电力系统暂态稳定自适应变结构控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电力系统正步入大机组、大电网、特高压、交直流混合输送的电力能源时代,电力系统复杂化程度越来越高,其运行与控制的难度越来越大,有效驾驭特大型电力系统正面临严峻挑战。电力系统作为典型的高维、强非线性、不确定性动力学系统,尚有许多不为人所知的复杂现象与运动规律,需要进一步加强理论和实践研究,以获得更加切实可行的控制策略和控制手段,保证电力系统长期稳定可靠运行。面对日益复杂多变的电力系统,传统的基于固定结构的精确化方法对于提高电力系统暂态稳定的控制能力受到很大限制。近几十年来,电力系统暂态稳定控制,尤其是励磁系统控制得到了世界各国电力系统专家广泛而深入的研究,提出了许多工程实践中行之有效的控制策略与控制方法,但仍然存在不少问题有待完善。本文以电力系统暂态稳定控制为研究对象,尤其针对励磁控制系统中出现的不确定性,在前人大量研究成果基础上,进一步研究非线性不确定电力系统暂态稳定自适应变结构控制策略,主要完成了以下几方面研究成果:
     (1)概述了电力系统暂态稳定的基本内涵,简要描述了系统故障发生后发电机内部机械与电磁之间的制约关系,回顾了电力系统暂态稳定控制的发展历程,综述了电力系统自适应变结构暂态稳定控制的研究现状。
     (2)电力系统是典型的强非线性、非自治、高维动力系统,其稳定性分析与综合比较复杂,研究工作需要合适理论指导。因此,引入了电力系统暂态稳定控制研究工作所需要的主要理论背景及其分析与设计工具。简要介绍了Lyapunov稳定性理论中常用的稳定性定理以及Barbalat引理;以一类线性化参数的不确定非线性系统控制为例,给出了反推自适应控制器的迭代设计步骤;解析了滑模变结构控制不变性的基本原理,并计算了快速终端滑模收敛时间;说明了变结构控制抖振现象产生原因以及消除措施;阐述了径向基神经网络的概念以及神经网络自适应控制基本模式。
     (3)将快速终端滑模变结构、反推控制以及自适应控制等控制策略进行有机结合,提出了单机无穷大电力系统暂态稳定自适应快速终端变结构励磁控制器,数字仿真实验表明,该控制器具有较好的适应性与较强的抗干扰能力,具有优良的控制品质。
     (4)针对多机电力系统励磁控制,提出了自适应多级滑模励磁控制器,结合干扰界观测器,解决了多机电力系统模型结构与参数非匹配,参数不确定等技术难题。为克服变结构控制输入信号抖振问题,引入了具有无穷可导的光滑切换函数。数字仿真实验表明,设计的基于多级滑模的自适应多机励磁控制器具有很强的抗干扰能力,能有效提高多机电力系统暂态稳定性。
     (5)考虑到电力系统暂态稳定励磁控制系统难以精确建模的特点,引入径向基函数(RBF)神经网络逼近系统不确定性。首先针对一类非线性不确定性系统,导出了一般意义上的神经网络自适应控制器的控制律、网络权重调整律以及参数调整律。然后结合单机无穷大电力系统励磁系统模型特点,构造了神经网络自适应励磁控制器,经数字仿真检验,控制器具有良好适应性与抗扰动能力。
The state power systems are now entering a new era of power energy which with large power unit and with special high voltage, and power energy be transported by hybrid alternative current and direct current. The running and controlling of power system are becoming more and more complicated. How to control special large power systems is facing a serious challenge. Power system is of a typical nonlinear dynamics of multi-dimension and with strong nonlinearity and uncertainty and in which much intricate phenomena and movement law still unknown. In order to ensure power systems running credible stable for long period and obtain suitable and effective control approach, the study on the control theory and control practice must be further intensified. Facing on the fast change and complicated power systems, the ability of traditional exacting control method with fixed structure will be limited for improving power system stability. For the last decades, the control of power systems transient stability especially excitation control methods had be investigated widely and deeply by electricity specialists of world. Many effective control strategies and methods of the practices and theory be proposed, but still a lot of problems remain to unresolved. This thesis focused on the study of the power system transient control and especially on the excitation control with uncertainty based on prior knowledge and investigating the modern adaptive variable structure control strategy for uncertain power system transient stability. The following control methods and control strategies are presented in this thesis.
