陈家沟煤矿综放开采导水裂隙带高度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层开采引起覆岩移动变形破坏形成导水裂隙,可能使位于开采影响范围内的地表水、地下水溃入井下,不但严重危及矿井安全生产,而且严重损害矿区生态环境,在综放开采条件下这种危害表现的更为突出。因此,深入研究覆岩破坏导水裂隙带的发育高度和分布形态,对于提高煤炭资源回收率,保障矿井安全生产,保护矿区生态环境都具有重要的科学研究意义和应用价值。
     本文以华亭矿区陈家沟煤矿北汭河下三采区特厚煤层综放开采为研究对象,通过分析陈家沟煤矿地质、采矿条件,开采煤层上覆岩层结构及岩性特征,隔水层、含水层物理力学特性,影响导水裂隙带发育高度的主要因素,选择了井下仰孔双端封堵测漏方法进行现场观测。观测结果表明,特厚煤层综放开采较其他开采方法覆岩破坏程度更为严重,在导水裂隙带上部存在较为发育的离层空间,裂采比达到12.53;在分析观测研究成果的基础上,结合力学分析和数值模拟计算等研究方法,给出了导水裂隙带分布形态和最大高度;结合三采区范围内对应地表裂隙深度探测成果,分析给出华亭矿区北汭河下安全开采防水煤(岩)柱厚度计算方法。
     研究成果为进一步深入研究特厚煤层综放开采覆岩破坏规律奠定了基础,对华亭矿区水体下采煤具有一定指导意义。
Movement and failure of underground-induced strata can make surface and underground water in mining scope inrush coal mine and bring enormous harm to production safety and ecological environment. This damage is more prominent in full-mechanized top-coal caving mining. So, it is great theoretical and practical value for improve the recovery rate of coal resources, protect the mine production safety and ecological environment in mining areas that in-depth study the height and distribution patterns of the fractured zone.
     In this paper, the research object is full-mechanized top-coal caving mining of very thick seam in 3 mining area of Chenjiagou mine in Huating coal mine. Detailed analysis the geology and mining conditions of Chenjiagou mine. Synthetically consider the lithology of overburden, mechanical properties and distribution of aquifer and aquifuge. Analysis the main factors of the height and distribution pattern of fractured zone. Combine the topographic, geological and mining conditions in Chenjiagou mine. Use the leakage measuring by the upward slant drilling plugging double-ends testing the height of fractured zone. The observation results show that the overburden damage by full-mechanized top-coal caving mining of very thick seam is more serious than other mining methods; there are lots of large cracks and separation space in fractured zone; the ratio of the height of the fractured zone to the mining height is 12.53; based on the observation results, combination of mechanical analysis and numerical simulation methods, shows the distribution pattern and the maximum height of the fractured zone. With the depth of surface cracks, provide the calculating formulae of water proof coal (rock) pillar height in Beirui river of Huating coal mine.
     Research results establish the base for further study in fractured zone of full-mechanized top-coal caving mining of very thick seam. It proves to possess extension application value in underwater mining of Huating coal mine.
引文
[1]谢和平.采矿工程中的力学问题与分析[J].“力学2000”学术大会论文集,2000.
    [2]石平五.西部煤矿岩层控制泛述[J].矿山压力与顶板管理,2006(2):25~28.
    [3] Xie H P, Sun H. The study on bivariate fractal interpolation functions and creation of fractal interpolated surface .Fractals,1997,5,5(4):625~634.
    [4]侯长祥,冯涛,熊仁钦等.矿床“三下一上”开采[M].北京:煤炭工业出版社,2001.
    [5]沈光寒,李白英,吴戈等.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992.
    [6]杜计平,汪理全.煤炭特殊开采方法[M].北京:中国矿业大学出版社,2003.
    [7]方绪存.第四系含水层下压煤开采技术研究[D].山东科技大学,2006,12.
    [8]张小明.榆树湾煤矿20102工作面覆岩导水裂隙高度及渗流规律研究[D].西安科技大学,2006,07.
    [9]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2010.
    [10]方绪存.第四系含水层下压煤开采技术研究[D].山东科技大学,2006,12.
    [11] (波)M.鲍莱茨基,M.胡戴克.矿山岩石力学[M].煤炭工业出版社,1985,7.于振海,刘天泉译.
    [12]郭文兵,邵强,尹士献等.水库下采煤的安全性分析[J].采矿安全与工程学报,2006.6,23(3):323~327.
    [13]韩书义.水体下金属矿床开采的探讨[J].矿业快报,2000,3(6):3~5.
    [14]杜计平,汪理全.煤炭特殊开采方法[M].北京:中国矿业大学出版社,2003.
    [15]陈加飞.水体下采空区覆岩破坏数值模拟研究[D].昆明理工大学,2008.
    [16] (苏)格维尔茨曼著,于振海,刘天泉译.水体下安全采煤[M].北京:煤炭工业出版社,1980.
    [17]王兵.大平矿南二采区水体下开采方案研究[D].辽宁工程技术大学,2007.
    [18]袁景.谢桥煤矿1201(3)工作面覆岩导水裂缝带高度预测[D].辽宁工程技术大学,2005.
    [19]沈光寒,李白英编著.矿井特殊开采的理论与实践[M].煤炭工业出版社,1992.
    [20] E. Hock. E. T. Brown, Underground Excavation in Rock, the Australasian Institute of Metallurgy,1980.
    [21] H. J. Hargraves. Subsidence in mines[M].The Australasian Institute of Metallurgy, 1973.
