非预混火焰热声耦合机理的理论和计算分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非预混燃烧广泛存在于动力推进系统中。本论文通过理论分析和数值计算,辅以相关实验数据,研究了非预混燃烧过程中的热声耦合问题。对于燃气轮机燃烧室内的燃烧过程,产生热声耦合需要两个条件:第一,流场中需要存在一个初始的扰动,也就是热声耦合产生的诱因,燃烧过程的直接燃烧噪音便是产生这种流场内初始扰动的重要因素;第二,燃烧室的声学边界条件需要满足相关条件,使得流场中的初始扰动可以通过声学反馈,和燃烧过程耦合,产生自维持的热声耦合振荡燃烧。全文围绕热声耦合问题的两个重要分支:燃烧过程的直接噪音和间接噪音展开,研究其产生机理和相关特性,并对其内在联系做了相关讨论。
     首先,利用低阶模型的数学思想,理论推导了低阶燃烧动力学模型以及一维分布式火焰传递函数的表达式。这些结果从守恒方程组出发,描述了燃烧动力学过程中放热率脉动和流场扰动之间的关系,它们的成立并不依赖于具体的燃料组织方式或燃烧模型,对于预混、非预混、以及部分预混燃烧都是成立的。接着,论文以一个理想的二维平板非预混火焰作为研究对象,通过格林函数法,解析计算了这个典型非预混燃烧过程的一维分布式火焰传递函数,研究了非预混火焰不稳定燃烧过程中的一类重要问题:热斑的产生及其演化过程,分析其影响因素。
     接下来,通过分析直接数值模拟的计算结果,得到了非预混火焰放热率脉动时间变化率的空间相关函数表达式,从而简化了非预混燃烧过程中直接燃烧噪音的计算方法。通过燃烧过程中特征量对直接数值模拟结果的无量纲化,使得分析计算的结果表征了非预混燃烧过程中直接燃烧噪音的本质,使结果具有一般性。
     在第五章,以一个真实的燃气轮机模型燃烧室为例,通过数值计算,预测了模型燃烧室的自激振荡燃烧状况。通过线性声学的理论推导,得到了描述燃烧室上下游声学边界条件的声阻抗表达式,使得数值计算的区域可以只考虑燃烧区。
     最后,讨论了非预混火焰热声耦合振荡燃烧对于宽频扰动的激发模态。通过结合数值计算和系统辨识得到宽频分布式火焰传递函数,通过形状因子在低阶模型中考虑流动的不均匀性,通过声阻抗描述自激振荡声学边界条件,得到了可以准确预测整个燃烧系统热声耦合振荡燃烧的特征频率簇以及相应的初始增长率的研究方法,刻画了从宽频的燃烧直接噪音到特定频率自激振荡燃烧的激发模态。
Non-premixed combustion widely exists in industrial equipments and propulsionsystems. Through theoretical analysis and numerical simulation, supported by relevantexperimental data, the thermoacoustic coupling relationships in non-premixed combus-tion are investigated. For the combustion in gas turbines, there are two preconditions forthermoacoustic oscillation occurrence. First, there should be initial disturbances in theflow field which could induce the thermoacoustic oscillations. Direct combustion noiseplays a significant role in it. And second, the corresponding acoustic boundary condi-tions should be satisfied to couple the acoustic wave propagation process with unsteadycombustion. This research includes two major branches of thermoacoustic oscillations ofnon-premixed combustion: the direct combustion noise and indirect combustion noise.The generation mechanisms, main characteristics and their internal relationships are in-vestigated in diferent chapters.
     First of all, based on theoretical analysis, the low order model of combustion dynam-ics and one-dimensional distributed flame transfer functions are obtained. These resultsare based on conservation equations and don’t depend on the combustion type and com-bustion modelling. They are established in premixed combustion, non-premixed com-bustion and partially premixed combustion. To demonstrate the implementation of aboveanalytical models, an idealized two-dimensional flat non-premixed flame with three slotsis employed. Based on Green’s function method, the one-dimensional distributed flametransfer function is calculated and the generation and evolution of hot spots are investi-gated.
     And then, based on the direct numerical simulation results, the two-point correlationfunctions of the rate of change of fluctuating heat release rate are investigated. Afternormalized by characteristic quantities, the correlation functions can be represented ingeneral form and independent with local turbulence and chemical reactions. These resultscan simplify the calculation of sound pressure level of direct combustion noise.
