油页岩灰渣改性制备吸附剂及其吸附特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩作为一种重要的补充能源资源以其巨大的储量、丰富的综合利用层次,引起了全世界的关注。油页岩含油率低、灰分含量高,经过循环流化床燃烧后会生成大量的底灰和飞灰。油页岩灰渣的矿物成分含量很高,存在微量的有毒有害重金属,如果只是单纯利用油页岩后,将油页岩灰渣作为废物丢弃,不仅对地球环境造成严重影响,而其还是一种对资源的浪费。
     本文以吉林桦甸地区热电厂油页岩灰渣为研究对象,对其物理化学特性,合成NaX型沸石吸附剂的工艺操作参数,及其对模拟含镍废水的吸附特性进行了全面系统的研究,主要内容如下:
     通过XRD,XRF,SEM,BET比表面积与BJH孔径分布等测试方法对其物理化学特性进行测试与表征,系统考察了其化学组成,矿物组成,表面特征,BET比表面积,BJH孔径分布等特性参数,为其合成沸石吸附剂提供基础。
     探索以油页岩灰渣为原料,采用碱熔融水热合成法制备NaX沸石吸附剂,系统考察了体系碱度,晶化时间,晶化温度对合成沸石的影响因素,从而确定了制备NaX沸石吸附剂的最佳工艺参数。通过对制备NaX型沸石吸附剂物理化学特性进行测试,研究结果表明制备的沸石吸附剂具有较强的吸附性能,且该制备方法工艺简单,原料丰富,制备成本低。
     以油页岩灰渣,制备沸石吸附剂为研究对象,采用静态吸附法研究了其对模拟含镍废水的吸附特性。试验研究了投加量、pH值、温度、离子初始浓吸附时间等因素对吸附特性的影响,对吸附动力学和吸附热力学进行了分析,并用Langmuir和Freundlich吸附等温线对吸附进行了分析。研究结果表明,油页岩灰渣和沸石吸附剂对镍离子(Ni~(2+))吸附的拟合曲线都能很好地与吸附动力学一级反应方程、吸附动力学准二级反应方程和Elovich方程相吻合。吸附是一个非自发进行的过程,Langmuir型和Freundlich型吸附等温线能较好地描述其对模拟含镍废水的吸附性能。
At present, there are increasing more and more concerns about the utilization of oil shale as an alternative source of energy due to the rich reserves. A large quantity of oil shale ash is generated annually in the combustion of oil shale for electricity generation because of oil shale with low-oil content and high-ash content. While oil shale is only utilized to produce electricity, a large quantity of oil shale ash is dumped in landfills as waste and not proposal. It is not only a waste of resource but also it may cause a serious environmental problem. This is due to that oil shale ash is potentially hazardous heavy pollutants containing a variety of heavy metal trace elements and various mineral.
     Based on oil shale ash from the thermal power plant located in Huadian of Jinlin province, China, the physical and chemistry characteristics of oil, the key parameters of conversion of oil shale ash into NaX zeolite and the adsorption characteristics of Ni~(2+) from wastewater by oil shale ash and zeolite were studied systematically.
     The physical and chemistry characteristics of oil shale ash such as the chemical composition, the mineral composition, BET specific surface area, BJH cumulative pore area, BJH cumulative pore volume were obtained by a series of testing methods such as XRD, XRF, SEM, BET specific surface area and BJH pore distribution, and the testing results were obtained to provide a basis of conversion of oil shale into zeolite.
     An alkali fusion and hydrothermal synthesis method was studied to converse of oil shale ash into NaX zeolite. The parameters of synthesis zeolite such as H_2O/Na_2O, Na_2O/ SiO_2 molar ration, synthesis time and synthesis temperature on the process of synthesis of zeolite were discussed and the key parameters were obtained and optimized to achieve the best synthetical conditions. The physical and chemistry characteristics of zeolite were tested and it was found that the synthesis zeolite was a promising and efficient adsorbent with high adsorption capacity.
     The adsorption characteristics of Ni~(2+) from wastewater by oil shale ash and zeolite were studied by a series of batch adsorption experiments. Effects of various parameters such adsorbent dose, pH, temperature, initial concentration, adsorption time were investigated, and the theoretical analysis of the adsorption kinetics, adsorption thermodynamics, Langmuir and Freundlich adsorption isotherm were utilized to fit the process of adsorption. It was showed that the process of adsorption was fitted to the Pseudo frist order kinetics model, Pseudo second order kinetics model and Elovich kinetics model, and the process of adsorption was a non-spontaneous process, and both the Langmuir model and Freundlich model were utilized to fit the process of adsorption with R~2 >0.98 in all cases.
引文
[1]施国泉.一种现实的石油替代能源-油页岩.吉林大学学报[J],2006,36(6):888-891.