     (1) Summarizing the basic definition of power system transient stability and describing the relationship between the mechanical and electromagnetism briefly, and then review the developments of control strategies of power system transient stability. Finally, the progress of control methods of power system transient control is introduced.
     (2) Power system is of a typical dynamics systems with strong nonlinearity, non-autonomous and high-dimensions. It is a difficult task for analyzing and controlling and the study on it should be guided by suitable theory and necessary control tools. So it is necessary for providing background of stability theory. Lyapunov stability theory and tools of stability analyzing is introduced into and at the same time Barbalat lemma is provided. For a class of uncertain nonlinear systems with parameter can linearization, the design procedure of the controller by using backstepping methods is presented and also explaining the principle of control invariable of the sliding mode control. The time of the sliding to the balance point of the fast terminal system is calculated. The conception and control mode of neural network control is introduced.
     (3) A adaptive fast terminal sliding excitation controller for SMIB power system transient stability is proposed based on combining with fast terminal sliding mode control, backstepping and adaptive control. Simulation performed on SMIB shows that the proposed controller have good properties of adaptive and suppress disturbances and also shows good control performances.
     (4) A multi-sliding mode adaptive excitation controller is proposed for multi-machine power systems. The mismatched problem of parameter and disturbances for multi-machines power systems is solved by using disturbance observers. In order to overcome the chattering of input signal of sliding mode controller, a smooth S-type function which can infinitive differential is introduced to substitute for switching function. Simulation performed on 6-machine 22-nodes systems shows that the proposed controller have good properties of attenuating disturbances and can improve power systems transient stability effectively.
     (5) Considering the difficulty for exacting modeling of power system transient stability control, radial base function neural network is introduced to approximate the uncertainty and external disturbances. For a class of nonlinear uncertain system, adaptive control law, weight update law, parameter update law of the system in general meaning are given. By applying the above conclusion into SMIB, a adaptive excitation controller based on neural network control is proposed. Simulation studies are included to illustrate the effectiveness of the proposed controller.
引文
[1]傅书逷.2010年智能电网控制中心新技术综述[J].电网技术,2011,35(5).
    [2]韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制[M].清华大学出版社,1997.
    [3]Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions [J]. Power Systems, IEEE Transactions on,2004,19(3):1387-1401.
    [4]SUN H, Tang Y, MA S. A Commentary on Definition and Classification of Power System Stability [J]. Power System Technology,2006,17.
    [5]Kundur P, Paserba J, Vitet S. Overview on definition and classification of power system stability,2003[C]. IEEE.Trans. On Power Systems 18(1):1-4
    [6]Kundur P.电力系统稳定与控制[M].中国电力出版社,2002.
    [7]倪以信,张宝霖,陈寿孙.动态电力系统的理论和分析/现代电力系统丛书[M].清华大学出版社,2002.
    [8]Okou A F, Dessaint L A, Akhrif O. Globally stabilizing robust adaptive voltage and speed regulator for large-scale power systems, Decision and Control, European Control Conference. CDC-ECC'05.44th IEEE Conference on,6472-6479.
    [9]Machowski J, Bialek J, Bumby J. Power system dynamics:stability and control[M]. Wiley,2011.
    [10]卢强,梅生伟,孙元章.电力系统非线性控制[M].北京:清华大学出版社,2008.
    [11]Kundur P. Power Systems Stability and Control[M]. Beijing:China Electric Power Press,2001.
    [12]Abido M A. Optimal design of power-system stabilizers using particle swarm optimization[J]. Energy Conversion, IEEE Transactions on,2002,17(3):406-413.
    [13]韩祯祥,电力系统.电力系统稳定[M].中国电力出版社,1995.
    [14]张凯锋,戴先中.多机电力系统励磁控制的人工神经网络逆系统方法[J].电力系统自动化,2003,27(021):23-29.
    [15]兰洲,甘德强,倪以信等.电力系统非线性鲁棒自适应分散励磁控制设计[J].中国电机工程学报,2006,26(17):1-5.
    [16]Lu Q, Mei S, Hu W, et al. Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems[J]. Power Systems, IEEE Transactions on,2001,16(4):729-736.
