Pb~(2+)、Zn~(2+)在微波诱导磷石膏上的吸附机制及墙体材料制备试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是湿法生产磷酸工艺过程中产生的固体废弃物,其主要成分是CaSO4·2H2O。随着磷化工业的发展,磷石膏以每年15%的速率递增,大量堆存的磷石膏不仅占用了土地、污染了地表水,而且带来了更为严重的环境污染和安全隐患。因此,综合利用磷石膏、控制磷石膏产生的污染、以废治废,提高磷石膏的利用价值,创造良好的社会效益和环境效益就显得尤其重要。
     当前受关注较多的重金属离子主要有Pb2+、Zn2+等。当水体重金属污染已成为当今世界最严重的环境问题之一时,而如何科学有效地解决重金属对水体的污染已经成为当前环保工作者研究的热点之一。在节约型环保理念的基础上开发以废治废的吸附剂已成为当今的研究方向之一,磷石膏具有一定比表面积和吸附性能,因此可开发磷石膏可作为一种价格低廉,来源广泛,吸附效果较好的吸附剂,尤其在处理低浓度含铅(Pb)、锌(Zn)重金属废水方面具有十分广阔的应用前景。
     针对目前粉煤灰吸附类材料对重金属吸附处理成本高、易产生污泥、解吸过程复杂等缺点,将磷石膏应用于重金属污染物的处理,结合微波的运用,形成微波诱导改性磷石膏技术。本文系统深入地研究了微波诱导改性磷石膏处理Pb2+、Zn2+为代表的典型性重金属污染物的机理及制备墙体材料的的关键科学问题,主要开展了以下几个方面的工作。
     (1)微波诱导改性磷石膏的机理
     通过考察微波功率和时间对磷石膏的影响确定微波诱导改性磷石膏的最佳参数为微波频率2450MHz、微波功率950w、诱导时间12min,诱导改性后的磷石膏比表面积为5.572m2/g。
     (2) Pb2+、Zn2+为代表的典型重金属污染物在磷石膏上的吸附行为
     采用Box-Behnken模型响应曲面优化分析磷石膏吸附Pb2+、Zn2+,当ph=7,吸附剂量为0.7g/100mL,重金属离子浓度为50g/mL时,Pb2+、Zn2+的去除率依次为94%、82%,磷石膏对Pb2+、Zn2+的吸附量依次为8.0mg/g、6.1mg/g。
     微波诱导改性磷石膏对Pb2+.Zn2+的吸附平衡数据符合Langmuir和Freundlich吸附等温方程,但Freundlich方程能够更好地描述吸附等温线。在改性磷石膏对重金属离子吸附的初始阶段,Lagergren准一级动力学方程、Lagergren准二级动力学方程、Elovich方程、粒子内扩散模型均能很好地反映微波诱导改性磷石膏对Pb2+、Zn2+的吸附行为,而整个吸附过程则遵循Lagergren准二级动力学方程,其吸附过程是液膜扩散和粒子内扩散共同作用的结果。热力学研究表明,微波诱导改性后的磷石膏对Zn2+的吸附是吸热反应,对Pb2+的吸附为放热反应。
     (3)磷石膏基墙体材料制备研究
     通过考察磷石膏制备墙体材料的试验,探索了不同工艺配比对墙体材料抗压强度及抗折强度的影响,依据单因素试验、正交试验可以得出,各物料的最优配合比为磷石膏:磷渣:水泥:生石灰:减水剂:聚丙烯纤维=55%:25%:20%:4%:1%:1.2%,成型后采用室温自然养护,试件7d、28天的抗压强度达到10.19MPa、28.84MPa:7d.28天抗折强度达到2.12MPa、3.95MPa。试验最终制备的磷石膏基墙体材料产品性能符合《建筑石膏》(GB9776-2008)磷石膏产品的要求和《化学石膏制品》(HJ/T211-2005)的要求。
     综上所述,论文系统研究了微波诱导磷石膏处理以Pb2+、Zn2+为代表的典型性重金属污染物的机理及制备墙体材料的理论和工艺。为了优化试验工艺和条件,试验采用了Box-Behnken模型对微波诱导磷石膏吸附Pb2+、 Zn2+的去除率和平衡吸附量进行响应曲面优化分析,考察了吸附剂量、金属离子浓度、反应体系pH三个因子对响应值的影响显著性及三个因子的交互作用。并且对微波诱导磷石膏吸附Pb2+、Zn2+从静态吸附、动态吸附及热力学方面作了深入的研究。最终试验结果表明微波诱导改性磷石膏去除Pb2+、Zn2+是合理可行的,研究成果不仅开拓了磷石膏的综合利用方向,而且对磷石膏后续的研究具有一定的参考价值和指导作用。
Phosphogypsum (PG) is an acidic by-product produced in large quantities by the phosphate fertilizer industry during the "wet process" of phosphoric acid. PG's chemical composition is mainly maked up of CaSO4·2H2O. As the development of phosphate fertilizer industry is growing rapidly, large amounts of phosphogypsum have been produced up to now and it is increasing at a rate of15%per year. However, large amounts of phosphogypsum not only occupy the land, pollution of surface water, but also causes more serious environmental pollution and safety problems. Therefore, how to utilizated phosphogypsum, controlled the pollution problems, used waste to control waste will become very important. Only in this way, we can improve the value of phosphogypsum and create a good social and environmental effects. This is a general concerning today about the issue of heavy metal ions which are Pb2+and Zn2+Therefore, when the pollution caused by heavy metals has become one of the world's most serious environmental problems, how to solve the pollution caused by heavy metals has become the focus during the environmental protecters.