     In chapter5, by using a modelling gas turbine type burner for research, the ther-moacoustic combustion oscillations are investigated by numerical simulation. Based onlinear acoustic analysis, the acoustic impendence boundary conditions of the combustor’supstream and downstream are obtained and the CFD calculation can be limited only in the combustion zone.
     Finally, the frequency response of thermoacoustic combustion oscillations on broad-band disturbances is investigated. By numerical simulation and system identification, thebroadband distributed flame transfer functions are obtained. The non-uniform of flowfield is considered by shape factors in the one-dimensional analysis model and the acous-tic boundary conditions are described by local acoustic impedances. And then, a newmethod to predict the eigenfrequencies and corresponding initial growth rates of ther-moacoustic combustion oscillations is developed. And it depicts the transitions frombroadband direct combustion noise to thermoacoustic combustion oscillations which onlyhave one or a couple of eigenfrequencies.
引文
[1] Williams F A. Combustion Theory, Second Edition. Menlo Park, Calif, USA: The Ben-jamin/Cummings,1985.
    [2] Culick F E C. Unsteady Motions in Combustion Chambers for Propulsion Systems. USA:RTO/NATO,2006.
    [3] Lieuwen T C, Yang V E. Combustion Instabilities in Gas Turbine Engines: Operational Expe-rience, Fundamental Mechanisms, and Modelings. Reston, VA, USA: AIAA. Inc,2005.
    [4] Huang Y, Yang V. Dynamics and Stability of Lean-premixed Swirl-stabilized Combustion.Progress in Energy and Combustion Science,2009,35:293–364.
    [5] Sutton G P, Biblarz O. Rocket Propulsion Elements. New York, USA: John Wiley Sons,2000.
    [6] Putnam A A. Combustion-driven Oscillations in Industry. New York, USA: Elsevier,1971.
    [7] Rayleigh J W S. The Theory of Sound, Volume II. New York, USA: Dover Publications,1945.
    [8] Candel S. Combustion Dynamics and Control: Progress and Challenges. Proceedings of Com-bustion Institute,2002,29:1–28.
    [9] Culick F E C, Heitor M V, Whitelaw J H. Unsteady Combustion. Dordrecht, Netherland:Kluwer,1996.
    [10] Crocco L, Cheng S L. Theory of Combustion Instability in Liquid Propellant Rocket Motors.London, UK: Butterworths Science Publication,1956.
    [11] Yu K H, Wilson K J, Schadow K C. Active Control of Liquid-fueled Combustion Using Peri-odic Vortex-droplet Interaction. Proceedings of Combustion Institute,1996,26:2843–2850.
    [12] Yu K H, Wilson K J, Schadow K C. Liquid-fueled Active Instability Suppression. Proceedingsof Combustion Institute,1998,27:2039–2046.
    [13] Yu K H, Wilson K J. Scale-up Experiments on Liquid-Fueled Active Combustion Control.AIAA Journal of Propulsion and Power,2002,18:53–60.
    [14] Hathout J P, Fleifil M, Annaswamy A M, et al. Heat-release Actuation for Control of Mixture-inhomogeneity-driven Combustion Instability. Proceedings of Combustion Institute,2000,28:721–730.
    [15] Annaswamy A M, EI Rifai O M, Fleifil M, et al. A Model-based Self-tuning Controller forThermoacoustic Instability in Premixed Combustors. Combustion Science and Technology,1998,135:213–240.
    [16] Hathout J P, Annaswamy A M, Fleifil M, et al. Model-based Active Control Design for Ther-moacoustic Instability. Combustion Science and Technology,1998,132:99–138.
    [17] Peters N. Turbulent Combustion. Cambridge, UK: Cambridge University Press,2000.
    [18] Poinsot T, Veynante D. Theoretical and Numerical Combustion. Philadelphia, USA: Edwards,2001.
    [19] Yoshida K, Takagi T. Transient Local Extinction and Reignition Behavior of Difusion FlamesAfected by Flame Curvature and Preferential Difusion. Proceedings of Combustion Institute,1998,27:685–692.
    [20] Welle E J, Roberts W L, Decroix M E, et al. Simultaneous Particle-imaging Velocime-try and OH Planar Laser-induced Fluorescence Measurements in an Unsteady CounterflowPropane/Air Difusion Flame. Proceedings of Combustion Institute,2000,28:2021–2027.