    [17]Li W, Jing Y, Liu X. Adaptive robust backstepping design for nonlinear steam valve controller[J]. Proceedings of the CSEE,2003,23(1):155-158.
    [18]Dong Q, Gao S, Bao H. GOVERNOR ADDITIONAL H ∞ ROBUST DECENTRALIZED CONTROL OF SYNCHRONOUS GENERATOR [J][J]. Proceedings of the Csee,2002,2.
    [19]Sun Y, Lu Q, et al. Nonlinear decentralized robust governor control for hydroturbo-generator sets of multi-machine system[J], Power Systems, IEEE Transactions on,2001,3(1):42-47.
    [20]Ramos R A, Alberto L F C, Bretas N G. A new methodology for the coordinated design of robust decentralized power system damping controllers [J]. Power Systems, IEEE Transactions on,2004,19(1):444-454.
    [21]李啸骢,程时杰,韦化等.TCSC与水轮发电机励磁和水门的多指标非线性协调控制[J].中国电机工程学报,2004,24(11):21-27.
    [22]Jiao X, Sun Y, Shen. T. Adaptive Controller Design for a Synchronous Generator with Unknown Perturbation in Mechanical Power[J]. International Journal of Control, Automation, and Systems,2005,3(2):308-314.
    [23]Ni Y, Poon K K Y, Liu H, et al. Control frame for synchronous stability of interconnected power systems in deregulated environments, IEEE Power Engineering Society General Meeting,IEEE Press.2006:7-12
    [24]Fregene K, Kennedy D. Stabilizing control of a high-order generator model by adaptive feedback linearization[J]. Energy Conversion, IEEE Transactions on, 2003,18(1):149-156.
    [25]方思立,朱方.电力系统稳定器的原理及其应用[M].中国电力出版社,1996.
    [26]刘取.电力系统稳定性及发电机励磁控制[M].中国电力出版社,2007.
    [27]Lu Q, Sun Y Z. Nonlinear stabilizing control of multimachine systems[J]. Power Systems, IEEE Transactions on,1989,4(1):236-241.
    [28]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展, 2000,10(10):870-876.
    [29]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].清华大学出版社,2003.
    [30]Hao J, Chen C, Li S. Nonlinear Decentralized Disturbance Attenuation Excitation Control for Power Systems With Nonlinear Loads Based on the Hamiltonian Theory [J]. IEEE Trans on Energy Conversion,2007,22(5):316-324
    [31]Wang Y, Feng G, Cheng D, et al. Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units[J]. Automatica, 2006,42(7):1121-1132.
    [32]Cao Y, Jiang L, Cheng S, et al. A nonlinear variable structure stabilizer for power system stability[J]. Energy Conversion, IEEE Transactions on,1994,9(3):489-495.
    [33]葛友,李春文.H∞滑模鲁棒励磁控制器设计[J].中国电机工程学报,2002,22(5):1-4.
    [34]汤洪海,李春文.多机电力系统H∞滑模分散鲁棒励磁控制器设计[J].电力系统及其自动化学报,2007,19(4):100-105.
    [35]王钧.机械手神经网络稳定自适应控制的理论与方法[J].控制理论与应用,2006,23(1):73-77.
    [36]王江,李涛,曾启明.基于神经网络的同步发电机励磁反步控制[J].中国电机工程学报,2003,23(12):140-145.
    [37]范澍,毛承雄,陆继明等.多机电力系统神经网络最优励磁控制器[J].中国电机工程学报,2004,24(7):80-84
    [38]陈杰,李志平,张国柱.变结构神经网络自适应鲁棒控制[J].自动化学报,2010,36(1):174-178.
    [39]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007.
    [40]马进,席在荣,梅生伟等.基于Hamilton能量理论的发电机汽门与励磁非线性稳定控制器的设计[J].中国电机工程学报,2002,22(5).
    [41]Khalil H K. Nonlinear Systems,Third Edition[G]. Beijing:Publishing House of Electronic Industry,2007.
    [42]Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive nonlinear control without overparametrization[J]. Systems & Control Letters,1992,19(3):177-185.
    [43]Zhihong M, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. Automatic Control, IEEE Transactions on, 1994,39(12):2464-2469.
    [44]Zhou J, Wen C, Zhang Y. Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity[J]. Automatic Control, IEEE Transactions on, 2006,51(3):504-511.