     Based on the concept of saving and environmental protection, when this concept was accepted by most people. The phosphogypsum have more surface and large adsorption capacity, it apparently that this character are accord with this concept. Insomuch as phosphogypsum have nominal price, easy availability and good adsorption capacity, it will have a place with broad prospects in application, especially in dealing with low concentrations of heavy metal wastewater which containing lead(Pb) and zinc(Zn). The disadvantages of fly ash adsorption heavy metal as follow:the poor adsorption effect and the cost of processing, for that we use the phosphogypsum to dispose heavy metal pollutants, combined with the apply of the microwave field, forming a microwave to enhanced the function of phosphogypsum. The paper are researched the mechanism about microwave enhanced the function of phosphogypsum to adsorption typical heavy metal pollutants and production the building materials in depth. Some meaningful conclusions are obtained.
     (1) Mechanism about Microwave enhanced the function of phosphogypsum
     When used the microwave to enhanced the phosphogypsum, power and time are studied. The optimal parameter are as follows:frequency is2450MHz), power is950w, time is12min), specific surface area is5.572m2/g
     (2) Behaviors about typical heavy metal pollutants on the phosphogypsum
     We take the model of Box-Behnken to analysising Response surface about the phosphogypsum to remove heavy metal pollutants. The result indicated that when ph is7,adsorbent is0.7g/100mL, heavy metal concentration is50g/mL, the removal of Pb2+and Zn2+are94%,82%, independent. The capacity of Pb2+and Zn2+is8.0mg/g,6.1mg/g, independent.
     The adsorption data fit well both in the Langmuir and the Freundlich model, however the results show that Freundlich equation is more applicable than Langmuir equation. The Lagergren pseudo-first-order kinetics, Lagergren pseudo-second-order kinetics, Elovich equation and intraparticle diffusion model was studied in the process of adsorption.The results reveal that all the four equations are found applicable in initial stage of adsorption. The absorption of Pb2+and Zn2+on microwave-preconditioned PG is accord with pseudo-second-order reaction kinetics in the entire stage. The absorption characteristics of metal ions on microwave-preconditioned phosphogypsum was controlled by both film diffusion and particle diffusion. Thermodynamic analysis show that the process of microwave-preconditioned phosphogypsum adsorbing Zn2+are endothermic reaction, but for adsorbing Pb2+is exothermic reaction.
     (3) The research of building material with phogypsum.
     According as the research of building material with PG, explored the difference ratio of processes would have affects on the building material of compressive strength and flexural strength. Depending on the single factor and orthogonal experiment, it can be concluded that the optimum mixture ratio of each material was as follow:phosphogypsum(55%), phosphorus slag(25%), cement(20%), lime(4%), water reducer(1%), polypropylene fibe(1.2%). Through the nature conservation at room temperature, the specimen of compressive strength at the7d,28day are reach10.19MPa,28.84Mpa,respectively; flexural strength at the7d,28day are2.12MPa,3.95MPa,respectively; the finally product meets the requirements of "building gypsum "(GB9776-2008), and "chemical gypsum products"(HJ/T211-2005).
