高频感应加热设备感应器的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着感应加热技术的普及,用于感应加热的工件的形状也越来越多,由于工件一般是要放进感应器内部进行加热的,所以我们要根据不同截面的工件设计适合其加热使用的感应器。通常用于感应加热的感应器可以被制做成螺旋形感应器、缝状感应器、扁圆形感应器、异形感应器、有磁导体的感应器等。由于目前用于感应加热设备的感应器还没有完善的理论设计方法,传统方法通常采用“经验法”或者利用现有的计算公式,由于传统的制作方法存在较大的误差,将会导致被加热工件达不到预期的加热效果,那么感应器就不得不重新制作,从而造成了人力和财力的浪费。针对上述感应器目前制作方法存在的弊端,本论文本着低成本、高效率、安全可靠的指导思想,以理论和实验相结合的研究方法,通过电感的实验测量值来修正理论计算值,以此提高感应器的加热效率。论文的主要内容包括:
     首先,通过建立感应器(螺旋形)与被加热工件之间的数学模型,推导出一般感应器阻抗的计算公式,并结合实验测量结果分析出了影响感应器电感值的各种因素。其次,利用“螺旋形线圈元”的辅助设计法推导出了单层螺旋形线圈元“部分电感值”与“整体电感值”的一般关系式,以及不同材质(磁性和非磁性材料)的工件对“部分”与“整体”关系的影响。最后,根据感应电动势的原理,通过增加感应线圈元的数量进一步得到了n个有限长多层螺线圈元串联顺接电感的计算公式。将多个尺寸的螺旋形线圈元的同名端相接时,由于电流流入的方向一致,产生的磁场的方向相同,且电感量远远大于单层线圈的电感量。因此可以利用已有的线圈元进行多层的串联顺接来组合成我们所需的电感值。
With the popularity of induction heating technology, more and more kinds of shape of the induction heating of the workpiece have been invented. As the workpiece is generally used in the interior of the inductor for heating, it has to be adapted to the different sectional rough design for heating inductor. Typically, the shape for the induction heating of the inductor can be made into spiral-shaped inductor, Slit-like inductor, Slit-like inductor, Shaped inductor, inductor with a magnetic conductor, etc. While, it is difficult for us to find a selected theoretical calculation method to design the inductor of induction heating, and the traditional methods usually relies on "experience" or use of existing formulas, because the traditional method of making larger error, its will cause the workpiece is heated not achieve the desired heating effect, then it is a waste of human and financial resources. To avoid the drawbacks of it, this paper line with low cost, high efficiency, safety and reliability of the guiding ideology, the combination of theoretical and experimental research methods,using the experimentally measured inductance value to correct theoretical value, in order to improve the heating efficiency of the inductor. The main contents of this paper include:
     First, through the establishment of the mathematical model of the induction heating inductors (spiral) and the workpiece, deriving a general inductor inductance formula, and combine the results of experimental measurements to analyze a variety of factors affect the inductance values of the sensor. Then, using the Spiral-shaped coil element experimental verification of the general relationship of the monolayer helical coil element" section inductor value "and the" overall inductance value, as well as the impact of workpieces of different materials (magnetic and non-magnetic material) on the relationship between "part" and "whole". Finally, based on the principles of the induced electromotive force, increase the number of induction coil element in order to get n finite-length multi-layer solenoid coil inductance element in series, linking and reverse the formula. Putting some different sizes spiral coil element of the same name connection, as the current flows in a direction consistent, so the magnetic field generated has the same direction and the new inductance greater than the single-layer coil inductance. Thus, we can utilize the multi-layer spiral coil elements in series to combining in order to get the required inductance value.
引文
[1]刘志儒.金属感应热处理(上册)[M].北京:机械工业出版社,1985
    [2]赵忠魁.金属材料及热处理技术[M].北京:国防工业出版社,2012.1-4
    [3]Abraham I.Pressman,Keith Billin. Switching Power Supply Design[M]. Beijing: Publishing House of Electronics Industry,2010.1~56
    [4]孙宁,施建华.感应加热工艺与设备的发展状况及趋势(上)[J].金属加工,2009,(1):26-28
    [5]王爱国.超高频感应加热逆变电源研究[D].[硕士学位论文].郑州:郑州大学,2011
    [6]吴靖,王正仕,赵荣祥等.倍频式高频感应加热电源工作模式[J].电工技学报,2007,2(2):153-158
    [7]沈庆通.感应加热技术的近期发展[J].机械工人,2005,(6):12-14
    [8]雷宁.并联谐振高频逆变电源的研究[D].[硕士学位论文].无锡:江南大学,2008
    [9]付正博.感应加热与节能-感应加热器(炉)的设计与应用[M].北京:机械工业出版社,2008.1-286
    [10]王振东,牟俊茂.钢材感应加热快速热处理[M].北京:化学工业出版社,2012.1-423
    [11]王强.中厚板横向磁通感应加热温度场数值模拟分析[D].[硕士学位论文].内蒙古:内蒙古科技大学,2009
    [12]程亦晗.平板移动感应加热磁—热耦合场数值模拟研究[D].[硕士学位论文].天津:天津大学,2005
    [13]包仕荪,杜锦才,周一飞等.试验法在感应器设计中的应用[J].金属热处理,2000,11 (1) :42-44
    [14]李定宣,丁增敏.现代高频感应加热电源工程设计与应用[M].北京:中国电力出版社,2010.1-99
    [15]沈庆通,梁文林.现代感应热处理技术[M].北京:机械工业出版社,2008.150-151
    [16]周军伟.并联型高频感应加热电源的研究[D].[硕士学位论文].浙江:浙江大学,2005
    [17]徐送宁.大学物理[M].北京:科学出版社,2011.67-149
    [18]李韵豪.锻压工业中的感应加热—第一讲:感应加热的基础[J].机械工人:热加工,2007,(1):80-82
    [19]赵敏.45钢坯锻前感应加热的有限元模拟分析[D].[硕士学位论文].浙江:浙江工业大学,2006
    [20]王淑花,刘爱莲等..热处理设备[M].哈尔滨:哈尔滨工业大学出版社,2010.125-135
    [21]西安电炉研究所.感应加热技术应用级设备经验.第一机械工业部技术情报所编,1975
    [22]刘宾.铁心磁化过程对线圈电感影响的研究[D].[硕士学位论文].西安:西北大学, 2009
    [23]王云英,佘守宪,刘金昌.耦合线圈的互感、等效自感与磁能[J].天津理工学院学报,2002,18(1):44-48
    [24]刘佑昌.关于互感系数M=L1L2[J].工科物理,1995,(2):6-8
    [25]雷静.线圈整体与局部自感系数的关系[J].物理与工程,2004,14(4):54-55
    [26]袁泉林,孙祝.反并接和顺并接自感系数的讨论[J].大学物理,1995,14(4):19-23
    [27]孔祥利,刘宾,郑茂盛等.铁心在不同连接方式下对电感的影响[J].理化检验-物理分册,2010,46(2):167-170
    [28]文盛乐.关于电感线圈的联接问题[J].大学物理,2005,24(7):12-15
    [29]马鹏飞,李美兰等.热处理技术[M1.北京:化学工业出版社,2008.99-102
    [30]约翰·戴维斯[英]著.感应加热手册[M].张淑芳译.北京:国防工业出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700