    [21] Renard P H, Thevenin D, Rolon J G, et al. Dynamics of flame/Vortex Interactions. Progress inEnergy and Combustion Science,2000,26:225–282.
    [22] Smith D A, Zukoski E E. Combustion Instability Sustained by Unsteady Vortex Combustion.AIAA paper85-1248..
    [23] Lee J G, Kim K, Santavicca D A. Measurement of Equivalence Ratio Fluctuation and ItsEfect on Heat Release During Unstable Combustion. Proceedings of Combustion Institute,2000,28:415–421.
    [24] Lieuwen T C, Zinn B T. The Role of Equivalence Ratio Oscillations in Driving CombustionInstabilities in Low NOx Gas Turbines. Proceedings of Combustion Institute,1998,27:1809–1816.
    [25] Schuller T, Durox D, Candel S. Dynamics of and Noise Radiated by a Perturbed ImpingingPremixed Jet Flame. Combustion and Flame,2002,128:88–110.
    [26] Durox D, Schuller a C S. Self-induced Instability of a Premixed Jet Flame Impinging on aPlate. Proceedings of Combustion Institute,2002,29:69–75.
    [27] Ducruix S, Durox D, Candel S. Theoretical and Experimental Determinations of the TransferFunction of a Laminar Premixed Flame. Proceedings of Combustion Institute,2000,28:765–773.
    [28] Ihme M, Pitsch H, Bodony D. Radiation of Noise in Turbulent Non-premixed Flames. Pro-ceedings of the Combustion Institute,2009,32:1545–1553.
    [29] Swaminathan N, Balachandran R, Xu G, et al. On the Correlation of Heat Release Rate inTurbulent Premixed Flames. Proceedings of Combustion Institute,2010,33:1533–1541.
    [30] Klein S, Kok J. Sound Generation by Turbulent Non-premixed Flames. Combustion Scienceand Technology,1999,149:267–295.
    [31] Waugh I, Geuβ M, Juniper M. Triggering, Bypass Transition and the Efects of Noise on aLinearly Stable Thermoacoustic System. Proceedings of Combustion Institute,2010,33:2945–2952.
    [32] Balasubramanian K, Sujith R I. Non-normality and Nonlinearity in Combustion-acoustic In-teraction in Difusion Flames. Journal of Fluid Mechanics,2008,594:29–57.
    [33] Balasubramanian K, Sujith R I. Nonlinear Response of Difusion Flames to Uniform VelocityDisturbances. Combustion Science and Technology,2008,180:418–436.
    [34] Tyagi M, Jamadar N, Chakravarthy S R. Oscillatory Response of an Idealized Two-dimensionalDifusion Flame: Analytical and Numerical Study. Combustion and Flame,2007,149:271–285.
    [35] Schusser M, Culick F E C, Cohen N S. Analytical Solution for Pressure-Coupled CombustionResponse Functions of Composite Solid Propellants. Journal of Propulsion and Power,2008,24:1058–1067.
    [36] Duvvur A, Chiang C H, Sirignano W A. Oscillation Fuel Droplet Vaporization: Driving Mech-anism for Combustion Instability. Journal of Propulsion and Power,1996,12:358–365.
    [37] Lieuwen T. Modeling Premixed Combustion-acoustic Wave Interactions: A Review. Journalof Propulsion and Power,2003,19:765–781.
    [38] Dowling A P. A Kinematic Model of a Ducted Flame. Journal of Fluid Mechanics,1999,394:51–72.
    [39] Hirsch C, Polifke W, Sattelmayer T, et al. Influence of the Swirler Design on the Flame TransferFunction of Premixed Flames. Proceedings of ASME TURBO EXPO2005. GT2005–68195.
    [40] Flemming F, Sadiki A, Janicka J. Investigation of Combustion Noise Using a LES/CAA HybridApproach. Proceedings of the Combustion Institute,2007,31:3189–3196.
    [41] Zhu M, Dowling A P, Bray K N C. Forced Oscillations in Combustors with Spray Atomizers.ASME Journal of Engineering for Gas Turbines and Power,2002,124:20–30.