     To the sum up, the mechanism about microwave induced the phosphogypsum and the theory, technology of building material with phogypsum are studied in systematicness.In order to achieve the optimum parameter,we take the model of Box-Behnken to analysising response surface about the removal and adsorption capacity which was used phosphogypsum to adsorption the Pb(Ⅱ) and Zn(Ⅱ). Investigation the three factors have influence on response value whether or not significantly and interaction of three factors which are the adsobent of dosage, concentration, reaction system of pH. Moreover,it take deep-going research about microwave induced phosphorus gypsum to adsorption Pb2+, Zn2+from the static adsorption, dynamic adsorption and thermodynamic aspects. The finally results showed that microwave induced modification of phosphogypsum removal of Pb2+, Zn2+is reasonable and feasible, not only opened up the comprehensive direction of utilizatied phosphogypsum, and also for subsequent research has a certain reference value and guiding role.
引文
[1]陈楷翰,陈莎莎,林建,等.FeS/高岭土片层复合材料的合成及对重金属废水反应性能研究[J].工业水处理.2009,29(4):57-60.
    [2]陈培榕,吴耀国,刘保超.壳聚糖吸附处理低浓度重金属废水[J].工业水处理.2009,29(9):6-10.
    [3]曹亚锋,王平,罗文连,等.硅藻土的改性以及处理重金属废水的研究进展[J].环境科学与管理.2010,35(7):85-88.
    [4]胡大为.含水石蜡相变材料制备及其微囊化与复合建材性能[D].华南理工大学,2007.
    [5]隋艳明.合成沸石对阳离子型污染物的去除特性及机理研究[D].上海交通大学,2009.
    [6]张方.壳聚糖-铝氧化物复合材料对重金属离子的吸附动力学及热力学研究[D].河北大学,2010.
    [7]李听,何少华,司建伟,等.膨润土吸附法处理重金属废水的影响因素和规律[J].矿业工程.2010,08(5):51-53.
    [8]吕志江.改性粉煤灰去除废水中重金属离子的研究[D].湖南大学,2008.
    [9]肖震.粉煤灰的表面改性及其去除水中氨氮的研究[D].苏州科技学院,2008.
    [10]Jose-Maria Abril, Rafael Garcia-Tenorio,Santiago M. Enamorado,et al. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain:226Ra,238U and Cd contents in soils and tomato fruit.Science of The Total Environment[J].2008, 403(1-3):80-88.
    [11]Jose-Maria Abril,Rafael Garcia-Tenorio,Guillermo Manjon.Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra,238U,210Po concentrations and 222Rn exhalation rate.Journal of Hazardous Materials[J].2009,164(2-3):790-797.
    [12]Lina Al Attar, Mohammad Al-Oudat, Salwa Kanakri, et al. Radiological impacts of phosphogypsum. Journal of Environmental Management[J]. 2011,92(9):2151-2158.
    [13]Samia Azabou, Tahar Mechichi,Sami Sayadi. Sulfate reduction from phosphogypsum using a mixed culture of sulfate-reducing bacteria. International Biodeterioration & Biodegradation[J].2005,56(4):236-242.
    [14]Oktay Baykara,Sule Karatepe,Mahmut Dogru.Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey.Radiation Measurements[J].2011,46(1):153-158.
    [15]Valentina G. Caccia,Frank J. Millero.Distribution of yttrium and rare earths in Florida Bay sediments.Marine Chemistry[J].2007,104(3-4): 171-185.
    [16]Gladis Camarini, Jose Antonio De Milito. Gypsum hemihydrate-cement blends to improve renderings durability. Construction and Building Materials[J].2011,25(11):4121-4125.
    [17]Nurhayat Degirmenci.Utilization of phosphogypsum as raw and calcined material in manufacturing of building products.Construction and Building Materials[J].2008,22(8):1857-1862.
    [18]刘梦雪.利用粉煤灰和火山浮石改性磷石膏性能研究[D].昆明理工大学,2010.
    [19]付廷栋.磷石膏中微量组份对水泥熟料烧制及性能影响[D].昆明理工大学,2010.
    [20]唐霜露.磷石膏介电性及其微波热分解模拟仿真研究[D].昆明理工大学,2010.
