喀斯特地区顶坛花椒林地生态需水过程及造林技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于土壤-植物-大气连续体水分平衡原理,以喀斯特区顶坛花椒林地为研究对象,通过对喀斯特区土壤物理性质、小气候环境、自然条件下土壤水分动态变化规律、控制条件下土壤水分的消耗过程、林木的蒸腾耗水量的规律的揭示和评价、林地的生态需水量、林地的生态亏缺水量,并提高造林成活率的保墒配套技术措施。
     研究结果表明:喀斯特环境高度异质性,小生境小气候环境差异较大。一天中,土壤含水量随土层增加而增加,最终趋于稳定。石沟的水分状况最好,土面和石槽水分状况相对较差。石槽水分亏缺最严重,土面次之。在枯枝落叶、石面、薄膜覆盖下日变幅的大小分别为石槽>石沟>土面、石沟>土面>石槽、石沟>土面>石槽。连续干旱7天后,土壤水分开始出现水分胁迫。而一年中,土壤年平均含水量和年变幅均表现为:石沟>石槽>土面。不同小生境土壤含水量变化存在高墒期、低墒期,且时段不完全一致。小生境水分胁迫频繁发生。在控制条件下土壤耗水过程表明:经连续高温低湿条件后,土壤水分不断降低,其减小趋势为先急后缓,逐渐趋于稳定;土壤水分的消耗与覆盖材料、覆盖程度以及土壤的容积有关;保墒效果薄膜覆盖优于石块覆盖,枯枝落叶覆盖在保水方面较差,但苗木存活效果,石面覆盖下存活率最高,其次是枯枝落叶覆盖,最差是薄膜覆盖。
     喀斯特区顶坛花椒在展叶期(3-4月)的耗水量17.66mm、开花结果期(5-6月)为109.01mm、成熟期(7-8月)为44.03mm,其生长发育期总耗水量为170.70mm。而不同小生境,即土面、石槽、石沟,在展叶期(3-4月)内土壤水分蒸发量分别为62.18mm、65.31mm、66.45mm,开花结果期(5-6月)分别为101.95mm、104.3mm、93.56mm,成熟期(7-8月)分别为182.47mm、150.54mm、174.28mm。
     在试验区每100m~2的样地内,土面、石槽、石沟三种小生境在生长发育期内的林地潜在生态需水量范围分别在13.996—21.032m~3、3.916—5.462m~3、3.726—5.296m~3,其总生态需水量范围在21.638m~3—31.790m~3;而实际生态需水量为16.135m~3、3.584m~3、4.298m~3,在100m~2样地内,总的生态需水量24.018m~3。生长发育期总亏缺量顺序为土面>石槽>石沟。经不同覆盖后,土面和石槽这两种小生境在各生长发育期生态亏缺需水量明显减少了。通过对需水量和生态亏缺水量计算后,确定了喀斯特区不同小生境整地技术及补水技术。
Based on the theory of soil-plant-atmosphere continue water balanced, Zanthoxylum bungeanum var. dintanensis in Karst area was studied in the paper. Through studying physical characters of soil in Karst area 、micro-climate atmosphere、 soil moisture content changing law under nature condition、vapour content of trees、ecological requiring water content of forest land、 ecological shortage content of forest land、 and examination on survival rate of seedling,this paper. Then gave a series of technical measures.
    The result shows that: Karst environment's high heterogeneity, microhabitat and micro-climate are very different. During a day, the water in soil increases with the soil thick incleased, bur stables finally. The water condition of stony golly is best, but the water condition of soil surface and stony trough are worse .The water condition of stony trough is worse than soil surface. Stony trough moisture content's shortage is the most serious, then is the soil surface. Under the litter leaf cover, stone cover and film cover, the day change range is stony trough>stony gully>soil surface, stony gully>soil surfacostony trough、stony gully >soil surface>stony trough .Continue to dry for seven days, soil moisture content begins to stress .But during a year, average water content of soil and year change range shows: stony gully> stony trough>soil surface. Changing in water that included in different microhabitat soil exists, and the time ranges are not very same. The water stress in microhabitat occurs with high -frequency. The course of soil expended water under controlling shows that soil moisture content constantly reduced under the condition of higher temperature and lower moisture, the tend is quick first and slow last , but stables finally. Soil moisture content's expenditure is related with cover material、 cover degree and soil volume. Film cover is better than stone cover, litter leaf cover in maintaining water is worse. After examining the result of survival rate, it shows that survival rate of stone cover is highest, then is the litter leaf cover, and the film cover is worst
    Zanthoxylum bungeanum var. dintanensis's water expenditure in expanding leaf-period (3-4m)、 blossom and fluitness-period (5-6m)、and mature-time (7-8m) is respectiviely 17.66mm、 109.1mm、 44.03mm.Total water expenditure in growth-period is 170.70mm. To different micro-hibitat (soil surface、stony trough, stony gully), the soil water vapour content in expanding leaf-time (3-4m) is respectively 62.18mm, 65.31mm, 66.45mm, which is in blossom and fluitness-period is respectively 101.95mm、104.3mm、93.56mm; and which is in mature-period is respectively 182.47mm, 150.54mm, 174.28mm.