    [42] Zhu M, Dowling A P, Bray K N C. Self-excited Oscillations in Combustors with Spray Atom-izers. ASME Journal of Engineering for Gas Turbines and Power,2001,123:779–786.
    [43] Hantschk C C, Vortmeyer D. Numerical Simulation of Self-excited Combustion Oscillationsin a Non-premixed Burner. Combustion Science and Technology,2002,174:189–204.
    [44] Patel N, Menon S. Simulation of Spray-Turbulence-Flame Interactions in a Lean Direct Injec-tion Combustor. Combustion and Flame,2008,153:228–257.
    [45] Roux S, Lartigue G, Poinsot T, et al. Studies of Mean and Unsteady Flow in a Swirled Com-bustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations. Combustion andFlame,2005,141:40–54.
    [46] Sengissen A X, Van Kampen J F, Huls R A, et al. LES and Experimental Studies of Coldand Reacting Flow in a Swirled Partially Premixed Burner with and without Fuel Modulation.Combustion and Flame,2007,150:40–53.
    [47] Skovorodko P A, Tereshchenko A G, Knyazkov D A, et al. Experimental and Numerical Studyof Thermocouple-induced Perturbations of the Methane Flame Structure. Combustion andFlame,2011. doi:10.1016/j.combustflame.2011.10.010.
    [48] Durox D, Schuller T, Noiray N, et al. Rayleigh Criterion and Acoustic Energy Balance inUnconfined Self-sustained Oscillating Flames. Combustion and Flame,2009,156:106–119.
    [49] Norio O, Koichi T, Shigeki Y. Noise Characteristics of Turbulent Difusion Flames with Co-herent Structure. Combustion Science and Technology,1993,90:61–78.
    [50] Singh K, Frankel S, Gore J. Study of Spectral Noise Emissions from Standard TurbulentNonpremixed Flames. AIAA Journal,2004,42:931–936.
    [51] Ramamurthi K, Patnaik R. Noise Reduction in Non-premixed Lifted Jet Flames. Flow, Turbu-lence and Combustion,2004,72:49–67.
    [52] Zhang X Y, Zhang H, Zhu M. Experimental Investigation of Thermo-acoustic Instabilities ina Laboratory Combustor with Synthesis Gases. Proceedings of ASME TURBO EXPO2011.GT2011–45783.
    [53] Armitage C A, Riley A J, Cant R S, et al. Flame Transfer Function for Swirled LPP Combustionfrom Experiments and CFD. Proceedings of ASME TURBO EXPO2009. GT2004–53820.
    [54] Idahosa U, Saha A, Xu C, et al. Non-premixed Acoustically Perturbed Swirling Flame Dy-namics. Combustion and Flame,2010,157:1800–1814.
    [55] Varoquie B, Legier J, Lacas F, et al. Experimental Analysis and Large Eddy Simulation toDetermine the Response of Non-premixed Flames Submitted to Acoustic Forcing. Proceedingsof the Combustion Institute,2002,29:1965–1970.
    [56] Cruz Garia M, Mastorakos E, Dowling A P. Investigation on the Self-excited Oscillations in aKerosene Spray Flame. Combustion and Flame,2009,156:374–384.
    [57] Vance R, Miklavcic M, Wichman I S. On the Stability of One-dimensional Difusion FlamesEstablished between Plane, Parallel, Porous Walls. Combustion Theory and Modelling,2001,5:147–161.
    [58] Kim K T, Hochgreb S. Measurements of Triggering and Transient Growth ina Model Lean-premixed Gas Turbine Combustor. Combustion and Flame,2011.doi:10.1016/j.combustflame.2011.10.016.
    [59] Kedia K S, Ghoniem A F. Mechanisms of Stabilization and Blowof of a PremixedFlame Downstream of a Heat-conducting Perforated Plate. Combustion and Flame,2011.doi:10.1016/j.combustflame.2011.10.014.
    [60]韩飞,沙家正. Rijke管热声非线性不稳定增长过程的研究.声学学报,1996,21:362–367.
    [61]朱永波,刘克,程明昆. Rijke管的实验研究和理论分析.工程热物理学报,2001,22:706–708.
    [62]李国能,周昊,岑可法. Rijke型燃烧器热声振动特性的试验研究.振动与冲击,2008,27:174–177.
    [63]张澄宇,孙晓峰.加力燃烧室流场形态与振荡燃烧数值模拟.航空动力学报,2010,25:270–277.