    [21]胡旭东.微波技术在云南磷石膏净化工艺过程中的应用研究[D].昆明理工大学,2006.
    [22]陈勤芹.微波对晶体矿物质表面性能的影响[D].四川大学,2007.
    [23]何婵.粉煤灰超细改性及吸附性能研究[D].西安科技大学,2008.
    [24]Yi Fang,Della M. Roy,Rustum Roy.Microwave clinkering of ordinary and colored portland cements. Cement and Concrete Research,[J].1996, 26(1):41-47.
    [25]Eric Bescher,Matthew Sambol,Edward K. Rice,et al.Determination of water-to-cement ratio in freshly mixed rapid-setting calcium sulfoaluminate concrete using 2.45 GHz microwave radiation. Cement and Concrete Research[J].2004,34(5):807-812.
    [26]Shizong Longa,Jianmiao Dongb,Caixia Yana.Microwave promoted clinkering of sulfoaluminate cement.Cement and Concrete Research[J]. 2002,32:1653-1656.
    [27]Haoxuan Li,Dinesh K. Agrawal,Jiping Cheng,et al.Microwave sintering of sulphoaluminate cement with utility wastes.Cement and Concrete Research[J].2001,31:1257-1261.
    [28]Shizong Long, Caixia Yan,Jianmiao Dong.Microwave-promoted burning of Portland cement clinker. Cement and Concrete Research[J]. 2002,32:17-21.
    [29]Balkaya N, Cesur H. Adsorption of cadmium from aqueous solution by phosphogypsum[J]. Chemical Engineering Journal,2008,140(5): 247-254.
    [30]Balkaya N, Cesur H. Zinc removal from aqueous solution using an industrial by-product phosphogypsum[J]. Chemical Engineering Journal, 2007,13(1):203-208.
    [31]Balkaya N, Cesur H, Zinc adsorption kinetics by phosphogypsum[J]. Journal of Scientific & Industrial Research,2008,67(6):254-256.
    [32]Coruh S. Ergun O N. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste[J].Journal of Hazardous Materials,2010,17(3):468-473.
    [33]Xuejiang Wang,Xia Liang,Yin Wang,et al.Adsorption of Copper (Ⅱ) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation.Desalination[J].2011,278(1-3):231-237.
    [34]X. J. Wang, X. M. Xu,X. Liang,et al.Adsorption of copper(II) onto sewage sludge-derived materials via microwave irradiation. Journal of Hazardous Materials[J].2011,192(3):1226-1233.
    [35]Zhijun He, Yonglong Jin,Junhong Zhang,et al.Disposal of low concentration fume with solid waste modified by microwave.Journal of Environmental Sciences[J].2011,23:S149-S152.
    [36]Juan Jiang, XiaoQian Ma. Experimental research of microwave pyrolysis about paper mill sludge. Applied Thermal Engineering[J].2011, 31(17-18):3897-3903.
    [37]Qunhui Lin,Guanyi Chen,Yongkai Liu.Scale-up of microwave heating process for the production of bio-oil from sewage sludge.Journal of Analytical and Applied Pyrolysis[J].2012,94:114-119.
    [38]K. Y. Foo, B. H. Hameed.Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: Influence of operational parameters.Bioresource Technology[J].2012, 103(1):398-404.
    [39]Mridul Garg, A. K. Minocha,Neeraj Jain.Environment hazard mitigation of waste gypsum and chalk:Use in construction materials.Construction and Building Materials[J].2011,25(2):944-949.
    [40]Yun Huang, ZongShou Lin.Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement.Construction and Building Materials[J].2010,24(7):1296-1301.
    [41]Maria Dolores Hurtado,Santiago M. Enamorado,Luis Andreu,et al.Drain flow and related salt losses as affected by phosphogypsum amendment in reclaimed marsh soils from SW Spain.Geoderma[J].2011,161(1-2):43-49.
    [42]T. Kuryatnyk,C. Angulski da Luz,J. Ambroise,et al. Valorization of phosphogypsum as hydraulic binder.Journal of Hazardous Materials[J]. 2008,160(2-3):681-687.
    [43]Yang Min, Qian Jueshi,Pang Ying.Activation of fly ash-lime systems using calcined phosphogypsum.Construction and Building Materials[J]. 2008,22(5):1004-1008.