    In experimental region, there are three microhabitats of soil surface, stony pit and stony gully.Range of potentical ecological water repuirement of forestland in the growth of every 100 m~2 are 13.996—21.032m~3, 3.916—5.462m~3, 3.726—5.296m~3 respectively, with a range of total ecological water repuirement is 21.638m~3—31.790m~3.However reality ecological water repuirement of soil surface, stony pit and stony gully are 16.135m~3、3.584m~3、 4.298m~3 respectively, which of total ecological water repuirement is 24.018m~3.Total ecological water shortage in the
引文
[1] 川岛和夫.农用土壤改良剂—新型保水剂[J].土壤学进展,1986(3):49~52
    [2] 于育英等.高吸水性树脂在农林业中的应用[J].林业科技通讯,1983(3):14~16
    [3] 马天新,庞中存,陆袖珍.土壤保水剂在我省旱作农业上的应用展望[J].甘肃农业科技,1997,(12):31~32
    [4] 马忠明.有限灌溉条件下作物—水分关系的研究.干旱地区农业研究.1998,16(2):75-79
    [5] 王九龄.吸水剂在北京低山阳坡造林中应用的系列研究[J].北京林业大学学报,1991,13(增刊):53~69;143~165
    [6] 尹国平,农韧钢,刘革宁.高吸水剂在我国林业上的研究进展[J].世界林业研究,2001,14(2):50~54
    [7] 王沙生等 植物生理学 中国林业出版社 1991
    [8] 中国科学院南京土壤研究所编:土壤理化分析 上海科学技术出版社 1980(2)
    [9] 王芳,梁瑞驹,杨小柳,陈敏建.中国西北地区生态需水量研究(1)----干旱半干旱地区生态需水理论分析.自然资源学报 2002年1月第1期第17卷
    [10] 王斌瑞,王百田.黄土高原径流林业.北京:中国林业出版社.1996
    [11] 韦小丽 喀斯特森林树种水分生态特征研究 硕士论文
    [12] 王芳,王浩,陈敏建,王研,唐克旺.中国西北地区生态需水研究(2)——基于遥感和地理信息系统技术的区域生态需水计算及分析(J)。自然资源学报,2002,17(2):129-137
    [13] 王根绪,程国栋.干旱内陆流域生态需水量及其估算(J).中国沙漠,2002,22(2):129-134
    [14] 冯金朝,赵金龙等.土壤保水剂对沙地农作物的影响[J].干旱地区农业研究,1993,12(6):36~40
    [15] 刘昌明,于沪宁.土壤—作物—大气系统水分运动实验研究.北京:气象出版社.1997
    [16] 朱守谦,何纪星等,喀斯特森林小生境特征初步研究 贵州科技出版社 1993
    [17] 朱守谦主编.喀斯特森林小生境特征初步研究 贵州科技出版社.1993(7)第52-62页
    [18] 朱守谦,祝小科,喻理飞 贵州喀斯特区植被恢复的理论和实践 贵州科技出版社 2002(12)
    [19] 朱守谦,韦小丽等, 乌江流域喀斯特石质山地水分特征研究 贵州科技出版社 2002(12)
    [20] 朱守谦主编.茂兰喀斯特森林小生境特征研究 贵州科技出版社.2002(12)第38-47页
    [21] 张丽,董增川等,生态需水研究进展及存在问题 中国农村水利水电 2003第1期
    [22] 张丽,董增川,徐建新.黑河流域下游天然植被生态及需水研究.灌溉排水.2002年12月第4期第21卷
    [23] 张丽,董增川,赵斌.干旱区天然植被生态需水量计算方法.水科学进展 2003(11):第6期第14卷
    [24] 张远,杨志峰.林地生态需水量计算方法与应用.应用生态学报.2002(12):第12期第13卷
    [25] 何永涛,李文华,李贵才,闵庆文,赵海珍.黄土高原地区森林植被生态需水研究.环境科学.2004(5):第3期第25卷
    [26] 李长荣等.高吸水性树脂与肥料相互作用的研究[J].北京农业大学学??报,1989,15(2):187~192
    [27] 张富仓,康绍忠.B P保水剂及其对土壤与作物的效应[J].农业工程学报,1999(5):74~78
    [28] 汤奇成:绿洲的发展与水资源的合理利用(J).干旱区资源与环境 1995,9(3):107-112.
