic Crystals, Japanese Journal of Applied Physics 2006, 45, pp8801
    [80] Kapustinskii AF. Lattice energy of ionic crystals. Quarterly Reviews, Chemical Society, 1956, 10, 283-294
    [81] Kittle C. Introduction to solid state physics [M]. 1979, 97–105
    [82] H. Tanaka, S. Fujita. Fabrication of wide-band-gap MgxZn1?xO quasi-ternary alloys by molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 192911
    [83] S. S. Hullavarad, N. V. Hullavarad, D. E. Pugel, S. Dhar, I. Takeuchi, T. Venkatesan, R. D. Vispute. Homo- and hetero-epitaxial growth of hexagonal and cubic MgxZn1?xO alloy thin films by pulsed laser deposition technique. Journal of Physics D: Applied Physics 2007, 40, 4887–4895
    [84] Thomas A. Wassner, Bernhard Laumer, Stefan Maier, Andreas Laufer, Bruno K. Meyer, Martin Stutzmann, Martin Eickhoff. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics 2009, 105, 023505
    [85] W. K. Burton, N. Cabrera, F. C. Frank. The Growth of Crystals and the Equilibrium Structure of their Surfaces. Philosophical Transactions of the Royal Society London Series A. 1951, 243, 299–358
    [86] D. J. Eaglesham, M. Cerullo. Dislocation-Free Stranski-Krastanow Growth of Ge and Si(100). Phys. Rev. Lett. 1990, 64, 1943-1946
    [87] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lua, H. Shen. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225, 110–113
    [88] Y. Zhao, J. Zhang, D. Jiang, C. Shan, Z. Zhang, B. Yao, D. Zhao, D. Shen. Ultraviolet Photodetector Based on a MgZnO Film Grown by Radio-Frequency Magnetron Sputtering. ACS Appl. Mater. Interfaces 2009, 1 (11), 2428–2430
    [89] Xiaolong Du, Zengxia Mei, Zhanglong Liu, Yang Guo, Tianchong Zhang, Yaonan Hou, Ze Zhang, Qikun Xue, Andrej Yu Kuznetsov. Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors. Advanced Materials, 2009, 21, 4625–4630
    [90] K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, B. Yao, D. X. Zhao, Y. M. Lu, X. W. Fan. Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. Applied Physics Letters 2007, 91, 201106
    [91] Hiromichi Ohta, Masahiro Hirano, Ken Nakahara, Hideaki Maruta, Tetsuhiro Tanabe, Masao Kamiya, Toshio Kamiya, Hideo Hosono. Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO. Applied Physics Letters, 2003, 83, 1029-1031
    [92] Haruyuki Endo, Mayo Sugibuchi, Kousuke Takahashi, Shunsuke Goto, Shigeaki Sugimura, Kazuhiro Hane, Yasube Kashiwaba. Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate. Applied Physics Letters 2007, 90, 121906
    [93] Haruyuki Endo, Michiko Kikuchi, Masahumi Ashioi, Yasuhiro Kashiwaba, Kazuhiro Hane, Yasube Kashiwaba. High-Sensitivity Mid-Ultraviolet Pt/Mg0.59Zn0.41O Schottky Photodiode on a ZnO Single Crystal Substrate. Applied Physics Express 2008, 1, 051201
    [94] Q. L. Gu, C. K. Cheung, C. C. Ling, A. M. C. Ng, A. B. Djuri?i?, L. W. Lu, X. D. Chen, S. Fung, C. D. Beling, H. C. Ong. Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment. Journal of Applied Physics 2008, 103, 093706
    [95] Sang-Ho Kim, Han-Ki Kim, Tae-Yeon Seong. Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO. Applied Physics Letters 2005, 86, 112101
    [96] G. Tabares, A. Hierro, J. M. Ulloa, A. Guzman, E. Mu?oz, A. Nakamura, T. Hayashi, and J. Temmyo. High responsivity and internal gain mechanisms in Au-ZnMgO Schottky photodiodes. Applied Physics Letters 2010, 96, 101112
    [97] S. K. Cheung, N. W. Cheung. Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 1986, 49, 85-87
    [98] S. Han, D.Z. Shen, J.Y. Zhang, Y.M. Zhao, D.Y. Jiang, Z.G. Ju, D.X. Zhao, B. Yao. Annealing effect on crystallization behavior of cubic MgxZn1_xO films on A-plane and M-plane sapphire. Vacuum 2010, 84, 1149–1153
    [99] Y.Y. Kim, C.H. An, H.K. Cho, J.H. Kim, H.S. Lee, E.S. Jung, H.S. Kim. High-temperature growth and in-situ annealing of MgZnO thin films by RF sputtering. Thin Solid Films 2008, 516,5602–5606
    [100] X.L.Wu, G.G..Siu, C. L. Fu, H. C. Ong. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied Physics Letters, 2001, 78, 2285
    [101] Xiang Liu, Xiaohua Wu, Hui Cao, R. P. H. Chang. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2004, 95, 3141
    [102] L. J. Brillson, H. L. Mosbacker, M. J. Hetzer, Y. Strzhemechny, G. H. Jessen, D. C. Look, G. Cantwell, J. Zhang, J. J. Song. Dominant effect of near-interface native point defects on ZnO Schottky barriers. Applied Physics Letters 2007, 90, 102116
    [103] H. L. Mosbacker, Y. M. Strzhemechny, B. D. White, P. E. Smith, D. C. Look, D. C. Reynolds, C. W. Litton, L. J. Brillson. Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Applied Physics Letters 2005, 87, 012102
    [104] M. W. Allen, S. M. Durbin. Influence of oxygen vacancies on Schottky contacts to ZnO. Applied Physics Letters 2008, 92, 122110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700