    [44]K. J. Mun, W. K. Hyoung,C. W. Lee,et al.Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Construction and Building Materials[J].2007,21 (6):1342-1350.
    [45]Marinkovic SR, Popov SR, Kostic-Pulek AB, Trifunovic PD, Djinovic JM. The possibilitie soffly ash and fgd gypsum utilization in manufacturing of building materials. Tile BrickInt2003;19(6):398-402.
    [46]KumarS. A perspective study on the fly ash-lime-gypsum bricks and hollow blocks forcost housing development. ConstrBuild Mater[J]. 2002,16(8):519-25.
    [47]KumarS.Fly ash-lime-phosphogypsum hollow blocks for walls and partitions. BuildEnviron [J].2003,38(2):291-5.
    [48]彭志辉.磷石膏中杂质影响机理及共建材资源化研究[D].重庆建筑大学重庆大学,2000.
    [49]彭志辉,彭家惠,张建新,等.二水磷石膏粉煤灰复合胶结材研究[J].粉煤灰综合利用.2001(1):3-6.
    [50]刘代俊,刘玉琨,钟本和,等.高强度磷石膏砌块的研制[J].磷肥与复肥.2004,19(1):64-65.
    [51]赵建华,杨玉发,王伟.磷石膏制耐水型石膏砌块的研究与应用[J].硫磷设计与粉体工程.2008(1):15-18.
    [52]石宏,张健,石伟.磷石膏空心隔墙板的研究[J].砖瓦.2007(8):59-60.
    [53]俞波,陈吉春,薛爽.非煅烧磷石膏砌块添加剂试验研究[J].砖瓦世界.2007(10):38-41.
    [54]Wei Zuo,Yu Tian,Nanqi Ren.The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.Waste Management[J].2011,31 (6):1321-1326.
    [55]张楠,孙长虹,季民.利用响应曲面法研究蓖齿眼子菜克藻效应的环境因子[J].环境污染与防治.2011,33(1):17-19,26.
    [56]李长龙,彭金辉,张利波,等.响应曲面法优化硫酸铵微波干燥工艺[J].化学工程.2011,39(3):8-12.
    [57]张正勇.载醋酸锌废催化剂资源化处置关键技术及理论研究[D].昆明理工大学,2010.
    [58]LIU Bing-guo, PENG Jin-hui,WAN Run-dong. Optimization of preparing V205 by calcinations from ammonium metavanadate using response surface methodology. Trans.Nonferrous Met.Soc.China[J].2011,21: 673-678.
    [59]Xin-jiang Hu, Jing-song Wang, Yun-guo Liu,et al.Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics.Journal of Hazardous Materials[J].2011,185(1):306-314.
    [60]Dong Nguyen Thanh,Mandeep Singh,Pavel Ulbrich,et al.As(V) removal from aqueous media using α-MnO2 nanorods-impregnated laterite composite adsorbents.Materials Research Bulletin[J].2012,47(1):42-50.
    [61]Rajesh Singh,Rout Chadetrik,Rajender Kumar,et al.Biosorption optimization of lead(Ⅱ), cadmium(Ⅱ) and copper(Ⅱ) using response surface methodology and applicability in isotherms and thermodynamics modeling.Journal of Hazardous Materials[J].2010,174(1-3):623-634.
    [62]Xueling Du,Qipeng Yuan,Ye Li.Equilibrium, thermodynamics and breakthrough studies for adsorption of solanesol onto macroporous resins.Chemical Engineering and Processing:Process Intensification[J].2008,47(8):1420-1427.
    [63]Przemyslaw Kosobucki, Magdalena Kruk, Boguslaw Buszewski. Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresource Technology[J].2008,99(13):5972-5976.
    [64]Monika Jain,V. K. Garg,K. Kadirvelu.Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus:Optimization using Response Surface Methodology.Bioresource Technology[J].2011,102(2):600-605.
    [65]Rajender Kumar,Rajesh Singh,Naresh Kumar,et al.Response surface methodology approach for optimization of biosorption process for removal of Cr (Ⅵ), Ni (Ⅱ) and Zn (Ⅱ) ions by immobilized bacterial biomass sp. Bacillus brevis.Chemical Engineering Journal[J].2009, 146(3):401-407.