    [2]张德义.关于中国能源形势的思考.当代石油石化[J],2008,16(2):1-8.
    [3]杨鸿玺.国际能源形势与中国的发展进程.利平与发展[J],2009,104(2):28-32.
    [4]周喜安.新形势下我国能源发展格局.中国党政干部论坛[J],2009,(5):23-25.
    [5]钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势.吉林大学学报(地球科学版)[J],2006,36(6):877-887.
    [6]Jiang X.M.,Han X.X.,Cui Z.G.Progress and recent utilization trends in combustion of Chinese oil shale.Progress in Energy and Combustion Science[J],2007,33(6):552-579.
    [7]柳蓉,刘招君.国内外油页岩资源现状及综合开发潜力分析.吉林大学学报[J],2006.36(6):869-876.
    [8]Dyni.J.R.Geology and resources of some world oil-shale de-posits.Oil Shale[J],2003,20(3):193-252.
    [9]K Brendow.Global oil shale issues and perspectives.Oil Shale[J],2003,20(1):81-92.
    [10]姜秀民,韩向欣,崔志刚.油页岩综合利用技术的研究.自然科学进[J],2005,15(11):1342-1345.
    [11]刘招君,柳蓉.中国油页岩特征及开发利用前景分析.地学前缘[J],2005,12(3):315-323.
    [12]刘招君,董清水,叶松青.油页岩的综合开发与利用.吉林大学学报(地球科学版)[J],2006,36(6):869-876.
    [13]游君君,叶松青,刘招君.油页岩的综合开发与利用.世界地质[J],2004,23(3):261-265.
    [14]陈洁渝,严春杰,李子冲.油页岩渣的综合利J{j.矿产保护与利用[J],2006,6:41-45.
    [15]柳蓉,刘招君,国内外油页岩资源现状及综合开发潜力分析.吉林大学学报(地球科学版)[J],2006,36(6):892-898.
    [16]张袄民,关珺,何德民.几种典型的油页岩干馏技术.吉林大学学报(地球科学版)[J],2006,36(6):1019-1026.
    [17]刘志逊,高健,赵寒冬.国内油页岩干馏技术现状与发展趋势.煤炭加工与综合利用[J],2007,1:45-49.
    [18]李术元,岳长涛,王剑秋等.世界油页岩开发利用近况.中外能源[J].2009,14(2):16-24.
    [19]何永光,宋岩.油页岩的综合利用.煤炭加工与综合利用[J],2005,1(1):53-56.
    [20]Aunela,Tapola L.A.,Frandsen F.J.,Hasanen E.K.Trace metal emissions from the Estonian oil shale fired power plant.Fuel Processing Yechnology[J],1998,57(1):1-24.
    [21]张丽萍,曾荣树,徐文东.抚顺西舍场油页岩的淋滤行为及其对周围水体的影响.矿物岩石地球化学通报[J],2007,26(2):160-163.
    [22]赵剑剑,王春华.油页岩发电利用研究.广东电力[J],2008,21(9):20-22.
    [23]Al-Qodah Z.Adsorption of dyes using shale oil ash.Water Research[J],2000,34(12):4295-4303.
    [24]Chan Sammy,Yin Nin Ji Xihuang.Water sorptivity and chloride diffusivity of oil shale ash concrete.Construction and Building Materials[J],1998,12(4):177-183.
    [25]Karagoz Ozturk,Ardeniz,Oguz Huseyin.The formation of alite phase by using phosphogypsum and oil shale.Cement and Concrete Research[J],2004,34(11):2079-2082.
    [26]Ozturk A.,Suyadal Y.,Oguz H.The formation of belite phase by using phosphogypsum and oil shale.Cement and Concrete Research[J],2000,30(6):967-971.
    [27]陈立军,黄旭光.利用油母页岩渣作水泥混合材的试验分析.吉林建筑工程学院学报[J].2001,1:19-22.
    [28]牟善彬,孙振亚.烧页岩的水化活性及在水泥混合材中的应用机理.非金属矿[J],2002,25(1):29-30.
    [29]吴英良.油页岩飞灰及煤矸石制备少熟料胶凝材料的研究(博士学位论文)[M].北京:北京科技大学土木与环境工程学院,2007.
    [30]习会峰,穆建春,李胜强等.油页岩渣替代粘土制水泥的研究及应用.茂名学院学报[J],2009,19(1):84-86.
    [31]Constantin Freidin.Influence of variability of oil shale fly ash on compressive strength of cementless building compounds.Construction and Building Materials[J],2005,19(2):127-133.
    [32]钱家麟,王剑秋,李术元.世界油页岩开发利用动态.中外能源[J],2008,(1):11-15.