    [64]雷宇,徐刚,房爱兵, et al.燃气轮机合成气燃烧室动态特性的实验研究.工程热物理学报,2005,26:1057–1060.
    [65]房爱兵,徐刚,聂超群, et al.燃气轮机合成气燃烧室中燃烧噪声的现场测试与分析.2006年工程热物理年会燃烧学学术会议论文集. No.064009.
    [66]李磊,孙晓峰.推进动力系统燃烧不稳定性产生的机理、预测及控制方法.推进技术,2010,31:710–720.
    [67] Polifke W, Lawn C. On the Low-frequency Limit of Flame Transfer Functions. Combustionand Flame,2007,151:437–451.
    [68] Fanaca D, Alemela P R, Hirsch C, et al. Comparison of the Flow Field of a Swirl StabilizedPremixed Burner in an Annular and a Single Burner Combustion Chamber. Proceedings ofASME TURBO EXPO2009. GT2009–59884.
    [69] Kang D M, Culick F E C, Ratner A. Combustion Dynamics of a Low-swirl Combustor. Com-bustion and Flame,2007,151:412–425.
    [70] Yao Z P, Zhu M, Dowling A P. Analysis and Simulation of Combustion Oscillations in aLaboratory Spray Combustor. Proceedings of ASME TURBO EXPO2009. GT2009–59764.
    [71] Durox D, Schuller T, Candel S. Experimental Analysis of Nonlinear Flame Transfer Functionsfor Diferent Flame Geometries. Proceedings of Combustion Institute,2009,32:1391–1398.
    [72] Strahle W C. On Combustion Generated Noise. Journal of Fluid Mechanics,1971,49:399–414.
    [73] Strahle W C. Combustion Noise. Progress in Energy and Combustion Science,1978,4:157–176.
    [74]陈懋章.粘性流体动力学基础.北京,中国:高等教育出版社,2002.
    [75] Dowling A P, Williams J E F. Sound and Source of Sound. New York, USA: Ellis Horwood,1983.
    [76] Dowling A P, Stow S R. The Calculation of Thermoacoustic Oscillations. Journal of soundand vibration,1995,180:557–581.
    [77] Bohn D, Deuker E. An Acoustical Model to Predict Combustion Driven Oscillation. Proceed-ings of the20th International Congress on Combustion Engines, London, UK,1994.
    [78] You D, Sun X, Yang V. A Three-dimensional Linear Acoustic Analysis of Gas Turbine Com-bustion Instability. Proceedings of41th Aerospace Science Meeting and Exhibit. AIAA2003–0118.
    [79] Evesque S, Polifke W. Low-order Acoustic Modelling for Annular Combustors: Validation andInclusion of Model Coupling. Proceedings of ASME TURBO EXPO2004. GT2004–30064.
    [80] Dowling A P, Stow S R. Acoustic Analysis of Gas Turbine Combustors. Journal of Propulsionand Power,2003,19:751–764.
    [81] Eckstein J, Sattelmayer T. Low-order Modelling of Low-frequency Combustion Instabilitiesin Aeroengines. Journal of Propulsion and Power,2006,22:425–432.
    [82] Sattelmayer T, Polifke W. Assessment of Methods for the Computation of the Linear Stabilityof Combustors. Combustion Science and Technology,2003,175:453–476.
    [83] Zhu M, Dowling A P, Bray K N C. Integration of CFD and Low-order Models for CombustionOscillations in Aero-engines. Proceedings, XV International Symposium on Air-breathingEngines. ISABE–2001–1088.
    [84] Curtain R, Morris K. Transfer Functions of Distributed Parameter Systems: A Tutorial. Auto-matica,2009,45:1101–1116.
    [85] Eckstein J, Freitag E, Hirsch C. Experimental Study on the Role of Entropy Waves in Low-frequency Oscillations in a RQL Combustor. ASME Journal of Engineering for Gas Turbinesand Power,2006,128:264–270.
    [86] Bake F, Kings N, Roehle I. Fundamental Mechanism of Entropy Noise in Aero-engines: Ex-perimental Investigation. ASME Journal of Engineering for Gas Turbines and Power,2008,130:011202–1–011202–6.