    [29] 陈吕统.河西走廊实际水资源及其确定的适宜绿洲和农田面积(J).干旱区资源与环境,1995,9(3):122-128
    [30] 陈丽华,王礼先.北京市生态用水分类及森林植被生态用水定额的确定.水土保持研究.2001年12月第4期第8卷
    [32] 姚贤良,程云生等,土壤物理学 农业出版社 1983
    [31] 李根柱,韩海荣,张增志.应用新材料蓄水渗膜造林试验研究初报[J].中国水土保持科学,2003,1(4):92~95
    [32] 李根柱,庄周,韩海荣 蓄水保墒抗旱造林技术的研究进展 林业科技 Vol.29 No.6Nov.2004
    [33] 国家林业局发布:森林土壤分析方法(中华人民共和国林业行业标准 LY/T1217-1999) 中国标准出版社
    [34] 周平,李吉跃,杨庆理.固体水释水规律及其特性的研究.林业科学,2002,38(5):18~23
    [35] 周平,李吉跃,杨庆理.固体水对苗木作用效应的研究[J].北京林业大学学报,2002,24(1):16~21
    [36] 招礼军,李吉跃,周平等.固体水野外造林试验初报[J].北京林业大学学报,2002,24(4):56~59
    [37] 杨庆理,顾振瑜,胡景江等.固体水对树木幼苗水分生理及成活率的影响[J].西北林学院学报,2001,16(4):10~12
    [38] 胡振琪.国外侵蚀控制新进展[J].中国水土保持,1995(1):15~16
    [39] 贺康宁等 黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境 林业科学,2003,1(1):10-16
    [40] 祝小科,朱守谦等,乌江流域喀斯特石质山地人工造林技术试验研究 贵州科技出版社 2002.12第351-366页
    [41] 祝小科,朱守谦 乌江流域喀斯特石质山地人工造林配套技术 贵州科技出版社 2002.12第367-373页
    [42] 郭连生等 四种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究 应用生态学报,1994,5(1):32-36
    [43] 栗时金等.高吸水性聚合物[J].化学通报,1983(4):25~29
    [44] 康绍忠等.土壤—植物—大气连续体水分传输理论及其应用.北京:水利电力出版社1994
    [45] 崔树斌 关于生态环境需水量若干问题的探讨[J] 中国水利 2001(8):71-74
    [46] 蔡典雄,赵兴保.保水剂及其应用技术[J].农业科技通迅,2000,(8):22
    [47] 屠玉麟 顶坛花椒营养成分及微量元素测试研究 贵州师范大学学报(自然科学版) Vol.18.No.4 Nov.,2000
    [48] 屠玉麟,韦昌盛,左祖伦,鲁永明 花椒属一新变种——顶坛花椒及其品种的分类研究 贵州科学 Vol.19,No.1 Mar.,2001
    [49] Agarwal,A.,Coarng the barren deserts back to life. New Sci.,1977,75(1069):674~675
    [50] Alasdair Barcroet. Superabsorbents improve plant survival [J]. World Crops,1984,(12):7~10
    [51] Arnold, J. G., Srinivasan. R., et al. Large area hydrologic modeling and assessment Part Ⅰ: model development(J). Journal of the American Water Resources Association, 1998, 34:91-101
    [52] Back W., Hydromythology and ethnology in the new world. Water resource Res.??1981,17:257-287
    [53] Cluff C. B.The use of the compartmented reservoir in water harvesting agro-systems.Aridland plant Resources.l979:482~500
    [54] Covich A.Water and ecosystems Gleick P H (A),water in crisis —A Guide to the World's Fresh Water Resources(C).New York: Oxford University Press,1993.40-55
    [55] Evenari M, Shanan L., Tadmr N M., the Negen: The Challenge of Deterl. Harvard University Press, Cambridge. MA,1971:345
    [56] Fink D. H. and Ehrler W.L. Runoff farming for growing Christmas tree. Soil Sci. Soc. A m. J .1983(47):983~987
    
    [57] Gardner W R.Dynamic aspect of water availability to plants. Soil Science. 1960,89:63-73
    [58]Gleick P H. water in crisis paths to sustainable water use (J) Ecological Application,1996,8(3):571579.
    [59] Hardan A. Remarks during discussions. Proc. Water Harvesting Symp. Phoenix, AZ. ARS w-22RSDA1975:60~61
    [60]Lohmand, D. , Raschke, E. , etal. Regional scale hydrology: 1.Formulation of the VIC — 2L model coupled to a routing model(J). Hydrology Sciences Journal, 1998, 43(1):131—141
    [61] Philip J R.Plant water relations: some physical aspect. Ann.Rev.Plant Physiol. 1966,17:245-268
    
    [62] Shreiber H.A.,Frasier G.W., increasing rangeland forage production by waterharvesting. J.Kowsar A.,Water harvesting for afforestation: II Development of tree grouth on amountand distribution of precipitation.Soil Sci. Soc. A m. J .1982(46):602~807
    [63] Srinivasan, R. Arnold, J. G. et al. Large area hydrolologic modeling and assessment Part: model application(J). Journal of the American water Resources Association, 1998,34: 91—101
    [64] Whipple W Jr, et al. Aproposed approach to ecordination of water resources development and environmental regulations (J).Journal of the American Water Resources Association,1999.35(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700