    [33]许绍群,杨时元.干法高强页岩陶粒研制与生产.建筑砌块与砌块建筑[J],2003,(2):25-27.
    [34]郑维宪,邢明,吴卫.页岩砖的性能、特点及施工质量控制.施工技术[J],2006,35(12):267-269.
    [35]Shawabkeh Reyad.Copper and zinc sorption by treated oil shale ash.Separation Purification Technology[J],2004,40:251-257.
    [36]Shawabkeh Reyad.Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater.Fuel[J],2004,83(7-8):981-985.
    [37]Fernandes Machado,Nadia Regina,Camargo.Denise Maria Malachini Miotto.Synthesis of Na-A and -X zeolites from oil shale ash.Fuel[J],2005,84(18):2289-2294.
    [38]Kaasik Ago.Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.Water Research[J],2008,42(4-5):1315-1323.
    [39]Somerset Vernon,Leslie Petrik,Emmanuel Iwuoha.Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3:The removal of mercury and lead ions from wastewater.Journal of Environmental Management[J],2008,87(1):125-131.
    [40]徐如人,庞文琴.分子筛与多孔材料化学[D].北京:科学出版社,2004.
    [41]中国科学院大连化学物理研究所分子筛组.沸石分子筛[D].北京:科学出版社,1978.
    [42]王艳秋.造粒赤泥吸附剂对重金属离子的吸附作用研究(硕士学位论文)[M].北京:中国地质大学,2007.
    [43] Guo L., Wu Z.S. Mechanism of methane's adsorption on nanometer active carbon at supercritical state. Activate Physics and Chemistry Science[J], 2008, 24(5):737-742.
    [44] Nguyen C., Do D. D. Adsorption of supercritical gases in porous media:determination of micropore size distribution. Journal of Physics and Chemistry[J], 1999, 103:6900-6908.
    [45] Sakurovs R., Day S., Weir S. Application of a Modified Dubinin-Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions. Energy Fuels [J], 2007, (21): 992-997.
    [46] Zh6u L.,Zhou Y.P. ,Li M.Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon. Langmuir[J], 2000,16: 5955-5959.
    [47] Chang H. L. ,Shih W. H. A General Method for the Conversion of Fly Ash into Zeolites as Exehangers for Cesium. Engineering chemistry research[J], 1998, 37(1):71-78.
    [48] Goncharuk V.V., Kucheruk D. D., Kochkodan V. M. Removal of organic substances from aqueous solutions by reagent enhanced reverse osmosis. Desalination[J], 2002, 143:45-51.
    [49] Atkins P.W. , Physical Chemistry. Oxford University Press, London[J], 1990, 884-890.
    [50] I. J. Alinnor. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel[J], 2007, 86 (5): 853-857.
    [51] E. Pehlivan, S. Cetin, B. H. Yanik. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Journal of Hazardous Material[J], 2006, 135(31):193-199.
    [52] K. K. Panday, G. Prasad, V. N. Singh. Copper (II) removal from aqueous solutions by fly ash. Waters[J], 1985, 19(7):69-73.
    [53] Ho Y. S., McKay G. Pseudo-second order model for sorption processe. Biochemistry [J], 1999, 34:451-465.
    [54] Ho Y. S. , McKay G. The kinetics of sorption of divalent metal sphagnum moss peat. Water Research[J], 2000, 34:735-742.
    [55] Yurdakoc M. ,Scki Y,Yuedakoc SK.Kinetic and thermodynamic boron removal by Siral 5, Siral 40, and Srial 80. J. Colloid Interface Sci. [J], 440-446.
    [56] Wu F.C, Tseng R. L, Juang R. S. Kinetic modeling of liquid-phase ads reactive dyes and metal ions on chitosan. Water Research[J], 2001, 35:613-618.
    [57] C. H. Weng, C. P. Huang. Adsorption characteristics of Zn(II) from dilute aqueoussolution by fly ash. Colloids and surfaces[J], 2004, 247:137-143.
    [58] M. Rao, A. V. Parwate, A. G. Bhole. Removal of Cr~(6-) and Ni~(2-) from aqueous solution using bagasse and fly ash. Waste Management[J], 2002, 22(7):821-830.
    [59] M. Z. Fang, S. Y. Sun, H. L. Chen. Study on adsorption of electroplating wastewater by fly ash. Materials Protect ion[J],2007,2007(40):8.
    [60] T. C. Hsu, C. C. Yu, C. M. Yeh. Adsorption of Cu~(2+) from water using raw and modified coal fly ash. Fuel[J], 2008,87(7):1355-1359.
    [61] V. C. Srivastava, I. D. Mall, I. M. Mishra. Equilibrium modeling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal [J], 2006, 117(1): 79-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700