    [45]Marino R, Tomei P. Adaptive tracking and disturbance rejection for uncertain nonlinear systems [J]. Automatic Control, IEEE Transactions on,2005,50(1):90-95.
    [46]Pan Z, Basar T. Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems [J]. Automatic Control, IEEE Transactions on,1998,43(8):1066-1083.
    [47]Marino R, Tomei P. Robust adaptive state-feedback tracking for nonlinear systems[J]. Automatic Control, IEEE Transactions on,1998,43(1):84-89.
    [48]Taylor D G, Kokotovic P V, Marino R, et al. Adaptive regulation of nonlinear systems with unmodeled dynamics[J]. Automatic Control, IEEE Transactions on, 1989,34(4):405-412.
    [49]Zhihong M, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. Automatic Control, IEEE Transactions on, 1994,39(12):2464-2469.
    [50]Jain S, Khorrami F, Fardanesh B. Adaptive nonlinear excitation control of power systems with unknown interconnections[J]. Control Systems Technology, IEEE Transactions on,1994,2(4):436-446.
    [51]Edwards C, Spurgeon S K. Sliding mode control:theory and applications[M]. CRC, 1998.
    [52]Hirschorn R M. Generalized sliding-mode control for multi-input nonlinear systems[J]. Automatic Control, IEEE Transactions on,2006,51(9):1410-1422.
    [53]Chen X. Adaptive sliding mode control for discrete-time multi-input multi-output systems[J]. Automatica,2006,42(3):427-435.
    [54]Zhihong M, Yu X H. Terminal sliding mode control of MIMO linear systems [J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on, 1997,44(11):1065-1070.
    [55]Park K B, Tsuji T. Terminal sliding mode control of second-order nonlinear uncertain systems[J]. International journal of robust and nonlinear control, 1999,9(11):769-780.
    [56]Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems[J]. Automatic Control, IEEE Transactions on,1996,41 (3):447-451.
    [57]Pisano A, Usai E. Sliding mode control:A survy with application in math[J]. 2011(81):954-979.
    [58]Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design[J]. Automatica,1996,32(3):423-427.
    [59]Shuzhi S G. Stable adaptive neural network control[M]. Springer,2002.
    [60]Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J]. Automatica,2000,36(12):1835-1846.
    [61]王锡凡.现代电力系统分析[M].北京:科学出版社,2003.
    [62]Q L, Y. S, S. M. Nonlinear control systems and power system dynamics[M]. Boston: Kluwer Academic Publishers,2001.
    [63]高光华,胡伟,梅生伟,卢强.电力系统非线性鲁棒自适应分散励磁控制设计[J].电力系统自动化,2000(10).
    [64]余涛.汽轮发电机组汽门开度和励磁系统的自抗扰综合控制[J].电力系统自动化,2003,27(3):36-41
    [65]Liu Y, Chen T, Li C, et al. IEEE TCS 2009-Energy-Based $L_2$ Disturbance Attenuation Excitation Control of Differential Algebraic Power Systems [J]. IEEE Trans. On Circuits and Systems-II:Express Brifes,2008,55(10):1081-1085.
    [66]胡跃明.变结构控制理论与应用[M].科学出版社,2003.
    [67]冯勇,鲍晟,余星火.非奇异终端滑模控制系统的设计方法[J].控制与决策,2002,17(2):194-198.
    [68]Yu X, Zhihong M. Multi-input uncertain linear systems with terminal sliding-mode control[J]. Automatica,1998,34(3):389-392.
    [69]Luqing Y, Shouping W, Haibo X, et al. Variable structure and time-varying parameter control for hydroelectric generating unit[J]. Energy Conversion, IEEE Transactions on,1989,4(3):293-299.
    [70]Cai Z, De Queiroz M S, Dawson D M. Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance[J]. Automatic Control, IEEE Transactions on,2006,51(3):524-529.
    [71]Zhou J, Zhang C, Wen C. Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity[J]. Automatic Control, IEEE Transactions on,2007,52(3):503-509.
    [72]Park J H, Seo S J, Park G T. Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors [J]. Fuzzy Sets and Systems, 2003,133(1):19-36.
    [73]Liu Y, Li X Y. Robust adaptive control of nonlinear systems represented by input-output models [J]. Automatic Control, IEEE Transactions on, 2003,48(6):1041-1045.