    [87] Kim K, Lee J, Quay B, et al. Spatially Distributed Flame Transfer Functions for PredictingCombustion Dynamics in Lean Premixed Gas Turbine Combustors. Combustion and Flame,2010,157:1718–1730.
    [88] Zhu M, Dowling A P, Bray K N C. Transfer Function Calculations for Aeroengine CombustionOscillations. ASME Journal of Engineering for Gas Turbines and Power,2005,127:18–26.
    [89] Burke S P, Schumann T E W. Difusion flames. Industrial and Engineering Chemistry,1928,20:998–1004.
    [90] Clarke J F. The Laminar Difusion Flame in Oseen Flow: the Stiochiometric Burke-SchumannFlame and Frozen Flow. Proceedings of the Royal Society A,1967,296:519–545.
    [91] Poinsot T, Veynante D. Theoretical and Numerical Combustion, Second Edition. Philadelphia,PA, USA: Edwards,2005.
    [92] Stakgold I. Green’s Function and Boundary Value Problems. New York, USA: John WileySons,1979.
    [93] Ljung L. System Identification: Theory for Users, Second Edition. Upper Saddle River, NJ,USA: Prentice Hall PTR,1999.
    [94] Trufn K, Poinsot T. Comparison and Extension of Methods for Acoustic Identification ofBurners. Combustion and Flame,2005,142:388–400.
    [95] Tyagi M, Chakravarthy S R, Sujith R I. Unsteady Combustion Response of a Ducted Non-premixed Flame and Acoustic Coupling. Combustion Theory and Modelling,2007,11:205–226.
    [96] Cumpsty N A, Marble F E. The Interaction of Entropy Fluctuations with Turbine Blade Rows;A Mechanism of Turbojet Engine Noise. Proceedings of The Royal Society, Series A,1977,357:323–344.
    [97] Fleifil M, Annaswamy A M, Ghoniem A F. Response of a Laminar Premixed Flame to FlowOscillations: A Kinematic Model and Thermoacoustic Instability Results. Combustion andFlame,1996,106:487–510.
    [98] Schuller T, Durox D, Candel S. A Unified Model for the Prediction of Laminar Flame TransferFunctions: Comparisons Between Conical and V-flame Dynamics. Combustion and Flame,2003,134:21–34.
    [99] Schuller T, Ducruix S, Durox D, et al. Modeling Tools for the Prediction of Premixed FlameTransfer Functions. Proceedings of Combustion Institute,2002,29:107–113.
    [100] Singh K K, Frankel S H, Gore J P. Efects of Combustion on the Sound Pressure Generated byCircular Jet Flows. AIAA Journal,2003,41:319–321.
    [101] Ohiwa N, Tanaka K, Yamaguchi S. Noise Characteristics of Turbulent Difusion Flames withCoherent Structure. Combustion Science and Technology,1993,90:61–78.
    [102] Lighthill M J. On Sound Generated Aerodynamically. I. General Theory. Proceedings of TheRoyal Society, Series A,1952,211:564–587.
    [103] Lighthill M J. On sound generated aerodynamically. II. Turbulence as a Source of Sound.Proceedings of The Royal Society, Series A,1954,222:1–34.
    [104] Mizobuchi Y, Tachibana S, Shinio J, et al. A Numerical Analysis on Structure of TurbulentHydrogen Jet Lifted Flame. Proceedings of Combustion Institute,2002,29:2009–2015.
    [105] Mizobuchi Y, Shinio J, Ogawa S, et al. A Numerical Study on the Formation of DifusionFlame Islands in a Turbulent Hydrogen Jet Lifted Flame. Proceedings of Combustion Institute,2004,30:611–619.
    [106] Westbrook C K. Hydrogen Oxidation Kinetics in Gaseous Detonations. Combustion Scienceand Technology,1982,29:67–81.
    [107] Cheng T, Wehrmeyer J A, Pitz R W. Simultaneous Temperature and Multispecies Measurementin a Lifted Hydrogen Difusion Flame. Combustion and Flame,1992,91:323–345.
    [108] Cheng T, Wehrmeyer J A, Pitz R W. Conditional Analysis of Lifted Hydrogen Jet Difu-sion Flame Experimental Data and Comparison to Laminar Flame Solutions. Combustion andFlame,2007,150:340–354.
    [109] Priestly M B. Spectral Analysis and Time Series. London, UK: Academic Press,1981.