    [22] G. Niederhofer , Spannungsverlagerungen . Gebirgsbewegungerund Gebirgsverormungenim Abbaueinwirkungsbereich, Das Markscheidewesen. 1989, 96 (1): 12~20.
    [23] Newman. D. A. Planning and design for barrier pillar recovery: Three case histories[J].International conference on ground in mining, 1995:1~3.
    [24] Hill JG, Price D R.The impact of deep mining on an overlying aquifer in western Pennsylvania. Ground Water Monit Rev, 1983, 3(1):138~143.
    [25] Elsworth D, Liu J. Topographic influence of longwall mining on groundwater supplies [J].Ground Water,1995,33(5):786~793.
    [26] C. J. Booth. The effects of longwall coal mininng on overlying aquifers [J].Younger PL, Robins NS (eds) Mine water hydrogeology and geochemistry. Geological society, London, Special Publications, 2002, 198:17~45.
    [27] C. J. Booth. Groundwater as an environment constraint of longwall coal mining [J] .Environment Geology,2006,49:796~803.
    [28]桂和荣,陈兆炎.覆岩移动规律的数值模拟方法及成果[J].矿业科学技术,1993(2).
    [29]维塞利茨等.维伦杰煤矿地表水体下安全开采标准[C](第三届国际矿山防治水会议论文集),中国煤炭劳保学会水害学会专业委员会,1990:28~80.
    [30]黄雪梅.五沟煤矿开采煤层上覆岩土体综合地质特征及防水煤岩柱留设问题研究[D].安徽理工大学,2007.
    [31]黄福昌,倪兴华,张怀新等.厚煤层综放开采沉陷控制与治理技术[M].煤炭工业出版社,北京,2007.
    [32]陈秀友,檀双英,易德利.祁东煤矿3224工作面导水裂隙带高度数值模拟[J].煤炭科学技术,35(10):2007,10.
    [33]范立民,蒋泽全.厚煤层综采区冒落(裂)带高度的确定[J].中国煤田地质,2000,12(3):31~33.
    [34]王世东,谢伟,罗利卜.霍洛湾煤矿22101工作面顶板两带发育规律[J].煤田地质与勘探,2009,37(3):38~40.
    [35]李艳波,赵伏军,申培文等.沈家湾煤矿导水裂隙带发育高度研究[J].矿业工程研究,2009,24(3):931~33.
    [36]邢延团,郑纲,马培智.井下仰孔注水侧漏法探测导水裂隙带高度的研究[J].煤炭地质与勘探,2004, 32:186~189.
    [37]景继东.巨厚砾岩顶板突水机理及防治技术研究[D].山东科技大学,2004.
    [38]汪华君.覆岩导水裂隙带井下微震监测研究[J].矿业快报,2006,441(3):27~29.
    [39]张兴民,于克君,席京德等.微地震技术在煤矿“两带”监测领域的研究与应用[J].煤炭学报,2000,25(6):566~570.
    [40]石林珂,孙懿斐.声波层析成像方法及应用[J].辽宁工程技术大学学报(自然科学版),2001,20(4):489~491.
    [41]许新刚,张华恩,刘志新等.矿井电阻率成像技术的发展现状与展望[J].江苏煤炭,2004,2:1~3.
    [42]李焕春,张有朝,王士平.高密度高分辨电阻率法在采空区“三带”的探测研究[J].河北煤炭,1999, 2:38~40.
    [43]黄杰,钟韬,马文德.超高密度电法在追索破碎带中的应用[J].物探化探计算技术,2009,31(6):586~589.
    [44]申宝宏,孔庆军.综放工作面覆岩破坏规律的观测研究[J].煤田地质与勘探,2000,28(5):42~44.
    [45]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [46]谢文兵,陈晓翔,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [47]郭兰波.边界元法及其在岩体力学中的应用[M].徐州:中国矿业大学出版社,1991.
    [48]嵇醒,臧跃民等.边界元法进展及通用程序[M].上海:同济大学出版社,1997.
    [49]任强.采场覆岩破坏变形规律的数值模拟及敏感性分析[D].山东科技大学,2007.
    [50]曾先贵,李文平.综放开采近断层导水断裂带发育规律研究[J].采矿与安全工程学报,2006,23(3):306~310.
    [51]李琰庆.导水裂隙带高度预计方法研究及应用[D].西安科技大学,2007.
    [52]吕霁.特厚煤层综放开采上覆岩层破坏规律研究[D].北方工业大学,2010.
    [53]王志刚.覆岩主关键层对导水裂隙演化影响的研究[D].中国矿业大学,2008.
    [54]杜计平,汪理全.煤炭特殊开采方法[M].北京:中国矿业大学出版社,2003.
    [55]余学义.陕西长武亭南煤矿一盘区106工作面冒裂带高度观测研究亭南报告[R].西安科技大学.2008.8.
    [56]张玉军.铁北煤矿松软砂岩含水层下综放开采覆岩破坏及溃砂预测研究[D].煤炭科学研究总院,2005.
    [57]刘治国.中硬覆岩导水裂缝带发育高度与条带开采尺寸的关系研究[D].煤炭科学研究总院,2004.
    [58]赵兵朝.浅埋煤层条件下基于概率积分法的保水开采识别模式研究[D].西安科技大学,2008.
    [59]桂和荣.防水煤(岩)柱合理留设应力分析计算法[M].北京:煤炭工业出版社,1997,7.
    [60]姜升.巨厚煤层综放开采地表裂缝深度探测研究[R].煤炭科学总院唐山研究院.2009.8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700