    [74]Xi Z, Cheng D, Lu Q, et al. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method [J]. Automatica, 2002,38(3):527-534.
    [75]Bandal V, Bandyopadhyay. B. Robust Decentralised Output feedback sliding mode control technique-based power system stabliser(PSS) for multimachine power system[J]. IEEE Trans. On Automatic Control,2007,1 (5):1512-1522.
    [76]Chapman J W, Ilic M D, King C A, et al. Stabilizing a multimachine power system via decentralized feedback linearizing excitation control[J]. Power Systems, IEEE Transactions on,1993,8(3):830-839.
    [77]葛友,李春文.多重滑模鲁棒励磁控制器设计[J].电力系统自动化,2001(10):6-10.
    [78]Huerta H, Loukianov A G, Canedo J M. Robust Multimachine power systems control via high order sliding modes[J].2011(81):1602-1609.
    [79]孙富春.机械手神经网络稳定自适应控制的理论和方法[M].北京:高等教育出版社,2004.
    [80]陈允平,王旭蕊,韩宝亮.神经网络电力系统应用[M].北京:中国电力出版社, 2002.
    [81]Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. Neural Networks, IEEE Transactions on,2004,15(3):674-692.
    [82]Ge S S, Wang J. Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[J]. Neural Networks, IEEE Transactions on, 2002,13(6):1409-1419.
    [83]Wang D, Huang J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form[J]. Automatica,2002,38(8):1365-1372.
    [84]Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics[J]. Automatic Control, IEEE Transactions on, 1999,44(9):1705-1711.
    [85]杨冠鲁,李晴燕,胡欣.同步发电机监督学习神经网络励磁控制器[J].安徽大学学报(自然科学版),2005(3):58-61
    [86]赫卫国,张凯锋.基于神经网络逆系统方法的发电机励磁与汽门最优控制[J].电气传动,2004,34(21):161-165.
    [87]范澍,毛承雄,陆继明等.多机电力系统神经网络最优励磁控制器[J].中国电机工程学报,2004,24(7):80-84.
    [88]王江,李涛,曾启明.基于神经网络的同步发电机励磁反步控制[J].中国电机工程学报,2003,23(12):140-145
    [89]张扬.电力系统技术发展的新趋势[J].浙江电力,2002,4(1):9-13
    [90]Song Y H. Novel adaptive control scheme for improving power system stability[J]. Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution], IEE Proceedings,1992,139(5):423-426.
    [91]叶鲁卿.一种新型水轮发电机组智能模糊控制系统[J].中国电机工程学报,1998,18(1):42-47.
    [92]王永骥,张晓兰,徐桂英等.同步发电机励磁的神经网络控制[J].水电能源科学,1995,13(2):78-82
    [93]姜铁兵,梁斌,杨俊杰等.水轮发电机组神经网络自适应预测控制[J].水电能源科学,1998,16(2):29-33.
    [94]Hossein-Zadeh N, Kalam A. An indirect adaptive fuzzy-logic power system stabiliser[J]. International journal of electrical power & energy systems, 2002,24(10):837-842.
    [95]韩英铎,林孔兴.电力系统中的三项前沿课题:柔性输电技术,智能控制,基于GPS相量测量技术[J].清华大学学报:自然科学版,1997,37(007):1-6.
    [96]胡云安,晋玉强,李海燕.非线性系统鲁棒自适应反演控制[M].北京:电子工业出版社,2010.
    [97]Ge S S, Hang C C, Zhang T. Adaptive neural network control of nonlinear systems by state and output feedback[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,1999,29(6):818-828.
    [98]Noriega J R, Wang H. A direct adaptive neural-network control for unknown nonlinear systems and its application[J]. Neural Networks, IEEE Transactions on, 1998,9(1):27-34.
    [99]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.
    [100]Li T, Li R, Li J. Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation [J]. Neural Computing,2011,74:2277-2283.
    [101]Zhou J, ER M J, Zurada J M. Adaptive neural network control of uncertain nonlinear systems with nonsmooth actuator nonlinearities[Z].2007:70,1062-1070.
    [102]ZHU Q, CAI Y, LIU. L. A Global learning algorithm for a RBF networks[J]. 1999(81):527-540.
    [103]Funahashi K I. On the approximate realization of continuous mapping by neural network[J]. Neural Networks,1989(2):183-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700