    [66]张再利,况群,贾晓珊.花生壳吸附Pb2+、Cu2+、Cr3+、Cd2+、Ni2+ 的动力学和热力学研究[J].生态环境学报.2010,19(12):2973-2977.
    [67]孙小莉,曾庆轩,冯长根.多胺型阴离子交换纤维吸附铬(Ⅵ)的动力学[J].物理化学学报.2009,25(10):1951-1957.
    [68]王春峰,李健生,王连军,等.粉煤灰合成NaA型沸石对重金属离子的吸附动力学[J].中国环境科学.2009,29(1):36-41.
    [69]姚瑞华,孟范平,张龙军,等.负载金属镧的壳聚糖对氟离子的吸附动力学[J].离子交换与吸附.2009,25(4):319-326.
    [70]张东,张文杰,关欣,等.负载型纳米钛酸锶钡对水中Cd2+吸附行为研究[J].光谱学与光谱分析.2009,29(3):824-828.
    [71]苏峰,罗胜联,曾光明,等.海带对镉的吸附动力学与热力学研究[J].环境工程学报.2009,3(5):857-860.
    [72]徐慧,仵彦卿,刘预.新型壳聚糖用于地下水中Pb2+的吸附性能研究[J].装备环境工程.2010,07(5):42-45,64.
    [73]柏静儒,王擎,秦宏,等.油页岩飞灰对重金属离子的吸附动力学及热力学[J].燃料化学学报.2011,39(5):378-384.
    [74]王春峰,李健生,王连军,等.由粉煤灰合成单一的沸石及其对Cr(Ⅵ)的吸附研究[J].环境工程学报.2008,2(8):1121-1126.
    [75]Mohan S, Gandhimathi R.Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent[J]. Journal of Hazardous Materials 2009,169(1-3):351-359.
    [76]Wang S, Terdkiatburana T, Tade MO. Single and co-adsorption of heavy metals and humic acid on fly ash[J]. Separation and Purification Technology,2008,58(3):353-358.
    [77]Balsamo M, Di Natale F, Erto A, et, al. Arsenate removal from synthetic wastewater by adsorption onto fly ash[J]. Desalination 2010,263(1-3): 58-63.
    [78]Du Xue-ling, Yuan Qi-peng, Li Ye. Equilibrium, thermodynamics and breakthrough studies for adsorption of solanesol onto macroporous resins[J]. Chemical Engineering and Processing:Process Intensification, 2008,47(2):1420-1427.
    [79]HSU Ting-Chu, YU Chung-Chin, Yeh Chin-Ming. Adsorption of Cu2+ from water using raw and modified coal fly ashes[J]. Fuel,2008, 87(1):1355-1359.
    [80]Papandreou A D, Stournaras C J, Panias D, Paspaliaris I. Adsorption of Pb(Ⅱ), Zn(Ⅱ) and Cr(Ⅲ) on coal fly ash porous pellets[J]. Minerals Engineering,2011,24(13):1495-1501.
    [81]Nascimento M, Soares PSM, Souza VPd. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method[J]. Fuel 2009,88(9):1714-1719.
    [82]万红.复合相变墙体材料在建筑节能中的应用研究[D].北京工业大学,2006.
    [83]袁伟.利用磷石膏制备墙体材料可行性研究[D].西南科技大学,2009.
    [84]傅忠益.磷石膏制轻质保温墙体材料的研究[D].武汉理工大学,2007.
    [85]Weiguo Shen,Mingkai Zhou,Wei Ma,et al.Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material.Journal of Hazardous Materials[J].2009,164(1): 99-104.
    [86]Weiguo Shen, Mingkai Zhou.Qinglin Zhao.Study on lime-fly ash-phosphogypsum binder.Construction and Building Materials[J]. 2007,21(7):1480-1485.
    [87]Manjit Singh.Role of phosphogypsum impurities on strength and microstructure of selenite plaster.Construction and Building Materials[J]. 2005,19(6):480-486.
    [88]Hanan Tayibi,Mohamed Choura,Felix A. Lopez,et al.Environmental impact and management of phosphogypsum.Journal of Environmental Management[J].2009,90(8):2377-2386.
    [89]Theophilus K. Udeigwe, Peter N. Eze, Jasper M. Teboh,et al. Application, chemistry, and environmental implications of contaminantimmobilization amendments on agricultural soil and water quality. Environment International[J].2011,37(1):258-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700