    [110] Bilger R W. in: P.A.Libby, F.A.Williams Eds: Turbulent Reacting Flows. New York, USA:Springer-Verlag,1980.
    [111] CH4/H2/N2Jet Flames, International Workshop on Measurement and Com-putation of Turbulent Nonpremixed Flames. Sandia National Laboratories,http://www.sandia.gov/TNF/DataArch/DLRflames.html..
    [112] Meier W, Barlow R S, Chen Y L, et al. Raman/Rayleigh/LIF Measurements in a TurbulentCH4/H2/N2Jet Difusion Flame: Experimental Techniques and Turbulence-Chemistry Inter-action. Combustion and Flame,2000,123:326–343.
    [113] Boersma B J. Entrainment Boundary Conditions for Free Shear Flows. International Journalof Computational Fluid Dynamics,2000,13:357–363.
    [114] Thompson K W. Time Dependent Boundary Conditions for Hyperbolic Systems. Journal ofComputational Physics,1987,68:1–24.
    [115] Boersma B J, Brethouwer G, Nieuwstadt T M. A Numerical Investigation on the Efect ofthe Inflow Conditions on the Self-similar Region of a Round Jet. Physics of Fluids,1998,10:899–909.
    [116] Jiang X, Luo K H. Spatial Direct Numerical Simulation of the Large Vortical Structures inForced Plumes. Flow, Turbulence and Combustion,2000,64:43–69.
    [117] Poinsot T J, Lele S K. Boundary Conditions for Direct Simulations of Compressible ViscousFlows. Journal of Computational Physics,1992,101:104–129.
    [118] Cruz Garia M. MHI Project Quarterly Report VI. University of Cambridge..
    [119] Davidson P. Turbulence: An Introduction for Scientists and Engineers. Oxford, UK: OxfordUniversity Press,2004.
    [120] Hinze J. Turbulence. New York, USA: McGraw-Hill,1975.
    [121] Prandtl L. Investigation on Turbulent Flow. Zeitschrift fur angewandte Methematik undMechanik,1925,5:136.
    [122] Anonimus. FLUENT6.2User’s Guide. Fluent Inc.,2005.
    [123] Launder B, Spalding D. Lectures in Mathematical Models of Turbulence. London, UK: Aca-demic Press,1972.
    [124] Yakhot V, Orszag S. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journalof Scinetific Computing,1986,1:3–51.
    [125] Shih T, Liou W, Shabbir A, et al. A New k-[epsilon] Eddy Viscosity Model for High ReynoldsNumber Turbulent Flows. Computers and Fluids,1995,24:227–238.
    [126] Wilcox D. Turbulence Modelling for CFD. California, USA: DWC Industries,1998.
    [127] Pitsch H, Chen M, Peters N. Unsteady Flamelet Modelling of Turbulent Hydrogen-Air Difu-sion Flames. Twenty-Seventh International Symposium on Combustion,2000,123:358–374.
    [128] Cook A, Riley J, Kosaly G. A Laminar Flamelet Approach to Subgrid-Scale Chemistry inTurbulent Flows. Combustion and Flame,1997,109:332–341.
    [129] Haworth D, Drake M, Pope S, et al. The Importance of Timedipendent Flame Structuresin Stretched Laminar Flamelet Models for Turbulent Jet Difusion Flames. Twenty-SecondInternational Symposium on Combustion,1990.589–597.
    [130] Mauss F, Keller D, Peters N. A Lagrangian Simulation of Flamelet Extinction and Re-Ignitionin Turbulent Jet Difusion Flames,. Twenty-Second International Symposium on Combustion,1988.589–597.
    [131] Pitsch H. Unsteady Flamelet Modelling of Diferential Difusion in Turbulent Jet DifusionFlames. Combustion and Flame,1998.1057–1064.
    [132] Stow S, Dowling A, Hynes T. Reflection of Circumferential modes in a Chocked Nozzle.Journal of Fluid Mechanics,2002,467:215–239.
    [133] Lefebvre A. Atomization and Sprays. New York, USA: Hemisphere Publishing Co.,1989.
    [134] Ranga Dinesh K K J, Kirkpatrick K W, Malalasekera W. Identification and Analysis of In-stability in Non-premixed Swirling Flames Using LES. Combustion Theory and Modelling,2009,13:947–971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700